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Background. The aim of the study was to investigate the landscape of B-cell-related gene expression profiling in rheumatoid
arthritis (RA) synovium and explore the biological and clinical significance of these genes in RA. Methods. Expression profiling of
synovial biopsies from subjects with 152RA patients, 22 osteoarthritis (OA) patients, and 28 healthy controls was downloaded
from the Gene Expression Omnibus database. Single-sample gene set enrichment analysis (ssGSEA) was performed to evaluate the
abundance of infiltrated immune cells, and the results were validated using immunohistochemical staining. GSEA was employed to
decipher differences in B-cell-related biological pathways. B-cell-related differential expression genes (BRDEGs) were screened,
and BRDEGs-based model was developed by machine learning algorithms and evaluated by an external validation set and clinical
RA cohort, then biological functions were further analyzed. Results. High levels of immune cell infiltration and B-cell-related
pathway activation were revealed in RA synovium. BRDEGs were screened, and three key molecular markers consisting of FAS,
GPR183, and TFRC were identified. The diagnosis model was established, and these gene markers have good discriminative ability
for RA. Molecular pathological evaluation confirmed RA patients with high-risk scores presented higher levels of B-cell activation
and RA characteristics. In addition, a competitive endogenous RNA network was established to elucidate the molecular mechan-
isms of the posttranscriptional network. Conclusions. We described the B-cell-related molecular landscape of RA synovium and
constructed a molecular diagnostic model in RA. The three genes FAS, GPR183, and TFRC may be potential targets for clinical
diagnosis and immunoregulatory therapy of RA.

1. Introduction

Rheumatoid arthritis (RA) is the most common chronic
inflammatory rheumatic disease, characterized by degenera-
tive, progressive, and irreversible intraarticular damage and
extra-articular manifestations [1, 2]. A large-scale survey of
residents estimated that the prevalence of RA (age-adjusted)
in China is 0.28% [3], and the prevalence and incidence of
RA in the world are increasing annually [1]. Multiple factors
could affect the development of RA [4, 5], and the etiology
and pathogenesis of RA remain largely unknown. Synovial
microenvironment deterioration in RA development is the
major cause of synovial invasiveness and joint integrity loss
[6]. Numerous studies have shown that the synovial immune
microenvironment is complex, and immune cell infiltration
plays a leading role in the synovial microenvironment

deterioration [7–9]. Hence, it is of great significance to sys-
tematically investigate synovial immune-associative biologi-
cal alterations, which can help us to gain insights into RA
pathogenesis and development of new diagnostic techniques
or treatment strategies for RA.

As a chronic autoimmune disease, the disease process of
RA spans decades, beginning with the development of several
autoantibodies against post-translationally modified proteins
[10]. After long-term asymptomatic autoimmunity, tissue tol-
erance erodes, and joint inflammation ensues as tissue-invasive
immune cells emerge. Then, the synovial stromal cells were
gradually transited into auto-aggressive effector cells in the
context of prolonged inflammation and stromal cell-immune
cell interactions, which ultimately led to joint destruction [7].
In this process, B cells, as the autoantibody-secreting cells, have
been found to play major roles [8]. In the RA synovial
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microenvironment, activated autoreactive B cells exert various
effector functions that may be relevant to the initiation and
maintenance of synovial inflammation [8]. Activated B cells
could secrete a large number of inflammatory and regulatory
cytokines, formulate tertiary lymphoid structures (follicles),
activate autoreactive T cells via antigen presentation and
expression of costimulatory molecules, and secrete autoantibo-
dies in RA synovium. The contribution of activated autoreac-
tive B cells to RA eventually leads to themaintenance of disease
chronicity [8, 11]. Clinically, therapies targeting B cells, such as
anti-CD20 antibody rituximab, have proven effective in RA
[12, 13], which also supports the pathogenic role of B cells in
RA pathogenesis. Taken together, synovial B cells are impor-
tant immune mediators in RA synovial microenvironment and
play a key role in RA pathologies. Studies on autoreactive B
cells in RA synoviumwould contribute to the elucidation of RA
pathogeneticmechanisms and the development of RA diagnos-
tic techniques or therapeutic targets.

RA is currently incurable. Early and timely diagnosis is
crucial for the treatment and prognosis of RA patients. The
RA clinical diagnosis is mainly based on clinical symptoms,
X-ray findings, and classical laboratory indexes [14]. How-
ever, the clinical symptoms of RA are diverse. It is easy to
miss the diagnosis or have a misdiagnosis in clinical practice,
and the search for new diagnostic signatures is highly neces-
sary. Excessive infiltration of B cells as one of the most
important characteristics of the ecology of RA synovial
microenvironment, B-cell-related signatures may have
promising diagnostic potential tools of the RA.

In the present study, we performed a systematic investi-
gation of B-cell-related gene (BRG) signatures in RA syno-
vium using bioinformatics methodology, aiming to explore
the potential biological function of the key genes and con-
struct a multigene signature for RA molecular diagnosis.
Synovial tissues collected from RA patients were used for
validation of the proposed key gene signatures.

2. Materials and Methods

2.1. Patients. A total of 25 RA patients were recruited from
the Shanghai Guanghua Hospital in our study, and all satis-
fied the 2010 American College of Rheumatology/European
League against Rheumatism (ACR/EULAR) classification
criteria for RA [15]. In addition, 25 osteoarthritis (OA)
patients who met the 2018 ACR guidelines [16] were
included as controls. Synovial tissues were obtained from
the above patients undergoing routine synovectomy. The
detailed clinical information of participants is presented in
Table S1. The present study was approved by the Tongren
Hospital, Shanghai Jiao Tong University School of Medicine,
Shanghai, China (Ethical batch number: AF/SC-11/03.1).
The authors declare no violation of the Helsinki Doctrine
on human experimentation. Verbal and written informed
consent were obtained from all participants.

2.2. Immunohistochemical Staining. The immunohistochem-
ical staining for CD20 was performed as below. Briefly, after
the removal of synovial tissues at the time of surgery, speci-
mens were immediately washed in cold phosphate-buffered

saline (pH 7.4) and then fixed in 4% buffered paraformalde-
hyde at 4°C for 24 hr. The tissues were dehydrated, embed-
ded in paraffin, and then sectioned sagittally at a thickness of
4 μm. Next, after a series of processes, including dewaxing,
rehydration, and antigen repair, the sections were blocked
with secondary antibody source serum. After blocking, the
sections were incubated with CD20 antibodies (Cell Signal-
ling Technology, Inc., MA, USA; Catalog #: 48750S 1∶200
dilution) overnight. The following day, the sections were
incubated with secondary antibodies (Cell Signalling Tech-
nology, Catalog #: 8114S) and stained with diaminobenzi-
dine. Digital images were taken by using an Olympus BX53
microscope (Olympus, Tokyo, Japan) and analyzed using
Motic DSA software (Motic, Hong Kong, China).

2.3. Data Collection and Processing. The overall workflow of
this study is depicted in Figure 1. In our study, two RA
synovial expression profiling by high throughput sequencing,
GSE89408 and GSE122616, were recruited from the Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/
geo/) database. Detailed information of samples and prepa-
ration methods are given in the GEO database. Normaliza-
tion of the RNA read count matrix was performed with the
TMM method of the edgeR R package (version 3.42.4). The
org.Hs.eg.db R package (version 3.17.0) was applied for
mRNA and long noncoding RNA (lncRNA) to ID transform,
and the count matrix was transformed into transcripts per
kilobase million (TPM) format by executing the count2tpm
function of the IOBR R package (version 0.99.9) [17].

2.4. Immune Cell Infiltration Analysis. Immune infiltration
estimation was performed using the single-sample gene set
enrichment analysis (ssGSEA) algorithm by the IOBR R pack-
age (version 0.99.9), which is broadly utilized in immune
infiltration-related bioinformatics studies [18–21]. The gene
panel marking 28 immune cell types used in the algorithm
was collected from Charoentong et al. [22] and illustrated in
Table S2.

2.5. B-Cell-Related Gene Sets Collection. To explore the
B-cell-related biological characteristics in RA, we searched
for the keyword “B cell” in the Molecular Signatures Data-
base (MSigDB, https://www.gsea-msigdb.org/gsea/msigdb)
with C5—gene ontology (GO) as the filtering condition.
All returned results were double-checked manually. Finally,
51 B-cell-related pathways and 772 BRGs were screened out
for subsequent analysis. The details of BRG sets are provided
in Table S3.

2.6. Enrichment Analysis. GSEA was performed using clus-
terProfiler R package [23] (version 4.8.2) to identify
markedly aberrant B-cell-related biological alterations in
RA. BRG sets were used to conduct GSEA analyses with
the GSEA function in clusterProfiler. The gseGO and gse-
KEGG functions in clusterProfiler were conducted to per-
form GSEA and further identified the GO and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
that were significantly enriched in the high- and low-risk
groups. In addition, GO and KEGG enrichment analyses
were also conducted by clusterProfiler with 55 B-cell-related
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differentially expressed genes (BRDEGs). All gene sets or
pathways with an adjusted p-value < 0.05 were considered
to be significantly enriched, and the Benjamini and Hoch-
berg method was used for multiple correction.

2.7. Protein–Protein Interaction (PPI) Network Analysis. PPI
network analysis of the BRDEGs was performed based on the
STRING database (https://string-db.org/) with default settings.
Cytoscape software (version 3.10.0) was applied to visualize the
PPI network according to PPI information. Cytoscape plug-in
MCODE (version 2.0.3) was used for searching the significant
modules.

2.8. Machine Learning Analysis. Nice machine learning algo-
rithms, including XGBoost, logistic regression, LightGBM,
RandomForest, AdaBoost, complement naive Bayes (CNB),
multilayer perceptron (MLP) neural network, support vector
machine (SVM), and K-nearest neighbors (KNN) classifiers
were built by python (XGBoost: xgboost version 1.2.1;
LightGBM: lightgbm version 3.2.1; others: sklearn version
0.22.1) to construct classification models. Receiver operating
characteristic (ROC) curves analysis was performed to screen
the most reliable and robust model.

2.9. RNA Extraction and Real-Time qPCR. The total RNA of
synovial tissue was isolated using the phenol-chloroform
method with the TRIzol reagent (Ambion, TX, USA).
Then, cDNA was synthesized with the RevertAid First
Strand cDNA Synthesis Kit (Thermo Fisher Scientific, MA,
USA). Finally, the gene expression was measured by TB
Green Premix Ex Taq II kit (Takara Biotechnology, Dalian,
China) on Applied Biosystems 7500 with 7500 system soft-
ware (Applied Biosystems, CA, USA). The sequences of the
primers used in the present study were designed using the
NCBI Primer-Blast (NCBI Web site) and listed as below:
FAS-upstream primer: 5′-CAACAACCATGCTGGGCATC-
3′, FAS-downstream primer: 5′-ACCTGGAGGACAGGGC
TTAT-3′; GPR183-upstream primer: 5′-TCAATTGCT
GCATGGACCCT-3′, GPR183-downstream primer: 5′-
CACTGACTTGCCGTTTCAGC-3′; TFRC-upstream primer:
5′-GAACTACACCGACCCTCGTG-3′, TFRC-downstream
primer: 5′-GTGCTGTCCAGTTTCTCCGA-3′; GAPDH-
upstream primer: 5′-GGAGCGAGATCCCTCCAAAAT-3′,
GAPDH-downstream primer: 5 ′- GGCTGTTGTCA-
TACTTCTCATGG-3′.

2.10. Construction of Competitive Endogenous RNA (ceRNA)
Networks. Differentially expressed lncRNAs (DElncRNAs) and
BRDEGs FAS, GPR183, and TFRC were selected for ceRNA
network analysis. Target microRNAs (miRNAs) of DElncRNAs
were predicted using the ENCORI online tool (https://rnasysu.
com/encori/index.php), while target miRNAs of three BRDEGs
were predicted by the miRWalk database (http://mirwalk.umm.
uni-heidelberg.de/). Finally, the miRNA–mRNA and lncRNA–
miRNA binding pairs were merged into multiple lncRNA–
miRNA–mRNA regulatory axes and visualized in Cytoscape
software.

2.11. Statistical Analysis. All data were processed and plotted
using the R software (version 4.3.1). LASSO regression was

performed using the glmnet R package (version 4.7-1) to select
optimization variables through dimensionality reduction. ROC
curve analysis was performed via the pROCR package (version
1.18.4). Comparisons among multiple groups were analyzed
using the Kruskal—Wallis rank-sum test, and correlations
were calculated by Spearman’s correlation. All statistical tests
were two-tailed, and p-value < 0.05 was considered significant
(∗p<0:05, ∗∗p<0:01, ∗∗∗p<0:001, ∗∗∗∗p<0:0001, ns=not
significant).

3. Results

3.1. Landscape of Immune Cell Infiltration in RA Synovium.
The GSE89408 dataset contained total RNA sequencing data
of joint synovial biopsies from subjects with 152 RA patients,
22OA patients, and 28 healthy control (HC) was downloaded
from the GEO database. Meanwhile, we subgrouped RA
patients into anticitrullinated protein antibody (ACPA)-posi-
tive/-negative RA, or early/established RA for further analysis
according to the clinical characteristics. Based on the ssGSEA
method, the relative infiltration of 28 immune cell subpopula-
tions was analyzed in ACPA)-positive/-negative RA, early/
established RA, OA, and HC synovium (Figure 2(a)). Unsur-
prisingly, compared with the other control groups, ACPA-
positive/-negative RA, early/established RA synovium was
highly infiltrated by various immune cells, including activated
B cell, activated T cell, activated dendritic cell, and so on
(Figure 2(b)), while the difference of immune cell infiltration
among RA subgroups was not apparent, which suggested a
microenvironment of excessive immune activation and syno-
vial inflammation in RA.

3.2. Screening of BRDEGs. Considered that abnormal activa-
tion of B-cell subsets is an important characteristic feature of
RA, we further explore the potential significance of B cells in
RA synovium. We validated that the number of CD20-posi-
tive cells [24] was markedly elevated in RA synovium com-
pared with OA synovium using immunohistochemical
analysis (Figure 2(c)). For the sake of finding BRGs, we
searched the MSigDB and generated 51 relevant pathways
containing 772 BRGs. Then GSEA was performed, and we
found B-cell active activation, B-cell differentiation, B-cell-
mediated immunity, and other B-cell-related signaling path-
ways were significantly enriched in both comparison of the
RA with OA patient group (RA vs. OA group) and compari-
son of the RA patients with HCs group (RA vs. HC group),
which suggested extensive activation of synovium B cell in
RA (Figures 2(d) and 2(e)).

Next, we performed differential gene expression analysis
between total RA and two comparison groups, OA and HC,
separately with edgeR. With adjusted p-value< 0.05 and an
absolute value of log2 FoldChange (abs(log2 FC))> 1 as the
cutoff criteria, we identified 3,031 differential expression genes
(DEGs) in RA vs. HC group and 1,414 DEGs in RA vs. OA
group. Taking the intersection of these DEGs with 722 BRGs,
55 BRDEGs had been screened finally (Figures 3(a) and 3(b)).
To determine the interactions between the BRDEGs, we per-
formed a PPI network analysis using the STRING database,
which included 48 nodes and 121 edges (Figure 3(c)).
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Moreover, highly interconnected subclusters consisted 8 nodes
and 12 edges from the PPI network were revealed by the Cytos-
cape plug-inMCODE [25] (Figure 3(d)), which provided poten-
tial B-cell-related key targets in RA. In addition, GO and KEGG
enrichment analysis indicated that these BRDEGs were mainly
enriched in B-cell-related biological processes and signaling
pathways, including positive regulation of lymphocyte activa-
tion, B-cell activation, immunoglobulin-mediated immune
response, as well as relevant pathways such as the B-cell receptor
signaling pathway, chemokine signaling pathway, NF-κB signal-
ing pathways (Figures 3(e) and 3(f)). The above results implied
that B cells were hyperactivated in RA synovium, and these
BRDEGs might be the key targets of RA therapy.

3.3. Development of BRGs Diagnostic Signature by Machine
Learning. To explore the potential diagnostic value of these
BRDEGs in RA, 22 upregulated genes were selected (red box
in Figure 3(b)) for the final LASSO regression modeling. In
RA vs. HC group, the model reached an optimum when
lambda was equal to 0.01021, containing five key gene
variables, including FAS, GPR183, MNDA, SKAP1, and
TFRC (Figures 4(a) and 4(b)). Similarly, the model was
optimal when the lambda was 0.00969, and the model
contains five key gene variables, including FAS, GPR183,
PRKCB, PSMB9, and TFRC (Figures 4(c) and 4(d)) in RA
vs. OA group. Finally, three genes, FAS, GPR183, and TFRC,
were selected by taking the intersection of two results.
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To assess the diagnostic value of three gene variables and
select the best-performing model, nine machine learning
approaches were conducted with 10-fold-cross validation,
including XGBoost, logistic, LightGBM, RandomForest,
AdaBoost, CNB, MLP neural network, SVM, and KNN clas-
sifiers. The performances of these machine learning algo-
rithms were evaluated using ROC curve analyses, and the
results were provided in Tables S4–S7 and Figure 4(e)–4(h).
Also, AUC scores across 10-fold cross-validation were calcu-
lated, and a forest plot of the mean AUC score with a 95%
confidence interval (CI) of the multiple models was shown in
Figures 4(i) and 4(j). The above results demonstrated that the
logistic regression model performed best and most robust in
multiple algorithms. Finally, a risk score using logistic regres-
sion was calculated for RA vs. HC group.

3.4. Diagnostic Value of B-Cell-Related Genes Diagnostic
Signature. Given the difficulty of diagnosis of ACPA-negative
RA patients and early RA patients in clinical practice, total
RA, ACPA-positive/-negative RA, and early/established RA
subgroups were included for subsequent analysis. Relative to
the other control groups, the expression levels of FAS,
GPR183, and TFRC were significantly higher in total RA
and RA subgroups, while no differences between ACPA-
positive and -negative RA subgroups as well as early RA
and established RA subgroups (Figure 5(a)). This result
implied that three genes, FAS, GPR183, and TFRC, did not
correlate with ACPA level and disease stage of RA patients.

For diagnostic value, the AUCs of FAS, GPR183, and TFRC
for RA vs. HC group were 0.9199, 0.9605, and 0.9605, respec-
tively (Figure 5(b)), while the AUCs of FAS, GPR183, and
TFRC were 0.8914, 0.8532, and 0.8203 in RA vs. OA group
(Figure 5(c)). The performance of the risk score in RA vs. HC
group (AUC of 0.9883) was excellent (Figure 5(d)). Even in
RA vs. OA group, the AUC of the risk score could reach
0.8917 (Figure 5(e)). Similarly, the performance of the risk
score in ACPA-negative RA vs. HC/OA group (AUC of
0.9826 compared with HC and AUC of 0.8985 compared
with OA) or early RA vs. HC/OA group (AUC of 0.9893
compared with HC and AUC of 0.8852 compared with OA)
are comparable to that in total RA vs. HC/OA group, which
further suggest that the roles of these three genes were not
associated with the production of ACPA and disease stage
(Figure 5(f)–5(i)). Furthermore, we introduced an external
validation cohort, GSE122616, to verify the diagnostic
power of the risk signature. The AUC of risk score for
RA diagnosis was 0.8889, showing a good discriminative
power (Figure 5(j)). Moreover, 25 pairs of synovial tissue
were obtained from RA and OA patients in the hospital. In
our cohort, we found the mRNA levels of FAS, GPR183,
and TFRC were increased in RA synovium compared to OA
synovium (Figure 5(k)), and the AUCs of these genes for
RA diagnosis in our cohort were 0.8144, 0.7904, and 0.7776,
respectively (Figure 5(l)), consistent with the aforemen-
tioned findings in RNA sequencing results of synovial
tissues.
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3.5. Biological Significance Underlying FAS, GPR183, and
TFRC. We separated all samples in GSE89408 into high-
and low-risk groups based on the median risk score to
explore the potential biological function underlying FAS,
GPR183, and TFRC. The top 10 for each enrichment results
of GSEA for GO between high-risk and low-risk groups
revealed that numerous terms of specific functions to B cells
such as antigen processing and presentation, immunoglobu-
lin production involved in immunoglobulin-mediated
immune response, and MHC class II protein complex were
enriched (Figure 6(a)). Meanwhile, the top 10 for each
enrichment result of GSEA for KEGG showed immune-
related pathways and inflammatory pathways, including
antigen processing and presentation, RA as well as NF-κB
signaling pathway were significantly enriched in the high-
risk group than that in the low-risk group (Figure 6(b)).
These findings suggested that the risk score composed of
three BRDEGs may be closely related to B-cell activation
and production of antibodies, which was one of the best-
known characteristics of autoimmune diseases, including
RA. Moreover, we further explored the correlation between
the risk score and infiltration score of 28 immune cells. As
shown in Figure 6(c), the risk score was positively correlated
with most immune cells, such as activated CD4 T cells,
natural killer T cells, type 1 and 2T helper cells, regulatory
T cells, and so on, which implied the ability of the risk score
to reflect immune cell infiltration and complex interplay
between immune cells in the synovium of RA patients.

Also, a correlation between three BRDEGs and activated or
immature B-cell infiltration score was further explored. The
Spearman’s correlation result (Figure 6(d)) demonstrated that
GPR183 showed strong correlations with activated B-cell
infiltration score (r= 0.49, p<0:0001) and immature B-cell
infiltration score (r= 0.57, p<0:0001), while FAS showed
moderate correlations with activated B-cell infiltration score
(r= 0.26, p<0:01) and immature B-cell infiltration score
(r= 0.26, p<0:01). However, TFRC showed weak correlations
with immature B-cell infiltration score (r= 0.26, p<0:05) and
no correlation with activated B-cell infiltration score (r=0.13,
p>0:05). Taken together, RA patients with high-risk scores may
be at high risk of tissue damage and disease progression, more
heavily infiltrated by immune cells, and higher inflammatory
response in the synovium.

3.6. Potential Cerna Network Composed of FAS, GPR183, and
TFRC. We constructed a ceRNA network to reveal the underly-
ing posttranscriptional regulatory mechanisms. In GSE89408, a
total of 706 differentially expressed long-chain noncoding RNAs
(DElncRNAs) in RA vs. HC group and 341 DElncRNAs in RA
vs. OA group were identified (Figures 6(a) and 6(b)). With abs
(log2 FC)> 3 as the cutoff criteria, 26 DElncRNAs genes were
finally obtained for the subsequent ceRNAnetwork construction
by taking the intersection of DElncRNAs between RA vs. HC
group and RA vs. OA group. MicroRNAs (miRNAs) interacting
with the three BRDEGs and these DElncRNAs were predicted
based on the miRWalk database and ENCORI online tool,
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FIGURE 5: Diagnostic value of B-cell-related genes diagnostic signature. (a) Differential expression of the FAS, GPR183, and TFRC among total
RA (RA), ACPA-positive (+)/-negative (−) RA, early/established RA patients, OA patients, and healthy control (HC). (b and c) Receiver-
operating characteristic curves (ROC) analysis of FAS, GPR183, and TFRC for RA diagnosis in different comparison groups. (d–i) ROC
analysis of the risk score established by FAS, GPR183, and TFRC in different comparison groups. (h) ROC analysis of the risk score
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respectively. After integrating the miRNA–mRNA and
lncRNA–miRNA binding pairs, a ceRNA network comprising
three BRDEGs, 18 miRNAs, and 5 DElncRNAs was completely
developed (Figure 7(c)). In the lncRNA–miRNA–mRNA
axis, DElncRNAs may affect three BRDEGs expression through
the regulation of miRNAs. Overall, the ceRNA network
constructed above provided a potential posttranscriptional
regulatory landscape and the selection of non-coding RNA
therapeutic targets for the three key BRDEGs.

4. Discussion

The pathogenic mechanism underlying RA is complicated,
and B cells have been proven to play an essential role in the
pathological progression of RA, which is involved in immune
activation, inflammation, and production of autoantibodies
[7, 8, 11]. Given the core position of B cells in the RA syno-
vial microenvironment, systematic exploration of the BRG
expression profile and identification of key genes are partic-
ularly warranted for an in-depth understanding of the RA
pathogenesis, which is also conducive to advances in molec-
ular diagnosis and immunomodulatory therapy. In this

research, we first comprehensively estimated the infiltration
of 28 immune cells in RA synovium by ssGSEA, and we
found the degree of immune cell infiltration of RA synovium
was significantly higher than that of OA and HC synovium.
This is to be expected because RA is an autoimmune disease
resulted from immunological abnormalities. Meanwhile, we
also noticed that infiltration of immune cells such as acti-
vated B cell, activated CD4 T cell, activated CD8 T cell,
activated dendritic cell, immature B cell in ACPA-positive
RA synovium were more highly than those in ACPA-
negative RA synovium, which suggested that the degree of
uncontrolled autoimmune response of ACPA-positive RA
patients is more severe than that of ACPA-negative RA
patients. In addition, adaptive immune cell infiltration in
ACPA-negative RA synovium was lower than that in
ACPA-positive RA synovium but still significantly higher
than that in OA and HCs control, which implied that most
of patients with ACPA-negative RA may have unknown
autoantibodies that were still undiscovered or have delayed
appearance of the conventional autoantibodies. In addition,
we observed that differences in the immune cell infiltration
level in synovium were not evident between early RA and
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FIGURE 6: Biological significance underlying FAS, GPR183, and TFRC. (a and b) GSEA for GO and KEGG enrichment between high-risk and
low-risk RA groups based on the median risk score established by FAS, GPR183, and TFRC. (c) Correlation between the risk score and immune
cell abundance. (d) Correlation between FAS, GPR183, or TFRC with the estimated proportion of activated B cells or immature B cells.
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established RA patients compared to OA patients and HC,
suggesting immune cell infiltration might emerge before the
clinical features of RA develop. Next, considered that the
core position of B cells in RA pathophysiology and the pro-
duction of self-reactive autoantibodies in RA, we explored
the BRG expression profile in RA synovium.

Immunohistochemical staining for CD20, a cell surface
marker unique to B cells, was performed to confirm B-cell
infiltration in RA was higher than that in OA. Also, we
demonstrated that B-cell-related signaling pathways were

significantly enriched in RA synovium compared to that in
OA andHCs control. All the above results have elucidated the
necessity of exploring B-cell-associated pathological alterations
at the levels of cellular infiltration in RA synovium. Based on
the expression profiles of 55 BRDEGs obtained from a series of
screening, PPI analysis was performed, and 8 genes, including
HRAS, NOTCH1, TNFSF13B, RAC2, IKZF1, FAS, CD276,
TGFB1, were identified as B-cell-related key genes, which
may be considered as B-cell-related potential therapeutic tar-
gets for RA. GO and GEGG analysis revealed that a number of
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FIGURE 7: Potential ceRNA network composed of FAS, GPR183, and TFRC. (a and b) Volcano plots of differentially expressed long-chain
noncoding RNAs between RA patients and HC, RA patients, and OA patients. (c) CeRNA networks of FAS, GPR183, and TFRC.
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B-cell-related signaling pathways and inflammatory pathways
were enriched, such as B-cell activation, immunoglobulin-
mediated immune response, B-cell-mediated immunity, B-cell-
receptor signaling pathway, NF-κB signaling pathway, and so on.
These enrichment analysis results demonstrated that aberrant B-
cell activation and inflammatory response were significantly ele-
vated in RA synovium. Overall, we revealed the immune cell
infiltration landscape in RA and identified biological functions
linked to BRDEGs in RA, providing new insights into the RA
pathogenic mechanism of synovial B-cell infiltration and
activation.

Using LASSO regression and machine learning algo-
rithms, FAS, GPR183, and TFRC were identified as key
BRDEGs in RA. FAS, also known as CD95, is the prototype
of a death receptor. Evidence suggests that this receptor not
only mediated apoptosis signaling pathway but also mainly
implements nonapoptotic signaling pathways such as NF-κB,
MAPK, and PI3K that are involved in differentiation, cell
migration, survival, and cytokine secretion [26]. In RA,
increased concentrations of the soluble Fas/CD95-ligand
(sFasL/sCD95L) [27] synovial cells expressed high levels of
Fas [28] have been observed in the joints of RA patients. G
protein-coupled receptor 183 (GPR183) was discovered in
1993 as an Epstein–Barr virus-induced orphan receptor in
Burkitt lymphoma cell lines [29], which is important for
rapid and efficient B-cell activation [30]. Many lines of evi-
dence indicate that multiple GPR183 signaling pathways are
involved in osteoclast development and the generation of
adaptive immune responses, which are central to the devel-
opment of inflammation in articular spaces. Thus, antago-
nists of GPR183 signaling may provide significant protection
against RA [31–33]. TFRC is the gene-encoded transferrin
receptor necessary for cellular iron uptake by the process of
receptor-mediated endocytosis [34]. Studies have pointed
out that TFRC expression and transferrin receptor synthesis
is an early event in B-cell activation [35]. In RA, transferrin
receptor expression was largely confined to fibroblasts of the
synovial lining layer [36], and serum transferrin receptor
levels in RA patients were significantly higher than those
in normal groups [37].

Early diagnosis is critical for the RA management. Given
molecular signatures can be indicative of biological changes,
changes in the biomarker profile detected in synovial fluid
might provide promising diagnostic prospects for the early
detection of RA [38–40]. The diagnosis model composed of
these three genes showed an excellent discriminative ability
for distinguishing RA patients from OA patients or HCs. The
expression level of these three genes was correlated with the
degree of immune cell infiltration in RA synovium. Consid-
ered that a fairly high level of immune cell infiltration in RA
synovium compared with that in OA and HCs synovium,
such a high performance of the model is to be expected. It is
worth noting that even within ACPA-negative RA patients
and early RA patients, the discriminating ability of this
model remained consistent with that in total RA patients,
which suggested that these gene signatures may not be
involved in ACPA antibody production and disease stage
but in B-cell activation. Moreover, the performance of the

model was also confirmed by an external validation gene set
and synovial tissue obtained from clinical patients in the
hospital. In summary, gene signatures, FAS, GPR183, and
TFRC, may serve as indicators of an abundance of immune
cell infiltration and deleterious molecular pathological altera-
tions in RA patients.

Based on the median risk score composed of FAS,
GPR183, and TFRC, RA patients were categorized as low-
or high-risk groups. GSEA for GO and KEGG enrichment
showed that RA patients in the high-risk group with higher
levels of B-cell activation and RA characteristics, which
revealed that FAS, GPR183, and TFRC were the hub genes
and the abnormal expression of these genes were likely to
have important pathological effects in RA development.
Also, the ceRNA network was finally constructed to offer
potential diagnostic biomarkers and therapy targets for RA.

There are still many limitations to our analysis, and sev-
eral questions need to be more clearly elucidated. First, the
BRDEGs-based risk score required a large-sample validation
in clinical practice, and optimal cutoff determination are
required before clinical translation. Second, additional stud-
ies are needed to clarify the molecular mechanisms of FAS,
GPR183, and TFRC in RA development. Lastly, the predic-
tion of the ceRNA regulatory network, including DEGs,
DElncRNAs, and predict miRNAs in RA synovium require
further validation by in vitro and in vivo experiments.

In conclusion, our study elucidated that the landscape of
BRG expression profiles in RA synovium and preliminarily
explored the diagnostic value and biological functions of hub
BRDEGs, namely, FAS, GPR183, and TFRC, which may be
potential targets for clinical diagnosis and immunoregula-
tory therapy of RA.
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