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Chronic hepatitis B (CHB) is a major public health problem in the world. It is the main cause of liver cirrhosis and liver cancer. Although
many important roles of RNAmodification in stem cells or tumor diseases have been identified, the role of N7-methylguanosine (m7G)
modification in the process of chronic HBV infection has not been clearly defined. Therefore, we conducted a systematic analysis on
the process of chronic HBV infection.We found that a total of 18m7G-related genes were altered in chronic HBV infection, and then we
screened out CHB potential diagnostic biomarkers usingmachine learning and random forest methods. RT-qPCRwas performed on the
samples of healthy people and CHB, which further verified the possibility of being a diagnostic marker. Then, we typed CHB patients
based on these 18 genes. We found that the immune microenvironment of different subtypes was different. Among them, patients with
subtype-Ⅰ had severe immune response, that is, relatively serious immune cell infiltration, rich immune pathways, relatively many HLA
genes, and immune checkpoints. Finally, we conducted an in-depth discussion on our m7G-related genes, and found that m7G gene
related to immune cell infiltrationmay be involved in the disease progression of CHBpatients, whichwas also confirmed in theGSE84044
dataset. In conclusion, m7G-related genes can not only serve as diagnostic markers of CHB, but also participate in the regulation of
immune microenvironment and play an important role in the progression of CHB.

1. Introduction

Despite the popularization of vaccines and the application of
antiviral drugs, there are still more than 250million patients
with chronic hepatitis B (CHB) in the world, some of whom
can progress to liver fibrosis, cirrhosis, and hepatocellular
carcinoma (HCC), resulting in nearly 1 million deaths every
year [1–3]. Studies have reported that HBV infection is the
most important risk factor for HCC. HBV-related HCC
accounts for more than 80% of all HCC patients in the world
[4]. Persistent HBV infection can lead to varying degrees of
liver damage, eventually leading to hepatitis, liver fibrosis,
cirrhosis, and HCC [5]. The process of chronic HBV infection
usually includes different clinical stages, each of which may
last for decades [6]. Therefore, it is of great significance to

conduct in-depth discussion and research on the chronic
stage of HBV infection, to prevent the further progress of
patients’ diseases and to individualize treatment.

With the rapid development of next generation sequencing,
at least 170 different post transcriptional RNA modifications
are known, which widely exist in various RNA types of organ-
isms. These modifications range from methylation to complex
chemical structures, of whichmethylation is themost abundant
[7, 8]. N7-methylguanosine (m7G) is a common 5′ cap modi-
fication of mRNA and an internal modification in various
noncoding RNAs, and can improve the stability of mRNA,
which is very important for effective gene expression and cell
viability [9–12]. m7G modification plays a key role in regulat-
ing RNA processing, metabolism, and function [13] in the
transcription process of RNA polymerase II, the 5′ end of the
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new RNA is covalently modified by monomethylated guano-
sine [14] and m7G cap binding nuclear cap binding complex
(CBC) [15]. Mature mRNAs exchange CBC for eIF4E, a rate-
limiting translation factor controlled bymTOR [16]. The trans-
lation control regulated by mTOR combines immune cell sig-
nals with inflammatory response, which is the basis of effective
antiviral response [17]. On the other hand, methylation in
RNA also plays a role in immune regulation [18]. m7G cap
methyltransferase RNMT is induced during T-cell activation
and is necessary to support a significant increase in RNA pro-
duction, processing, and translation of T-cell amplification
[19].Methylation weakens the antigenicity of RNA and inhibits
the immune response. After methylation modification, the
immunogenicity of RNA is weakened or disappeared, and
innate immunity is no longer triggered [20]. As a noncyto-
pathic virus, HBV is widely believed to mediate chronic liver
injury through abnormal immune attack. Infiltration of mono-
cytes/macrophages, NK cells, NKT cells, T cells, and regulatory
T cells (Treg) can lead to chronic liver inflammation and aggra-
vate the progress of CHB disease [21]. Our previous studies
have shown that immune cells can predict different stages of
HBV infection [22]. However, the role of m7G in the process of
chronic HBV infection and disease progression and its corre-
lation with immune microenvironment are still unknown.
Recent studies have shown that a large number of genes are
involved in the regulation of m7G modification. We collected
29 m7G-related genes from previous literatures. We systemati-
cally evaluated the mechanism of m7G-related genes in
patients with CHB. On the one hand, we found that the expres-
sion of m7G-related genes was significantly different between
CHB patients and healthy subjects, and LARP1 and GEMIN5
could be used as potential biomarkers of CHB. On the other
hand,m7G-related genes have a strong correlationwith immune
cell infiltration, which indicates that m7G is involved in regulat-
ing the immune microenvironment of CHB. Subsequently,
we found that the change of m7G-related genes was related to
the progress of CHB, and predicted that m7Gmight be used as a
predictor of the development of patients with CHB to the sever-
ity of the disease.

Our results may contribute to the role of m7G modifica-
tion in the context of chronic HBV infection. This is of great
significance for the treatment of CHB patients in the future
and for delaying the development of the disease.

2. Materials and Methods

The procedure in this paper follows a flowchart (Figure 1).

2.1. Collection of Clinical Specimens. Thirty healthy people
and 39 CHB peripheral blood samples were collected in the
Second Hospital of the Harbin Medical University. All
healthy people were positive for HBsAb. All CHB patients
were positive for HBsAg, and the course of disease lasted for
more than 6 months. Both healthy people and CHB patients
were older than 18 years and obtained informed consent and
permission from the medical ethics committee of the Second
Hospital of the Harbin Medical University. Their clinical
information is shown in Table S1.

2.2. Data Acquisition and Preprocessing. The public datasets
GSE83148 and GSE84044 of the same platform file (GPL570)
used in this paper were downloaded from Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).
The GSE83148 dataset contains 128 liver samples, which are
divided into two types: CHB and healthy. All liver samples
were HBsAg positive or HBV DNA positive. The GSE84044
dataset contains 124 HBV-related liver fibrosis samples. In
addition, we transformed the probe set of expression files
into gene symbols. If there is no corresponding gene symbol,
the probe set will also be deleted by us. Then, the expression
value of the probe set corresponding to the same gene symbol
was kept at the average value. We obtained 29 m7G-related
genes in the previous literature (12). The m7G-related gene
loci were visualized by Circos diagram, and the correlations of
m7G-related genes in all samples were evaluated by Spearman
correlation analysis.

2.3. Identification of Differentially Expressed Genes. m7G-
related genes were first extracted. Then, the expression dif-
ferences of m7G-related genes in healthy and CHB samples
were compared with R (“limma” package). The heatmap and
boxplot of differentially expressed genes (DEGs) were drawn
by R (“pheatmap” and “ggpubr” packages).

2.4. Construction of m7Gscore. Principal component analysis
(PCA) was performed for m7G-related DEGs, and the scores
of PC1 and PC2 were calculated by PCA function “prcomp”
of R software. The m7Gscore was calculated by the formula:
m7Gscore =Ʃ(PC1i + PC2i). In the formula, “i” represents
m7G-related DEGs.

2.5. Screening of Diagnostic Markers. We used two methods
to screen for potential diagnostic markers in DEGs. Random
forest algorithm is an effective method to obtain the most
accurate variable class by constructing decision trees [23].
Support vector machine-recursive feature elimination
(SVM-RFE) iteratively deletes the features with the least
weight from the rank until all features are excluded, and in
each iteration, the current SVM-RFE model is evaluated by
k-fold cross-validation to obtain the most effective variable
[24]. Then, we take the intersection of genes obtained by the
two methods and display them using Venn diagram. Finally,
the ability of genes to distinguish healthy people from CHB
was evaluated by receiver operating characteristic (ROC)
curve analysis.

2.6. Verification by RT-qPCR Experiment. First, peripheral
bloodmononuclear cells (PBMCs) were extracted from periph-
eral blood samples of healthy people and CHB patients with
Density Reagent (LTS10770125, TBDscienceHY, Tianjin,
China), and then total RNA in PBMCs was extracted by Trizol
(SM129-02, Sevenbio, Beijing, China). Onemicrogram of RNA
was converted to cDNA using a reverse transcription kit
(1119ES60, Yeasen, China). SYBR Green Master Mix kit
(11184ES03, Yeasen, China) and RT-qPCR instrument
(SLAN-96p Shanghai hongshi, China) were used for RT-
qPCR. To ensure the accuracy of the results, all samples were
tested three times. The ΔCT results were processed with the
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values of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). The primer sequences are shown in Table S2.

2.7. Consensus Clustering Analysis. In order to reveal the
biological characteristics of m7G methylation in patients
with hepatitis B, the samples were divided into two sub-
types according to the m7G-related DEGs with the help of
R (“ConsensusClusterPlus” package) consensus clustering
algorithm, and PCA was used to analyze the visualization of
the subtypes [25, 26]. In addition, the clinical information in
the subtypes was plotted as a percentage histogram. Then the
expressions of m7G-related DEGs in the two subtypes were
compared, and heatmap and boxplot were drawn.

2.8. Immune Microenvironment Analysis. In order to find the
deep connection between the immune microenvironment of
CHB patients and m7G modification, we used single-sample
Gene Set EnrichmentAnalysis (ssGSEA) to represent the relative
abundance of immune cells or immune pathways with enrich-
ment fraction, and then quantitatively evaluated the immune
microenvironment of CHB samples, and analyzed the infiltra-
tion degree of 23 immune cells and 18 immune pathways among
two m7G subtypes [27]. In addition, Spearman correlation

analysis was used to identify the correlation between m7G
DEGs and immune cells. Then R packages were used to
compare the DEGs related to checkpoint and antigen pro-
cessing and presentation pathways in different groups. The
immune pathways were derived from IMMPORT database
(https://www.immport.org/home), and the immune checkpoint
genes were used as the 18th immune pathway.

2.9. DEGs Identification among m7G Subtypes and PPI
Network Construction. Using |log2 FC|> 1 and adjusted
p values< 0.05 as filters, we used R (“limma” package) to iden-
tify DEGs among the two m7G subtypes. Then, the volcano
plot was drawn to visualize the DEG. The STRING database
(https://string-db.org/cgi/input.pl) is a database for analyzing
and predicting interactions between proteins. And then we go
through it, interaction score >0.4 was set as a filter and hidden
disconnected nodes in the network to construct protein–protein
interaction (PPI) network to evaluate the relationship
between DEGs.

2.10. Enrichment Analysis. To determine the underlying
function and pathway mechanisms of DEGs between differ-
ent m7G subtypes, we used three different enrichment
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FIGURE 1: Flowchart of this study.

Journal of Immunology Research 3

https://www.immport.org/home
https://www.immport.org/home
https://www.immport.org/home
https://string-db.org/cgi/input.pl
https://string-db.org/cgi/input.pl
https://string-db.org/cgi/input.pl


analyses. The enrichment analysis of Gene Ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Gene Set Variation Analysis (GSVA) was realized by R
(“clusterProfiler,” “org.Hs.eg.db,” “enrichplot,” “GSEABase,”
“GSVA,” “limma” packages). Among them, GSVA enrich-
ment analysis is run based on c2.cp.kegg.v7.2.symbols.gmt
files downloaded by the Molecular Signatures Database
(MSigDB, http://www.gsea-msigdb.org/gsea/msigdb/index.
jsp). |logFC|> 0.1 and adjusted p value< 0.05 were used as
the filtering conditions of the analysis method, and the fil-
tering results were considered to be significant.

2.11. Clinical Information Analysis. After consensus cluster-
ing analysis, alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) in clinical information were selected
as supplementary data. Patients in the dataset were divided
into ALT> 40 and ≤40 groups and AST> 35 and ≤35
groups. Then we plotted the percentages of ALT and AST
in the m7G subtypes into histogram. In addition, m7Gscore
of different ALT and AST subgroups were compared.

2.12. Identification of m7G-Related Genes Associated with
CHB Progression. We predicted the genes related to the pro-
gression of CHB through the correlation between m7G
DEGs and immune cells, and verified our hypothesis with
GSE84044 dataset. The boxplot is drawn with R (“ggpubr”
package).

2.13. Statistical Analysis. All statistical analyses in this paper
are calculated by R software (version 4.1.2). Spearman corre-
lation analysis was used to evaluate the correlation of m7G-
related genes in samples. Wilcoxon test was used to compare
the differences between the two groups. The results of PCR
did not conform to normal distribution, soWilcoxon test was
also used. ROC curve was used to judge the diagnostic efficacy
of genes. Spearman correlation analysis was used to calculate
the correlation between m7G-related DEGs and immune cell
infiltration or immune activity pathways. In order to evaluate
the clinical characteristics between m7G subtypes, χ2 test was
used. p<0:05 was considered statistically significant.

3. Results

3.1. Correlation and Differential Expression Analysis of m7G-
Related Genes and Construction of m7Gscore System. A total
of 29 m7G-related genes were included in this paper. In
order to understand them more clearly, we used the circle
diagram to visualize the gene location (Figure 2(a)). Next, we
analyzed the correlation between m7G-related genes in the
overall sample, and found that there was a close correlation
between m7G-related genes (Figure 2(b)). Then, we analyzed
the expression of m7G-related genes in CHB and normal
samples. Results as shown in Figures 2(c) and 2(d), there
were differences in the expression levels of 18 m7G-related
genes between the two groups, of which 17 genes were upre-
gulated and one gene was downregulated, indicating that
m7G modification may participate in the regulatory process
during chronic HBV infection. Then, based on the m7G
DEGs, we constructed a related scoring system by PCA anal-
ysis, and named it m7Gscore. Then we found that the

m7Gscore of CHB patients was significantly higher than that
of normal people (Figure 2(e)). In addition, the m7Gscore in
the ALT> 40 and AST> 35 groups was higher than that in the
corresponding normal group (p<0:001) (Figures 2(f) and 2
(g)), suggesting that m7Gscore may be positively correlated
with the degree of CHB inflammatory response.

3.2. Identify and Validate the Diagnostic Ability of m7G-
Related DEGs. We used SVM-RFE methods to obtain eight
genes that can be used as diagnostic markers (Figure 3(a)).
Then, we use the random forest method to obtain the genes
whose importance score is greater than 2 (Figure 3(b)). For the
accuracy of the biomarkers, we selected the overlapping genes
(LARP1 and GEMIN5) of the two algorithms (Figure 3(c)).
We found that LARP1 (AUC=0.985) and GEMIN5 (AUC=
0.964) have high-diagnostic value (Figure 3(d)). In order to
determine whether LARP1 and GEMIN5 can be used as diag-
nostic markers, we performed validation by RT-qPCR. First,
we found that LARP1 and GEMIN5 were significantly upre-
gulated in patients with CHB (p<0:001) (Figure 3(e)). Next,
we confirmed the diagnostic ability of LARP1 (AUC= 0.897)
and GEMIN5 (AUC= 0.876) by ROC curve (Figure 3(f)).

3.3. Consensus Clustering Analysis of m7G-Related DEGs. In
order to study the relationship between m7G modification
and CHB, we first performed consensus clustering analysis
on CHB samples based on m7G-related DEGs. According to
Figure S1(a)–S1(c), it can be seen that the stability of CHB
samples is the highest when divided into two subtypes.
Therefore, we selected two subtypes with different m7G
modifications for research (Figures 4(a) and 4(b)). Among
them, subtype-Ⅰ includes 57 CHB patients, and subtype-Ⅱ
includes 65 CHB patients. Further analyzing the relationship
between the two subtypes and m7Gscore, we found that
m7Gscore of subtype-Ⅰ was higher than that of subtype-Ⅱ
(p<0:001) (Figure 4(c)). In addition, ALT > 40 and
AST> 35 subtype-Ⅰ was significantly more than subtype-Ⅱ,
suggesting that the liver inflammation in patients with sub-
type-Ⅰ was the most severe (Figure 4(d)). Next, we observed
that the expression levels of 12 m7G-related DEGs were
different among the two subtypes (Figures 4(e) and 4(f)).
It is suggested that different genes involved in m7G modifi-
cation play different roles in liver injury.

3.4. Immune Landscape of Two m7G Subtypes. Chronic HBV
infection is a complex process involving the interaction
between host immune system and virus. Next, we analyzed
the differences of immune microenvironment among different
m7G subtypes. First, we used ssGSEA to analyze the immune
cell infiltration and pathways. We found that the immune cells
and pathways of the two subtypes were different. The immune
cell infiltration level and pathway of subtype-Ⅰ were generally
higher than that of subtype-Ⅱ (Figures 5(a) and 5(b)). As a key
factor of antigen presentation, HLA gene also showed a rela-
tively high level in subtype-Ⅰ with the heaviest inflammatory
response (Figure 5(c)), and the immune checkpoints involved
in immunosuppression were also most expressed in subtype-Ⅰ
(Figure 5(d)). The above results suggest that subtype-Ⅰ has a
higher inflammatory response, the degree of immune injury is
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genes in total samples. (c) The heatmap of m7G-related DEGs in CHB samples and normal samples. (d) The boxplot of m7G-related DEGs in
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relatively severe, and the relatively more inflammatory response
further increases the possibility of developing cirrhosis.

3.5. Identification of DEGs among m7G Subtypes and
Enrichment Analysis. First, we used the GSVA method to
deeply analyze the enrichment of biological signal pathways
between each two subtypes. There were significant differences
between subtype-I and subtype-II in metabolic pathways such

as nitrogen metabolism, arginine and proline metabolism, his-
tidine metabolism, and tyrosine metabolism (Figure 6(a)). In
order to further understand themolecularmechanism ofm7G-
related genes with different CHB inflammatory responses, we
further identified the DEGs among the two subtypes and inte-
grated them to obtain 118 DEGs (Figure 6(b)). Then, PPI was
used to analyze the interaction between DEGs, and it was
found that there was a close association between the DEGs
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(Figure 6(c)). Next, in order to identify the potential biological
functions and pathways of DEGs among subtypes, we per-
formed GO and KEGG analysis. Go enrichment analysis is
divided into three parts: biological process (BP), cellular com-
ponent (CC), and molecular function (MF). The DEGs in BP
were mainly enriched in “leukocyte chemotaxis,” “response to
chemokine,” and “cellular response to chemokine” chemotaxis
pathways. In CC, it is mainly enriched in “spindle” and “kinet-
ochore” parts. In MF, receptor-related molecular functions
such as “receptor ligand activity,” “signaling receptor activator
activity,” and “cytokine activity” are mainly enriched (Figure 6
(d)). KEGG pathway analysis is mainly enriched in “Cytoki-
ne–cytokine receptor interaction,” “Viral protein interaction
with cytokine and cytokine receptor,” and “Chemokine signal-
ing pathway” (Figure 6(e)). We found that these pathways are
related to inflammatory response, viral infection, and immune
activation. It is further proved that m7G-related genes play
different roles in the progression of CHB disease.

3.6. Identification of m7G Gene Associated with CHB
Progression. It is known that recurrent immune-mediated
liver injury is the main cause of CHB progression to cirrhosis
or liver cancer. These results suggest that m7G-related genes
are closely related to the immune and inflammatory response
of CHB. In order to further clarify which m7G-related DEGs
are most closely related to CHB progression, we first ana-
lyzed the correlation between m7G DEGs and immune cells.

The results as shown in Figure 7(a), CYFIP1, DCP2, EIF4E3,
and IFIT5 were positively correlated with immunocytes such
as NKT cells and activated CD8 cells, while NUDT16 and
NUDT4 were negatively correlated with most immunocytes.
In the process of chronic HBV infection, repeated liver
inflammation caused by immune cell infiltration is one of
the important causes of liver fibrosis [28]. Therefore, we spec-
ulate that the upregulation of m7G gene positively related to
immune cell infiltration and the downregulation of m7G gene
negatively related to immune cell infiltrationmay be related to
the progression of CHB. To prove this, we continued to ana-
lyze the patients with HBV related liver fibrosis. In GSE84044
dataset (124 patients with HBV related liver fibrosis), we
found that the expressions of CYFIP1, DCP2, EIF4E3, and
IFIT5 were upregulated in patients with moderate to severe
inflammation (G2–G4) compared with patients with mild
inflammation (G0–G1), while the expressions of NUDT16
and NUDT4 were downregulated (Figure 7(b)). Compared
with patients without significant liver fibrosis (S0–S1), patients
with significant liver fibrosis (S2–S4) also had upregulated
expression of CYFIP1, DCP2, EIF4E3, and IFIT5, while down-
regulated expression of NUDT16 and NUDT4 (Figure 7(c)).
Through the above results, we found that m7G-related genes
involved in immune microenvironment regulation play an
important role in CHB. This also confirms our hypothesis
that m7G-related genes are closely related to the progression
of CHB.
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FIGURE 4: Identification of m7G modified subtypes (a) Consensus clustering of the m7G-related DEGs for k= 2. (b) PCA showed that there
was a significant separation between the two m7G subtypes. (c) The boxplot of m7G scores for two subtypes. (d) The distribution of ALT and
AST information in patients with two m7G subtypes. (e) The boxplot of m7G DEGs in two subtypes. (f ) The heatmap of m7G DEGs in two
subtypes. DEGs, differentially expressed genes; PCA, principal component analysis; ALT, alanine aminotransferase; AST, aspartate amino-
transferase.  ∗p<0:05,  ∗∗p<0:01,  ∗∗∗p<0:001.
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FIGURE 5: Analysis of immune microenvironment of m7G subtype. (a) The boxplot of immune cell infiltration of two subtypes. (b) The
boxplot of immune pathway scores of two subtypes. (c) The boxplot of HLA gene expression of two subtypes. (d) The boxplot of immune
checkpoint related gene expression of two subtypes. HLA, human leukocyte antigen.  ∗p<0:05,  ∗∗p<0:01,  ∗∗∗p<0:001.
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4. Discussion

So far, various studies have shown that m7G modification is
significantly involved in various tumorigenesis and cancer
progression, and has become an important regulator in can-
cer, including HCC [29]. Chronic persistent HBV infection is
a complex process involving the interaction between host
immune system and virus [30]. Persistent liver inflammation
in CHB patients accelerates hepatocyte renewal, leading to
liver fibrosis and eventually HCC [31]. To clarify the char-
acteristics of inflammatory response during CHB may pro-
vide a new idea for slowing down the progress of the disease.

Although the pathological mechanism of CHB has been
extensively studied, the role of m7G-related genes in CHB
is still unclear. Therefore, it is necessary to explore the rela-
tionship between m7G-related genes and liver immune
microenvironment in CHB, and to find out the potential
predictors of CHB disease progression. Through a series of
correlation analysis, this study found potential diagnostic
markers in CHB patients and verified them by RT-qPCR.
For CHB patients, it is more ideal to find diagnostic markers
in peripheral blood samples than liver samples. LARP1 not
only participates in embryogenesis, mitotic spindle pole for-
mation, successful mitochondrial isolation, and cell cycle

CKS2

FAT1

TTK

CDKN3

KRT23

H3F3A

UHRF1
CDC7

E2F8

KIF20A

BUB1B

RRM2

RAD51AP1

DTL

RACGAP1

GINS1
CENPK

ZWINT
CYR61

NDC80

SLC51B

FKBP1B

FABP5 CXCL6 CCL8
IL18

IL32

TNFRSF17

RASGRP1

GZMA

HLA-DQA1

LY96

DLGAP5

PBK

RPS11

ITM2A

EFEMP1

THBS2

CHST4 PCOLCE2

PLA2G2A

EPCAM LAMP3

CRTAM

ADAMDEC1

MICB

CYTIP
CD2

CD8A

CCL18
SOX9

CXCL11

CXCL8 CXCL10

CXCL13

CXCL9
TNFSF13B

CCL20

CCL19
CCL2

CYP7A1

CD52
CSF2RB

GPX2

PLA2G7

CD24

COL1A2

EPDR1
RAB25

AKR1B10

LUM

PRC1

LY75

ðcÞ
BP

C
C

M
F

0.05 0.10 0.15

Lymphocyte chemotaxis
Lymphocyte migration
Granulocyte migration

Granulocyte chemotaxis
Neutrophil migration

Neutrophil chemotaxis
Chemokine−mediated signaling pathway

Cellular response to chemokine
Response to chemokine

Leukocyte chemotaxis

Complex of collagen trimers
Banded collagen fibril

Fibrillar collagen trimer
Outer kinetochore

Intercellular bridge
Spindle midzone

Chromosome, centromeric region
Condensed chromosome, centromeric region

Kinetochore
Spindle

CCR chemokine receptor binding
CXCR chemokine receptor binding

Heparin binding
Chemokine receptor binding

Chemokine activity
G protein−coupled receptor binding

Cytokine receptor binding
Cytokine activity

Signaling receptor activator activity
Receptor ligand activity

Gene ratio

Count
5
10
15

0.04
0.08
0.12

q value

ðdÞ

Malaria

Toll−like receptor signaling pathway

IL−17 signaling pathway

Influenza A

Rheumatoid arthritis

Chemokine signaling pathway

Viral protein interaction with cytokine and
cytokine receptor

Cytokine−cytokine receptor interaction

0.10 0.15 0.20 0.25

Gene ratio

Count
4
6
8
10
12
14
16

0.01

0.02

0.03
q value

ðeÞ
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FIGURE 7: Identification of m7G-related DEGs associated with CHB progression. (a) The heatmap of correlation between m7G-related DEGs
and immune cells. (b) The boxplot of expression of m7G-related DEGs in groups with different degrees of inflammation. (c) The boxplot of
expression of m7G-related DEGs in groups with different degrees of fibrosis. DEGs, differentially expressed genes; CHB, chronic hepatitis B.
 
∗p<0:05,  ∗∗p<0:01,  ∗∗∗p<0:001.
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progression, but also acts as a viral host factor and is upregu-
lated in various tumor tissues, such as cervical cancer and liver
cancer [32–34]. The protein encoded by GEMIN5 is a multi-
functional protein, and if its function is disrupted,
it may cause defects in extensive mRNA splicing [35]. Previous
studies have shown that GEMIN5 can stimulate translation of
the survival of motor neuron (SMN) mRNA, and decreased
levels of SMN protein can cause muscle diseases such as spinal
muscular atrophy [36]. We identified LARP1 and GEMIN5 as
diagnostic markers for CHB.

Then, we divided CHB patients into two subtypes accord-
ing to the m7G DEGs between CHB and normal people. We
found that the ALT andAST, immune cell infiltration, immune
pathway, HLA expression level, and immune checkpoint dis-
tribution of the two subtypes were different. Among them,
subtype-Ⅰ had the most enriched immune cells and pathways,
the heaviest immune response, and differences in metabolic
pathways. After analysis, we found that subtype-Ⅰ corresponds
to a higher m7Gscore, suggesting that subtype-Ⅰ is closely
related to the progression of CHB disease, and further
explained that six m7G-related DEGs are involved in the pro-
gression of CHB disease.We further found thatCYFIP1,DCP2,
EIF4E3, and IFIT5may be the key genes to promote the prog-
ress of CHB, andNUDT16 andNUDT4may protect CHB from
further disease progression. In order to prove our conjecture,
we confirmed our conclusion in the GSE84044 dataset. m7G-
related genes are involved in the progress of CHB. Our study
provides new ideas for CHB patients. It is generally believed
that HBV infection can induce dysfunction of innate and adap-
tive immune responses involved in various immune cells [37].
However, CHB with recurrent immune-mediated liver injury
eventually leads to cirrhosis and HCC [38]. Moreover, Zhang
et al. [39] found that the distribution of immune cells in the
liver was different at different stages of HBV infection by single
cell sequencing technology. Inflammatory cells release various
cytokines and chemokines, which may promote disease pro-
gression in CHB patients and even HCC tumorigenesis [40].
We also found that subtype-I has relatively more immune cell
infiltration and pathwaysHBV can induce immunosuppressive
cells, such as Treg and myeloid cells, through the immunosup-
pressive cascade. Excessive immunosuppressive cells can lead
to persistent infection of CHB, liver fibrosis, and the progres-
sion of HCC [41]. CD8+ T lymphocytes have two sides. On
the one hand, CD8+ T cells produce IFN-γ, IL-2, TNF-α,
Granzyme, and perforin can control HBV infection [42].
On the other hand, HBV specific CD8+ T cells can lead to
persistent liver inflammation, thus causing the occurrence
and development of HCC [43]. It can be seen that CD8+ T
cells can promote the disease progression of CHB patients,
which is also consistent with our results, that is, subtype-I has
a relatively serious inflammatory response. In patients with
severe inflammation, the activation of immune cells requires
more HLA gene expression. The association of HLA allele
variation with disease progression and virus clearance in
chronic HBV infection among different ethnic groups is cru-
cial [44]. In the previous work of our research group, it has
been confirmed that HLA is closely related to the different
degrees of HBV infection [45]. This is consistent with the

results of this study that patients with subtype-I with high-
inflammatory response and high-immune infiltration have
high-HLA gene expression and high-immune checkpoints
expression are inhibitory pathways in the immune system
and play an immunosuppressive role. Immune checkpoint
molecules play an important role in tumor immune escape.
There are few studies on the relationship between immune
checkpoints and chronic HBV infection. In our research
results, most immune checkpoints are most enriched in sub-
type-I. At present, the effect of immunotherapy on antiviral
therapy remains to be determined [46]. Our research provides
a reference for the development of immunotherapeutic drugs.
In our results, patients with subtype-I had higher HLA and
immune checkpoints than those with subtype-II. This also
gives us a good indication that patients with subtype-I are
more likely to develop liver fibrosis and HCC.

In addition, many studies have shown that multiple path-
ways such as fatty acid metabolism, amino acid metabolism,
and drug metabolism are commonly dysregulated in liver
cancer [47–49]. In our study, the two subtypes have different
metabolic characteristics, with a low enrichment score of
subtype-I metabolic pathways, which further suggests that
subtype-I patients have a higher risk of adverse progression.

Therefore, it is reasonable to speculate that m7G-related
genes are closely related to the disease progression of CHB
patients. m7G gene, which is related to immune cell infiltra-
tion in CHB patients, may be involved in disease progression.

Next, we explored the relationship between m7G DEGs
and immune microenvironment, and found that m7G DEGs
are related to the progress of CHB disease and have stable
genes to maintain the current stage of CHB. CYFIP1, DCP2,
EIF4E3, and IFIT5 are positively correlated with immune
infiltration in patients with CHB, which may promote the
progression of CHB, while NUDT16 and NUDT4 are just the
opposite. These six genes are involved in the progress of
CHB, and consistent results have been obtained in the liver
fibrosis population in the GSE84044 dataset, which further
confirms our hypothesis. Human genetics research has found
that cytoplasmic FMR1 interacting protein 1 (CYFIP1) is
associated with prominent development and thus partici-
pates in a variety of nervous system diseases [50]. In addi-
tion, some scholars have proposed that CYFIP1 may act as a
tumor suppressor gene and may have tumor suppressive
function [51]. However, recent studies have found that
CYFIP1 is low expressed in acute lymphoblastic leukemia,
which may be a potential biomarker of acute lymphoblastic
leukemia [52]. Moreover, the regulatory effect of CYFIP1 on
WASF3, knockdown in highly invasive cancer cells will lead
to inhibition of invasion [53]. It is positively correlated with
the promotion of CHB progression in our study. DCP2 can
produce 5′- monophosphate mRNA and m7GDP hydrolysis
m7G cap [54]. It is required for mRNA degradation in nor-
mal mRNA conversion and nonsense mediated mRNA
decay [55]. Eukaryotic translation initiation factor 4E family
member 3 (EIF4E3) is a series of initiation factors that bind
to the 5′ cap of mRNA and regulate proteome and cell phe-
notype. It is also a prognostic factor for osteosarcoma and
can predict the survival time of osteosarcoma [56]. IFIT5 is
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involved in tumor metastasis. There is a correlation between
IFIT5 and HPV E6. IFIT5 may be involved in the malignant
transformation of oral squamous cells during disease pro-
gression [57]. IFIT5 enhances antiviral response by enhanc-
ing innate immune signaling pathways [58]. Nucleoside
diphosphate linked part X (NUDIX) motif 16 like 1
(NUDT16L1) is associated with adhesion related signal
transduction NUDIX hydrolase 16 (NUDT16). The hydro-
lase activity can remove the ADP ribosylation of 53BP1 to
regulate its stability and localization at DNA double strand
breaks (DSBs) [59]. NUDT16 gene silencing in HeLa cells is
associated with the accumulation of inosine in RNA and the
increase of single strand breaks (SSB) in DNA. In addition,
this silencing leads to the inhibition of HeLa cell progression
[60]. NUDT16 has recently been proved to mediate the selec-
tive degradation of Rift Valley fever virus mRNA [61].
Together with NUDT3, NUDT4 forms a subfamily of
NUDT hydrolases with widely different relative activities
for different adenosine diphosphate and ribosyl diphosphate
polyphosphate [62]. It can be seen that m7G-related genes
have a broad research foundation and can be used as predic-
tion genes for the next stage of CHB.

These results further show that m7G-related genes are
closely related to the immune microenvironment of CHB
patients and participate in the disease progression of CHB
patients. At present, there are few studies on epigenetics in
the field of HBV infection. We took the lead in introducing
the m7G mechanism in the process of CHB disease progres-
sion, and confirmed that m7G modification participates in
the regulation of liver immune microenvironment in the
process of CHB progression. The research is pioneering.
This study has laid a solid foundation for researchers to carry
out m7G-related research in CHB. However, the mechanism
between m7G modification and immune microenvironment
still needs a lot of basic experiments.

5. Conclusion

We found that m7G-related genes were changed in chronic
HBV infection, and used SVM-RFE and random forest to
screen out diagnostic markers, which were well-proved by
RT-qPCR. Next, we found that m7G-related genes are also
involved in the regulation of the immune microenvironment.
Meanwhile, the m7G gene associated with immune cell infil-
tration plays an important role in the progression of CHB
disease. This will help to further understand the underlying
pathogenesis of CHB and provide new ideas for preventing
disease progression.
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