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KIF22, also known as kinesin-like DNA-binding protein (Kid), is a member of the Kinesin superfamily proteins (KIFs). Available
evidence indicated that KIF22 was associated with cancer occurrence and development. However, the functions and underlying
mechanisms of KIF22 in carcinogenesis and cancer progression remain largely unknown. In this study, we examined the expres-
sion profile and methylation status of KIF22 in different cancers, as well as its associations with prognosis, tumor stemness,
genomic heterogeneity, immune evasion, immune infiltration, and therapeutic response in various tumor types. The results
demonstrated that the expression level of KIF22 was higher in tumors than nontumor tissues and had strong relationships
with prognosis, genomic heterogeneity, tumor stemness, neoantigen, ESTIMATE, and immune infiltration. KIF22 methylation
status showed strong relationships with immunomodulators and chemokines. KIF22 had a significant relevance with drug
susceptibility and could be a useful biomarker for forecasting survival probability and therapeutic reaction. Furthermore, KIF22
interaction and coexpression networks were mainly involved in cell division, cell cycle, DNA repair, and antigen processing and
presentation. KIF22 could be used as a pan-cancer biomarker for clinical diagnosis, therapeutic schedule, prognosis, and cancer

monitoring.

1. Introduction

Cancer is emerging as a major global health challenge. The
number of cancer patients reached 19.3 million, and about 10
million died due to malignant tumors in 2020. The number of
cancer and death cases will increase to more than 28 million and
16 million in 2040, respectively [1, 2]. Currently, chemotherapy,
immunotherapy, radiotherapy, surgery, and targeted therapy
are the mainstream treatment strategies [3]. These therapy
strategies exhibit some clinical successes, but the survival ratio
and prognosis of cancer patients remain unsatisfactory due to
side effects, individual differences, drug resistance, and other
reasons [4, 5]. For the above reasons, it is urgent to search for
more effective therapeutic targets and novel sensitive cancer
biomarkers for clinical diagnosis, therapeutic schedule, progno-
sis, and cancer monitoring.

Kinesin superfamily proteins (KIFs) are a class of highly
conserved motor proteins that combine with microtubules
and are involved in the transportation of various cargoes
through microtubule-directed motility [6, 7]. KIFs are first
discovered in squid tissue and are conserved in eukaryotes
[8, 9]. Up to now, 45 KIF members have been identified in
humans [9, 10]. On the basis of phylogenetic relationships,
the KIFs are divided into 15 kinesin subfamilies, which are
referred to as kinesin-1 to kinesin-14B. Based on the location
of the motor domain in the molecules, these families can be
approximately separated into three classes: N kinesins pos-
sess an amino-terminal motor domain, M kinesins possess a
middle region motor domain, and C kinesins possess a
carboxy-terminal motor domain [9, 11]. The physiological
functions of these three families are different, N kinesins play
roles in microtubule-plus-end-directed motility, C kinesins
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play roles in microtubule-minus-end-directed motility, and
M Kkinesins play roles in microtubule depolymerization
[9, 11, 12]. At present, a large number of studies have
revealed that the deviant expression level of KIFs may con-
tribute to the progression of malignant neoplasms [13-16].

KIF22 has been reported to be a member of the kinesin-
10 subfamily [17]. KIF22 is one of the N kinesins with an
engine domain in the amino ending portion. KIF22 plays
vital roles in microtubule-plus-end-directed motility and
could bind directly to both chromosomes and microtubules
[18]. It is well known that KIF22 mainly participates in reg-
ulating cytoskeletal dynamics, synaptic development, and
microtubule stability [19, 20]. In prometaphase, KIF22 dis-
tributes along the chromosome and spindle structure [21].
During mitosis, it accumulates toward the metaphase plate
and supplies a force to locate the chromosomes to the equa-
tor of the spindle [22]. When entering the anaphase, the
KIF22 protein moves to the spindle poles together with chro-
mosomes and promotes the compaction of chromosomes,
which ensures the formation of normal nuclear and prevents
the formation of multinucleated cells [23, 24]. The important
roles of KIF22 in mitosis have been well studied, but the pan-
cancer expression status, roles, and potential mechanisms of
KIF22 in carcinogenesis and tumor progression remain to be
studied.

In this study, we explored the expression of KIF22 in
different tumors, nontumor tissues, and different human
cell lines. Meanwhile, we investigated the biomarker rele-
vance and prognostic value of KIF22 across different tumors.
Furthermore, we also examined the relationships between
KIF22 and immune infiltration, drug susceptibility, tumor
stemness, genomic heterogeneity, and treatment response.
To confirm the KIF22-related pathways, the interaction
and coexpression networks of KIF22 were explored. This
work would provide new insight into the role of KIF22 in
cancer.

2. Materials and Methods

2.1. Gene Expression Analysis. The expression profile of KIF22
in human tumors and nontumor tissues were analyzed based
on the TIMER database, the SangerBox website, and the
GEPIA database. The HPA database and BioGPS database
were utilized to investigate the expression profile of KIF22 in
nontumor tissues and human cell lines [25-28]. The TISCH
database was utilized to analyze the expression profile of KIF22
in diverse cell types from multiple cohorts [29, 30]. Besides, the
protein level of KIF22 in human tumors was explored by
immunohistochemical staining with HPA075670 antibody
based on the HPA database. The cancer types analyzed in
this study were listed in Supplementary 1.

2.2. Prognostic Analysis. The relevance between the expression
level of KIF22 and the prognosis of patients with malignant
tumors was analyzed based on Kaplan—Meier Plotter database,
GEPIA database, SangerBox website, and PrognoScan database
[31, 32].
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2.3. Methylation Analysis. The methylation level of the KIF22
promoter in tumors and nontumor tissues was investigated
based on the UALCAN database and DiseaseMeth database.
The SurvivalMeth database was used to study the relationship
between the methylation status of the KIF22 promoter and
survival probability. The MethSurv database was utilized to
study the association between methylation status of signal
CpG island and survival rate [33-36]. The SangerBox
website was utilized to investigate the relevance between the
expression level of KIF22 and cancer stemness.

2.4. Genetic Alteration Analysis. The genetic alterations of
KIF22 in various malignant neoplasms were investigated
through the c-BioPortal database. The relationship between
the expression level of KIF22 and genomic heterogeneity as
well as the alteration landscape of KIF22 were explored based
on the SangerBox website [37].

2.5. Interaction Network Analysis. The protein—protein inter-
action (PPI) network of KIF22 was analyzed via the STRING
database. A total of fifty KIF22 binding proteins were used for
KEGG and GO enrichment analysis through the SangerBox
website. The gene—gene functional interaction network of
KIF22 was analyzed via the GeneMANIA database [38, 39].

2.6. Molecular and Immune Subtype Analysis. The associa-
tion between the expression level of KIF22 and immune or
molecular subtypes in various malignant neoplasms was
investigated by the TISIDB database [40].

2.7. Coexpression Network Analysis. The coexpression genes
of KIF22 in HNSC were investigated by the LinkedOmics
database [41]. Heat maps and volcano plots were used to
display the coexpression genes. In addition, KEGG pathways
and Gene Ontology biological processes of KIF22 and the
coexpression genes were investigated and displayed via vol-
cano plot and DAG.

2.8. Analysis of the Relationships between KIF22 and
Immunomodulators, Neoantigen, Chemokines, and ESTIMATE.
The relationships between the expression level of KIF22 and
ESTIMATE and neoantigen were analyzed by the SangerBox
website. The relevance between KIF22 and immunomodulators
and chemokines was investigated via the TISIDB database.

2.9. Immune Cell Infiltration Analysis. The relationships
between the expression level of KIF22 and the level of Thl
CD4+ T cell, follicular helper T cell, NK T cell, neutrophil,
endothelial cell, CD8+ T Cell, regulatory T cell (Tregs),
cancer-associated fibroblast, Th2 CD4+ T cell, and myeloid-
derived suppressor cells (MDSCs) in the TME were analyzed
by the TIMER database. Kaplan—Meier Plotter database was
used for prognosis analysis based on KIF22 expression in
relevant immune cell subgroups.

2.10. Drug Susceptibility and Therapy Response Analysis. The
associations between drug susceptibility and the methylation,
expression, and copy number variants (CNV) of KIF22 were
analyzed by the RNAactDrug database [42]. The predictive
power of KIF22 was analyzed via the TIDE server [43]. The
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relevance between KIF22 expression and therapy response in
breast cancer, glioblastoma multiforme, and ovarian cancer
patients were investigated by the ROC plotter server [44].

3. Results

3.1. Expression Profile of KIF22 in Different Cancer Types.
Compared with normal tissues, the expression level of KIF22
was markedly upregulated in most tumors including BRCA,
BLCA, COAD, ESCA, HNSC, KIRP, KIRC, LIHC, LUSC,
LUAD, PRAD, STAD, and UCEC (Figure 1(a)). Besides, the
results analyzed, based on the GEPIA database, demonstrated
that the expression level of KIF22 was apparently upregulated
in most malignant neoplasms such as ACC, BRCA, BLCA,
COAD, CESC, DLBC, GBM, HNSC, LGG, PCPG, PAAD,
STAD, THYM, UCS, and UCEC (Figure 1(b)). The results
from the SangerBox website were in keeping with the results
from the TIMER and GEPIA databases (Supplementary 2a). In
addition, immunohistochemical staining results of KIF22
demonstrated that the KIF22 protein level was higher in
most tumors than noncancerous tissues (Figure 1(c)).

The expression level of KIF22 was low in most normal
tissues but was high in lymph nodes, thymus, tonsils, and
bone marrow (Figure 1(d)). In contrast, the KIF22 expres-
sion level was relatively high in most human cancer cell lines
(Figure 1(e)). The results analyzed through the BioGPS data-
base demonstrated that the KIF22 expression level was low in
most normal tissues but was relatively high in CD71+ early
erythroid (Supplementary 2b). Meanwhile, KIF22 expression
level was upregulated in most human cancer cell lines
(Supplementary 2c). Single-cell RNA sequencing data indi-
cated that KIF22 expression level was associated with cell
cycle progression (Supplementary 2d). These results demon-
strated that KIF22 expression level was apparently upregu-
lated in human tumors.

Furthermore, KIF22 exhibited cell-type-specific high
expression in Tprolif cells from the THCA, SKCM, SCC,
NSCLC, NPC, NHL, LIHC, KIRC, ESCA, CRC, CHOL,
and BRCA cancer TME. In addition, KIF22 exhibited a
wide range of expression in CD8+ T and mono/macro cells
from various cancer TME (Supplementary 3). Details are
displayed in Supplementary 4.

3.2. Prognostic Significance of KIF22. The prognostic signifi-
cance of KIF22 in human cancers was investigated via Cox
proportional hazards model and Kaplan—Meier survival
curve. KIF22 expression was correlated negatively with over-
all survival in GBMLGG, ACC, LAML, KIRC, ALL-R, LGG,
SKCM-M, UVM, SKCM and positively with overall survival
in CESC, OV, and THYM (Figure 2(a)), negatively with
disease-free interval in SARC, KIRP, KIPAN and positively
with disease-free interval in PCPG (Figure 2(b)), negatively
with disease-specific survival in ACC, GBMLGG, KIRC,
SKCM-M, KIPAN, UVM, LGG, SKCM and positively with
disease-specific survival in OV and CESC (Figure 2(c)),
negatively with progression-free interval in ACC, UVM,
KIRP, UCS and positively with progression-free interval in
PCPG (Figure 2(d)).

The Kaplan—Meier survival curve indicated that higher
level of KIF22 indicated a worse overall survival rate in
ESAD, KIRC, LIHC, SARC, UCEC, better overall survival
rate in CESC, HNSC, STAD, THYM, THCA, worse RES in
ESAD, KIRC, LIHC, LUSC, SARC, UCEC, and better RFS in
HNSC and PCPG (Figure 2(e)). The results analyzed based
on the GEPIA database revealed that a higher level of KIF22
was closely related to worse overall survival rate in ACC,
KIRC, PRAD, SKCM, UVM, better overall survival rate in
CESC, OV, THYM, poorer DES in ACC, PRAD, SARC, and
UVM (Supplementary 5). Additionally, the PrognoScan data-
base was used to examine the relevance between KIF22
expression and prognoses of cancer patients. Poorer progno-
sis was associated with higher KIF22 expression in the blad-
der, brain, eye, prostate, skin, and soft tissue malignancies
(Supplementary 6). The results presented above demon-
strated a close association between KIF22 expression and
prognoses.

3.3. KIF22 Correlates with Cancer Stemness. Previous studies
have reported that the gain of stem-cell-like and progenitor
characteristics and gradual loss of the differentiation char-
acteristics were common events along the progression of
cancer [45]. The expression level of KIF22 was positively
related to cancer stemness in most malignant neoplasms
but was negatively associated with cancer stemness in
THYM, KIPAN, PRAD, THCA, and ACC (Figure 3(a)).
The dysregulation of epigenetic modification in cancer cells
often leads to stemness feature acquisition and oncogenic
dedifferentiation [46, 47]. KIF22 promoter was hypomethylated
in COAD, LIHC, BLCA, PRAD, TGCT, UCEC, THCA, and
hypermethylated in BRCA, CESC, CHOL, ESCA, HNSC,
KIRC, LUSC, and SKCM compared with nontumor tissues
(Figure 3(b)). Besides, survival probability was closely related
to the methylation level of KIF22 promoter (Figure 3(c)). The
results analyzed based on the MethSurv database showed a
close correlation between prognosis and the methylation level
of a single CpG island in the KIF22 promoter (Figure 3(d)).
Detailed information is displayed in Supplementary 7. These
results indicated a strong association between cancer
stemness and KIF22 expression. The methylation status of
KIF22 promoter was closely related to the prognosis of
cancer patients.

3.4. KIF22 Correlates with Genomic Heterogeneity. Heterogeneity
frequently leads to drug resistance to cancer and results in
poor prognosis [48]. The expression level of KIF22 was cor-
related positively with genomic heterogeneity in most tumor
types except THYM (Figure 4(a)). Tumor patients with dif-
ferent mutation profiles may give out different responses to
therapy [48]. About 1.8% of cancer patients showed genetic
alteration in KIF22. The most common genetic alteration
types were amplification, missense mutation, and truncating
mutation (Figure 4(b)). The mutation occurred at different
sites of KIF22, including the KISc KID-like and HHH 3
domains. The mutation frequency of KIF22 ranged from
0.2% to 4.0% in different cancer types, with 4.0% in UCEC
being the highest and 0.2% in LGG being the lowest, respec-
tively (Figure 4(c)). Additionally, the results analyzed based
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FIGURE 1: The expression level of KIF22 in different tumors. (a) KIF22 expression profile in different tumors and noncancerous tissues based
tissues based on HPA. (e) KIF22 mRNA expression level in different cell lines based on HPA.
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(b)

on the cBioPortal database demonstrated that UCEC had the
highest mutation frequency in KIF22, LGG had a lower muta-
tion frequency in KIF22, and THCA, CHOL, TGCT, PCPG,
UVM, THYM, KIRP, KICH, and ACC had on mutation in
KIF22 (Figure 4(d)). Changes in gene expression were caused
by various types of KIF22 alterations (Figure 4(e)). Cancer
patients with genetic changes in KIF22 had better progression-
free survival rates, disease-specific survival rates, and overall
survival rates than patients without mutations (Figure 4(f)).

Altogether, these findings suggested a strong correlation between
genomic heterogeneity and KIF22 expression. Many human
malignancies had KIF22 genetic mutations, which might be cru-
cial to the development of tumors.

3.5. Enrichment Analysis of KIF22-Related Partners. The
gene—gene functional interaction network showed that
KIF22 and the related genes were mainly correlated with
the microtubule-associated complex and antigen processing
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FiGure 3: The association between KIF22 and cancer stemness, and methylation modification of KIF22 in different tumors. (a) The
relationship between KIF22 expression level and EREG-mRNAsi, DMPsi, EREG-METHsi, mDNAsi, mRNAsi, ENHsi. *P<0.05,
*P<0.01, **P<0.001. (b) The methylation level of KIF22 promoter in tumors and noncancerous tissues based on TCGA. (c) The
association between KIF22 methylation status and survival probability based on SurvivalMeth. (d) Univariate Cox regression of the single
CpG island methylation status in KIF22 promoter for prognosis of cancer patients based on MethSurv.

and presentation (Figure 5(a)). To further study the molec-
ular function of KIF22, the PPI network was explored
through STRING database (Figure 5(b)). Fifty KIF22
interacting proteins were selected for further KEGG and
GO analysis. The result indicated that KIF22 presented in
different cellular components, including cell division site,
cleavage furrow, microtubule end, and kinesin complex
(Figure 5(c)). Microtubule plus-end binding, ATP-
dependent microtubule motor activity, microtubule motor
activity, tubulin binding, and kinesin binding were the
main molecular functions of KIF22 (Figure 5(d)). The
KEGG pathway enrichment analysis showed that KIF22
was mainly correlated with Huntington’s disease,

salmonella infection, endocytosis, and vasopressin-
regulated water reabsorption (Figure 5(e)). KIF22 was
mainly involved in mitotic spindle organization, nuclear
chromosome segregation, sister chromatid segregation,
retrograde vesicle-mediated transport, nuclear division, and
antigen processing and presentation (Figure 5(f)). These
results suggested that KIF22 might be crucial for immune
response and cell division.

3.6. KIF22 Correlates with Immune and Molecular Subtypes.
KIF22 is expressed at a different level in different molecular
or immune subtypes. For molecular subtypes, KIF22 showed
the highest expression level in primitive molecular subtype
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FIGURE 4: The association between KIF22 and tumor heterogeneity, and genetic alteration of KIF22 in different tumors. (a) The relationship
between KIF22 expression level and ploidy, LOH, HRD, MSI, TMB, MATH. *P<0.05, **P<0.01, **P<0.001. (b) Alteration landscape of
KIF22 in different tumors. (¢) KIF22 mutation points in different tumors. (d) KIF22 alteration frequency in different tumors. (e) The
expression level of KIF22 in different tumors with various alteration types. (f) The Kaplan—Meier curves of OS, DSS, PFS in KIF22 altered

group and KIF22 unaltered group.

of LUSC, CIMP-intermediate molecular subtype of ACC,
G-CIMP-low molecular subtype of GBM and LGG, 7-IDH1
molecular subtype of PRAD, iCluster:3 molecular subtype of
LIHC, atypical molecular subtype of HNSC, C2b molecular
subtype of KIRP, GS molecular subtype of READ, ESCC
molecular subtype of ESCA, HM-indel molecular subtype of
STAD, HM-SNV molecular subtype of COAD, immunoreac-
tive molecular subtype of OV, kinase signaling molecular
subtype of PCPG, and LumB molecular subtype of BRCA
(Figure 6).

For immune subtypes, KIF22 showed the highest expres-
sion level in C1 (wound healing) immune subtype of LUAD,
UCS, READ, KIRC, KIRP, BRCA, and KICH, C2 (IFNy
dominant) immune subtype of PAAD, UCEC, CHOL,
SARC, and TGCT, C3 (inflammatory) immune subtype of
SKCM, C4 (lymphocyte depleted) immune subtype of ACC,
PRAD, and LGG, and C5 (immunologically quiet) immune
subtype of PCPG (Figure 7 and Supplementary 8). Above
results demonstrated that KIF22 expression were various in
different immune and molecular subtypes.

3.7. KIF22 Correlates with Neoantigen, Immunomodulators,
Chemokines, and ESTIMATE. Immunomodulators, including
immunostimulators, immunoinhibitors, and MHC molecules,
play critical roles in immunotherapy and tumor immune infil-
tration by regulating the immune inhibitory and stimulatory
pathways [49]. KIF22 methylation status was correlated posi-
tively with most immunostimulators in PRAD, UCEC, LUAD,
BLCA, STAD, PAAD, KIRP, LUSC, CESC, KICH, LIHC,
THCA, and BRCA, but negatively with most immunostimula-
tors in OV and TGCT (Figure 8(a)). In addition, KIF22
methylation status was correlated positively with most immu-
noinhibitors in UCEC, BRCA, STAD, LUAD, CESC, LIHC,
PRAD, KICH, LUSC, KIRP, PAAD, THCA, and BLCA, but
negatively with most immunoinhibitors in OV and TGCT
(Figure 8(b)). Furthermore, KIF22 methylation status was cor-
related positively with most MHC molecules in KIRP, UVM,
BRCA, KICH, THCA, CESC, LUSC, PAAD, LUAD, STAD,
PRAD, UCEC, and BLCA, but negatively with most MHC

molecules in HNSC and TGCT (Figure 8(c)). Chemokines
play important roles in host defense by controlling cell migra-
tion during inflammation and immune surveillance [50].
KIF22 methylation status was correlated positively with
most chemokines in STAD, BLCA, THCA, BRCA, KIRP,
LIHC, PRAD, LUAD, PAAD, LUSC, KICH, and UCEC
(Figure 8(d)). In addition, KIF22 methylation status was cor-
related positively with most chemokine receptors in LUSC,
LIHC, KIRP, BLCA, BRCA, KICH, STAD, PAAD, THCA,
LUAD, and PRAD, but negatively with most chemokine
receptors in TGCT (Figure 8(e)). These results indicated
that KIF22 might play important roles in coordinating the
role of these immunomodulators and chemokines in different
pathways and could be selected as a pan-cancer immunother-
apy biomarker for treatment-response prediction.

A group of abnormal proteins that are encoded by mutant
genes in tumors are known as tumor neoantigens. The tumor
neoantigens are important for T cell-mediated antitumor
immune response as well as tumor immunotherapy [51]. In
LUAD, LGG, BRCA, STAD, HNSC, and LUSC, the expression
of KIF22 was positively related to neoantigens (Figure 8(f)).
The relevance between KIF22 expression and ESTIMATE was
examined to further understand the functions of KIF22 in the
immunological response. The results showed that the expres-
sion level of KIF22 was negatively related to ESTIMATE
in most human tumors, but correlated positively with
ESTIMATE in UVM, THYM, and TGCT (Figure 8(g)).
Overall, these results demonstrated that KIF22 might have
important functions in antitumor immunity by controlling
the immune mechanism as well as the composition in TME.

3.8. KIF22 Correlates with Tumor Immune Infiltration. The
above results demonstrated that KIF22 expression level was
diverse in different immune subtypes and was closely corre-
lated with immunomodulators, chemokines, neoantigen, and
ESTIMATE. Next, we explored the association between
KIF22 expression level and immune cell infiltration based
on the TIMER database. The results indicated that KIF22
expression showed a positive relationship with the infiltration
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Ficure 5: KIF22-related gene enrichment analysis. (a) The gene—gene functional interaction network of KIF22 generated through GeneMania
database. (b) The protein—protein interaction network of KIF22 constructed through STRING database. (c) GO analysis (cellular compo-
nent) of the KIF22 binding proteins. (d) GO analysis (molecular function) of the KIF22 binding proteins. (¢) KEGG analysis of the KIF22
binding proteins. (f) GO analysis (biological process) of the KIF22 binding proteins.

level of follicular helper T cell, NK T cell, Th2 CD4+ T cell, and
Thl CD4+ T cell in most tumor types and showed a negative
relationship with the infiltration level of endothelial cell,
neutrophil, and CD8+ T cell in most malignant neoplasms
(Figure 9(a)). Furthermore, KIF22 expression was positively
associated with the tumor infiltration of MSDCs, and
negatively associated with the tumor infiltration of CAFs and
Tregs in most tumors (Figure 9(b)).

The expression level of KIF22 affected prognoses relying
on the infiltration of different immune cells. We took CD8+
T cells as an example for further analysis, enriched CD8+ T
cells and high KIF22 expression indicated a worse survival
probability in patients with KIRC and SARC, while enriched
CD8+ T cells and high KIF22 expression indicated a better
survival probability in patients with ESCC and UCEC.
Furthermore, decreased CD8+ T cells and high KIF22
expression indicated a worse survival probability in patients
with LIHC, while decreased CD8+ T cells and high KIF22
expression indicated a better survival probability in patients
with OV, STAD, and HNSC. (Figure 9(c)). Supplementary 9
provides the detailed information. The results above sug-
gested that KIF22 might affect the survival probability of
cancer patients partially relying on the infiltration of differ-
ent immune cells.

3.9. KIF22 Correlates with Therapeutic Response in Multiple
Cancer Types. The results analyzed based on the RNAact-
Drug database indicated that the methylation, expression,
and CNV of KIF22 were closely correlated with drug

susceptibility (Figure 10(a) and Supplementary 10). The bio-
marker relevance of KIF22 was evaluated by comparing it
with predefined biomarkers according to their predictive
power on therapeutic response and survival probability of
patients under immune checkpoint blockade treatment.
KIF22 had an area under the receiver operating characteristic
curve (AUC) of >0.5 in 11 of the 23 ICB subcohorts. The
predictive value of KIF22 was higher than B. Clonality, TMB,
and T. Clonality, which gave AUC values of >0.5 in 7, 8, and
9 of the 23 ICB subcohorts, respectively (Figure 10(b)).
In addition, in patients with kidney cancer and melanoma,
ICB therapy showed good treatment outcome when KIF22
expression level was low (Figure 10(c)). Furthermore, KIF22
expression was closely related to treatment outcomes in clin-
ical cancer treatment. Patients with breast cancer that
expressed KIF22 at a higher level exhibited resistance to
chemotherapy and anthracycline. Patients with ovarian can-
cer that expressed KIF22 at a higher level were less respon-
sive to chemotherapy and were more responsive to targeted
therapy when expressed KIF22 at a lower level. Patients with
glioblastoma multiforme that expressed KIF22 at a lower
level were more resistant to chemotherapy (Figure 10(d)).
These results proved that KIF22 might be selected as a new
biomarker for predicting survival probability and treatment
outcome.

3.10. KIF22 Coexpression Network. The coexpression net-
work of KIF22 in HNSC was analyzed based on the Linke-
dOmics database to identify the potential mechanisms that
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FiGure 6: The relevance between KIF22 expression level and pan-cancer molecular subtypes.
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FIGURE 7: The relevance between KIF22 expression and pan-cancer immune subtypes.

were regulated by KIF22. In HNSC, 7,191 genes showed positive
relationship with KIF22, and 6,711 genes showed negative rela-
tionship with KIF22 (P-value < 0.05) (Figure 11(a)). The top 50
genes that showed positive and negative relationship with KIF22
were displayed (Figures 11(b) and 11(c)). Supplementary 11
provides the detailed information. Cl6orf59, CHTF18, and
SNRPA showed the strongest correlation with KIF22 (r=0.77,
0.75,0.73 and P=1.00E-103, 5.3E-103, 1.31E-96, respectively). In
addition, Gene Set Enrichment Analysis showed that KIF22 and
the coexpression genes mainly took part in cell cycle, DNA
replication, nucleotide-excision repair, and RNA processing
(Figure 11(d)). In addition, the KEGG pathway analysis proved
that KIF22 and the coexpression genes were mainly enriched in
DNA repair, cell cycle, homologous recombination, and DNA
replication (Figure 11(e)). These results provided more
evidence that KIF22 might have an important function in
human malignancies through manipulating cell cycle and
DNA repair.

4. Discussion

KIF22 has been reported to be a member of the kinesin-10
subfamily [17]. Previous studies have reported that KIF22 is a
plus-end-directed microtubule-based motor with both DNA-
and microtubule-binding domains and is involved in cytoskel-
etal dynamics, synaptic development, microtubule stability,
and chromosome movement [19, 20]. KIF22 deficiency causes
the death of about half of KIF22™'~ mice embryos. KIF22
presents together with microtubules in the interstices between
adjacent anaphase chromosomes and plays an important role
in the formation of compact chromosome mass at telophase by
holding individual chromosomes together during segregation.
KIF22 deficiency results in the loss of compaction of anaphase
chromosomes and leads to the formation of micro- or multi-
nucleated cells in early-stage embryos [23]. Emerging evidence
revealed that the KIF22 expression level was markedly upregu-
lated in cancer [52-56]. KIF22 was a poor prognostic factor and
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FiGure 8: The relevance between KIF22 and immunomodulators, chemokines, neoantigen, ESTIMATE in different cancer types. (a) The
relevance between KIF22 methylation status and immunostimulators. (b) The relevance between KIF22 methylation status and immunoin-
hibitors. (c) The relevance between KIF22 methylation status and MHC molecules. (d) The relevance between KIF22 methylation status and
chemokines. (e) The relevance between KIF22 methylation status and chemokine receptors. (f) The relevance between KIF22 expression and
neoantigen. (g) The relevance between KIF22 expression and ESTIMATE. *P<0.05, **P<0.01, **P<0.001.

was relevant to cancer cell proliferation, migration, and inva-
sion [52, 56]. Nevertheless, specific genes may have different
expressions and play different roles in different tumors due to
tumor heterogeneity. mRNA and protein expression profiles
could help us to identify novel biomarkers for cancer diagnosis,
which would facilitate the progress of treatment for different
human malignancies [57, 58]. KIF22 expression level was upre-
gulated in most tumors in contrast with nontumorous tissues.
High KIF22 expression was associated with worse OS in UCEC,
GBMLGG, ACC, LAML, KIRC, ALL-R, LGG, SKCM-M,
UVM, ESCA, LIHC, LUSC, SARC, and SKCM. Previous stud-
ies also demonstrated that KIF22 expression level was upregu-
lated and correlated with high-risk features in pancreatic
cancer, bladder cancer, breast cancer, tongue squamous cell
carcinoma, colon cancer, and prostate cancer [13, 52-54, 59, 60].
However, the relevance between KIF22 expression and survival
probability in THYM, CESC, OV, HNSC, PCPG, STAD, and
THCA suggested that KIF22 exhibited a tumor-specific role in
influencing the prognosis of cancer patients.

The clinical and genetic characteristics of cancer are
exceedingly variable, varying between people and even
between distinct tumor areas [61]. KIF22 expression was
positively correlated with genomic heterogeneity in most
malignant neoplasms. The heterogeneity characteristics of
cancer lead to treatment resistance and recurrence following
therapy, resulting in decreased survival probability. Different
mutation profiles lead to variability in therapeutic response
and variable survival outcomes of patients with different
cancers [48]. KIF22 showed variable prognostic roles in dif-
ferent cancer types which might be associated with hetero-
geneity. Cancer is a multistage process and accumulates lots
of chromosomal rearrangements and a great number of

mutations [62]. The genetic alterations in the genome were
the main driving force for the transition of normal cells to
invasive and metastatic malignant neoplasms [63]. Genetic
mutation analysis of the cancer-associated genes would bring
us valuable insights into the functions of oncogenes in car-
cinogenesis and tumor development [64]. About 1.8% of
cancer patients showed genetic alteration in KIF22. Cancer
patients with genetic changes in KIF22 had a better survival
rate than patients without mutations, which suggested that
KIF22 might serve as the force for driving tumor progression
and mutations in KIF22 suppressed its role in tumor
progression.

Stemness refers to the ability to differentiate and self-
renew cells [65]. New cell subpopulations, which have been
reported as stem-like cancer cells or cancer stem cells, have
been identified in malignant neoplasms. These cancer stem
cells showed high dedifferentiation and stemness character-
istics [66, 67]. The tumor stemness showed a close connec-
tion with tumor pathology and could be used for predicting
clinical outcomes. Our results indicated that KIF22 expres-
sion was positively associated with cancer stemness in most
malignant neoplasms, but was negatively related to cancer
stemness in THYM, KIPAN, PRAD, and THCA. These
results were consistent with the prognostic significance of
KIF22 in tumors. KIF22 might drive tumor progression
and influence the prognosis of cancer patients partially by
affecting cancer stemness. Epigenetic modification, especially
methylation modification, drew more attentions than genetic
changes. Epigenetic modification could influence the initia-
tion as well as the progression of malignant neoplasms [68].
The dysregulation of epigenetic modification in cancer cells
frequently leads to gain of stemness characteristics and
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FiGure 9: Continued.

oncogenic dedifferentiation [46, 47]. Methylation modifica-
tion is one of the major forms of epigenetic modification that
regulates the transcription of target genes [69]. The promoter
region of KIF22 was hypomethylated in COAD, LIHC,
PRAD, TGCT, UCEC, BLCA, and THCA and hypermethy-
lated in KIRC, CESC, SKCM, ESCA, HNSC, BRCA, LUSC,
and CHOL compared with normal tissues. The associations
between survival probability and methylation level of KIF22
promoter even the methylation level of single CpG island
were diverse, which furtherly proved that the methylation
modifications in KIF22 promoter showed multidirectional
functions in tumor progression.

Tumor is an integrated, diverse, and complex system that
is comprised by cancer cells and tumor-associated noncan-
cerous cells [65]. The TME builds an ecology for cancer cell
proliferation and survival [65, 70]. KIF22 expression was
negatively associated with ESTIMATE in most malignant
neoplasms, which suggested that KIF22 might have a positive
effect on tumor purity. The TME brings the tumor cells lots
of chances for cell—cell interaction and signal transmission to
regulate tumor progression, which emphasizes the impor-
tance of clarifying the regulation mechanisms of the interac-
tion within the heterogeneous tumor cells even the interaction

with noncancerous cells present in the TME [65]. Previous
studies have reported that immunomodulators, chemokines,
and neoantigen are the main factors that regulate the interaction
between cancer cells and noncancerous cells. Our results sug-
gested that the expression level of KIF22 was positively associ-
ated with neoantigen in LUAD, LUSC, BRCA, STAD, HNSC,
and LGG. In addition, KIF22 methylation status was positively
correlated with MHC molecules, immunoinhibitor, chemo-
kines, immunostimulator, and chemokine receptors in most
cancers. These results implied that KIF22 might take part in
organizing the TME by coordinating the immunomodulators,
chemokines, and neoantigen. Previous studies indicated that
elevated expression of KIF22 might affect the response of
melanoma cells to promigratory cues in the tumor micro-
environment [71]. Our results indicated that KIF22 showed
no dramatic correlations with immunomodulators, chemo-
kines, and ESTIMATE in SKCM. However, KIF22 was pos-
itively related to tumor infiltration of Th2 CD4+ T cell, Thl
CD4+ T cell, and myeloid-derived suppressor cell and neg-
atively related to tumor infiltration of Tregs and CD8+
T cells in cutaneous melanoma. More further studies might
need to be carried out to confirm the roles and underlying
mechanisms of KIF22 in tumor microenvironment.
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FiGure 9: The association between KIF22 expression level and tumor immune infiltration. (a) The relationship between KIF22 expression
level and the infiltration level of Thl CD4+ T cell, NK T cell, Th2 CD4+ T cell, follicular helper T cell, CD8+ T cell, neutrophil, and
endothelial cells in different tumors. (b) The relevance between KIF22 expression level and the infiltration level of CAFs, MDSCs, and Tregs
in different tumors. (c) Kaplan-Meier survival curves indicated the association between OS and KIF22 expression level in different CD8+

T cell subgroups.

Numerous studies showed that the abundance and com-
position of tumor-infiltrating immune cells in the tumor
microenvironment could serve as independent predictors for
survival rate, therapeutic efficiency, and treatment outcome
[72]. Previous studies proposed two distinct explanations
for tumor immune evasion. First, the infiltration of tumor-
infiltrating lymphocytes in the TME resulted in the dysfunction

of T-cell and T-cell anergy, which facilitated the escape
of tumor cells from the immune system of the host [73].
Second, tumor prevented the infiltration of tumor cytotoxic
lymphocytes based on the tumor-infiltrating immunosup-
pressive cells, such as MDSCs, Tregs, and CAFs, which have
been reported as biomarkers for T-cell exclusion in malignant
neoplasms [74]. Our results indicated that KIF22 showed a
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Ficure 10: The association between KIF22 and therapy outcome in different cancers. (a) The relationship between drug susceptibility and the
expression, methylation, CNV of KIF22. (b) The biomarker relevance of KIF22 compared with predefined tumor immune response
biomarkers in ICB subcohorts. (c) Kaplan—Meier survival curve of ICB subcohorts with different KIF22 expression levels. (d) The relevance
between KIF22 expression level and response to chemotherapy in ovarian cancer, glioblastoma multiforme and breast cancer cohorts,
targeted therapy in ovarian cancer cohorts, and anthracycline therapy in breast cancer cohorts.

positive relationship with the infiltration level of MDSCs and
Thl CD4+ T cells in most malignant neoplasms. Myeloid-
derived suppressor cells inhibited the number and function of
DC and T cell and facilitated tumor progression [75]. The
presence of IL-12 and IFNy drove the differentiation of pre-
cursor CD4+ T cells into Th1 cells. Th1 cells produced IFNy
and LT (TNEFp) and regulated cell-mediated inflammatory
reactions [76]. KIF22 might regulate tumor immune evasion
dependent on the tumor-infiltrating MDSCs and Th1 CD4+
T cells in the TME.

Immune checkpoint inhibitors can reverse the damaged
antitumor immune response of tumor-infiltrating lymphocytes
and trigger antitumor characteristics of tumor-infiltrating
T cells by blocking the immunosuppressive receptors [77].
Antibodies against PD-L1 or PD-1 effectively treat a variety
of tumors and exhibit better clinical benefits [78]. Our results
suggested that KIF22 could be selected as a new biomarker for
tumor immune evasion. Melanoma and kidney cancer patients
that expressed KIF22 at a lower level had a better survival
probability under PD-1 and CTLA-4 ICB therapy, which
meant that KIF22 was an important factor for predicting the
immunotherapy outcome. In addition, KIF22 could be selected
as a new biomarker for predicting the efficacy of targeted ther-
apy and chemotherapy. Patients with glioblastoma or ovarian
cancer that expressed KIF22 at a lower level had a poor che-
motherapy outcome. On the contrary, patients with breast
cancer and higher KIF22 expression were insensitive to che-
motherapy and patients with ovarian cancer and higher KIF22
expression were resistant to targeted therapy. These studies
implied that KIF22 might function in different cancer types
via different signal pathways. KIF22 might exert a positive or

negative influence on these strategies via different signal path-
ways in different cancer types, which probably contributes to
the variation in clinical outcomes.

The present study improves our understanding of KIF22
potential function in carcinogenesis and cancer progression,
but there are still several limitations in our study. First, most
of the analyses in this study were performed based on mRNA
levels of KIF22. Due to the deficiency of KIF22 protein
expression data, the analyses based on KIF22 protein levels
were imperfect. A deeper analysis, based on KIF22 protein
levels, would make the results more convincing. Second,
most of the conclusions were drawn based on bioinformatic
analysis. Therefore, the current study lacked validation of
clinical specimens and biological experiments, and more
basic and clinical research were needed to validate these
results.

5. Conclusion

KIF22 expression was upregulated in tumors than noncancer-
ous tissues and was closely related to tumor stemness, progno-
sis, genomic heterogeneity, neoantigen, ESTIMATE, and
infiltration of immune cells in the TME. The KIF22 methyla-
tion status was correlated with immunomodulators and che-
mokines. KIF22 showed strong relationships with drug
susceptibility and could serve as a new biomarker for prognosis
and treatment outcomes. KIF22 interacting and cofunctional
partners were mainly involved in DNA repair, cell division, cell
cycle, and antigen processing and presentation. KIF22 could be
selected as a new biomarker for clinical diagnosis, therapeutic
schedule, prognosis, and cancer monitoring.
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