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β-Glucan is the main component of the cell wall of pathogen-associated molecular patterns (PAMPs) including various yeast,
fungi, or certain bacteria. Previous reports demonstrated that β-glucan was widely investigated as a potent immunomodulators to
stimulate innate and adaptive immune responses, which indicated that it could be recommended as an effective adjuvant in
immunotherapy. However, the detailed effects of β-glucan on neonatal immunity are still largely unknown. Here, we found that β-
glucan did not affect the frequencies and numbers of myeloid cells in the spleen and bone marrow from neonates. Functional assay
revealed that β-glucan from neonates compromised the immunosuppressive function of immature myeloid cells, which were
myeloid-derived suppressor cells (MDSCs). Flow cytometry or gene expression analysis revealed that β-glucan-derived polymor-
phonuclear (PMN)-MDSCs produced lower level of reactive oxygen species (ROS) and arginase-1 (Arg1) in neonatal mice.
Furthermore, β-glucan administration significantly decreased the frequency and ROS level of PMN-MDSCs in vitro. These
observations suggest that β-glucan facilitates the maturation of myeloid cells in early life, which may contribute to its beneficial
effects against immune disorders later in life.

1. Introduction

β-Glucan is a biologically active glucose polymer presenting
in the cell wall of yeast, bacteria, fungi, edible mushrooms,
cereal grains, oats, barley, wheat, and rye [1]. All β-glucans
consist of glucose molecules linked together by a (1–3), (1, 4),
or (1, 6) linear β-glycosidic chain; the types of glucans vary in
length and branching structures occurring at different loca-
tions along the backbone of the polymer [2]. β-Glucan
belongs to pathogen-associated molecular patterns (PAMPs)
and possesses broad immunomodulatory function, including
activation of innate immune functions and adaptive immu-
nity [3–5]. β-Glucan activates innate immunity cells such as
macrophages, dendritic cells, granulocytes, and natural killer
(NK) cells, to enhance the production of chemokines and
proinflammatory cytokines [6]. The ability of β-glucan to

activate adaptive immunity cells, such as CD4+ or CD8+

T cells and B cells, is able to enhance the host’s antitumor
defense that is inhibiting the growth and metastasis of tumor
[7, 8]. Despite the extensive studies on β-glucan-mediating
immunomodulation, anti-inflammatory, and antitumor func-
tion, the detailed effect on neonatal immunity is not completely
understood.

Myeloid-derived suppressor cells (MDSCs) are the accu-
mulation of immaturemyeloid cells due to the perturbation of
normal myeloid cells under certain pathological conditions
such as tumor and infections [9]. MDSCs are mainly com-
posed of two subsets: polymorphonuclear (PMN-MDSCs)
and monocytic (M-MDSCs) [10]. PMN-MDSCs represent
the dominant subset and preferentially utilize reactive oxygen
species (ROS), peroxynitrite, and prostaglandin E2 (PGE2) to
exert their immunosuppressive activity [10]. M-MDSCs exert
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immunosuppressive effects mainly through NO production
and promoted higher expression of arginase-1 (ARG1) [10].
MDSCs have potent suppressive activity to inhibit T cell,
B cell, or NK cell immune responses [11]. Recently, it is widely
investigated that β-glucan exerts antitumor immune responses by
regulating differentiation and immunosuppressive function of
MDSCs [12–14]. The regulation of β-glucan on neonatalMDSCs
and its responses in neonates remains poorly understood.

In this study, we found that β-glucan did not change the
frequencies and numbers of myeloid cells in neonates but
compromised the immunosuppressive function of MDSCs in
neonates. Mechanistically, β-glucan-derived PMN-MDSCs
produced lower levels of ROS and Arg1 in neonatal mice.
In vitro assay further demonstrated that β-glucan signifi-
cantly decreased the frequency and ROS level of PMN-
MDSCs. These observations suggest that β-glucan facilitates
the maturation of myeloid cells in early life, which may con-
tribute to its beneficial effects against immune disorders later
in life.

2. Materials and Methods

2.1. Mice. The Laboratory Animal Center of Tianjin Medical
University provided the C57BL/6 wild-type mice. All mice
were housed and maintained in specific pathogen-free con-
ditions, and all animal experiments were approved by the
Institutional Animal Care and Use Committee at Tianjin
Medical University.

2.2. β-Glucan Treatment. For in vivo studies, neonatal mice
at postnatal days 3–4 were injected intraperitoneally (i.p.)
with 0.5mg of β-glucan (Sigma) in 50 μl of PBS, and i.p.
injection of PBS alone was performed as control according
to a previous study [15]. For in vitro study, lin- cells isolated
from bone marrow cells of neonatal mice were cultured in
RPMI 1640 medium (BI) supplemented with 10% fetal
bovine serum, 20 ng/ml GM-CSF (Peprotech), and 50 μM
2-mercaptoethanol, with or without β-glucan (5, 25, or
50 μg/ml). Media were half changed on day 3, and cells
were analyzed by flow cytometry on day 5.

2.3. Flow Cytometric Analysis and Sorting. Single-cell suspen-
sions were stained with surface antibodies in cold FACS
buffer (containing 1× PBS supplemented with 1% FBS and
2mM EDTA) for 30min at 4°C, and red cells were removed
using ACK lysing buffer. Flow cytometric analysis was per-
formed by a CytoFLEX flow cytometer (Beckman Coulter).
Flow cytometric sorting was performed by a MoFlo Astrios
EQs flow cytometer cell sorter (Beckman Coulter). Data
were analyzed by FlowJo V10 (TreeStar). Mouse MDSCs
(CD11b+Gr1+), PMN-MDSCs (CD11b+Ly6G+Ly6Clo), and
M-MDSCs (CD11b+Ly6G−Ly6Chigh) were analyzed by
flow cytometer. After surface staining, LIVE/DEAD staining
(Thermo Fisher) was used to exclude the dead cells.
The following antimouse antibodies were purchased from
eBioscience: biotin antimouse CD3 (clone 145-2C11), biotin
antimouse CD4 (clone GK1.5), biotin antimouse CD8 (clone
53-6.7), biotin antimouse Gr1 (clone RB6-8C5), biotin anti-
mouse CD11b (clone M1/70), biotin antimouse Ter119

(clone TER-119), biotin antimouse B220 (clone RA3-6B2), bio-
tin antimouseNK1.1 (clone PK136), andAPC streptavidin. The
following antimouse antibodies were purchased from BioLe-
gend: APC antimouse CD4 (clone GK1.5), APC/Cyanine7 anti-
mouse CD8a (clone 53-6.7), FITC antimouse CD11b (clone
M1/70), Brilliant Violet 421 antimouse CD11b (clone M1/70),
PE antimouse Ly6G (clone 1A8), APC antimouse Ly6C (clone
HK1.4), Percp-cy5.5 antimouse Ly6C (clone HK1.4), and PE
antimouse Ly-6G/Ly-6C (Gr-1) (clone RB6-8C5).

Lin− cells are remaining cells in the bone marrow (BM)
after exclusion of CD3, CD4, CD8, Gr1, CD11b, Ter119, B220,
and NK1.1 positive cells [16]. The flow cytometric analysis and
sorting for lin− cell in the BM from neonatal mice were per-
formed: BM cells were stained with primary antibodies (biotin
antimouse CD3, biotin antimouse CD4, biotin antimouse CD8,
biotin antimouse Gr1, biotin antimouse CD11b, biotin anti-
mouse Ter119, biotin antimouse B220, and biotin antimouse
NK1.1) for 30min at 4°C, and cells were then washed and
restained with APC Streptavidin for 30min at 4°C. Subse-
quently, cells were analyzed and sorted by flow cytometer.

2.4. RNA Sequencing (RNA-seq) Library Preparation and
Data Analysis. Neonatal mice at postnatal days 3–4 were
injected intraperitoneally (i.p.) with 0.5mg of β-glucan. About
5× 105 PMN-MDSCs in the spleen were sorted from neonatal
mice at day 3 after β-glucan administration. PMN-MDSCs
were resuspended using TRIzol reagent (Thermo Fisher), and
M-MuLV Reverse Transcriptase (RNase H) was used to per-
form the reverse transcription. According to the manufacturer’s
protocol, PCR was carried out with Phusion High-Fidelity
DNA polymerase, universal PCR primers, and index primer.
RNA-seq data were collected using Illumina NovaSeq with
2× 150 bp paired-end run. DESeq2 was used to estimate the
significance of differential expression genes (DEGs) between
the two experimental groups. The resulting P values were
adjusted using the Benjamini–Hochberg approach for con-
trolling the false discovery rate. DEGs were defined with
adjusted P values< 0.05 and an absolute value of log2 (fold-
change) >1. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) analysis of DEGs was
performed using clusterProfiler and with P value< 0.05 was
regarded as significantly enriched by differentially expressed
genes.

2.5. MDSC Function Assay. MDSC function assay was per-
formed as previously described [17, 18]. Briefly, MDSCs in
the spleen from neonatal mice were sorted. CD3+ T cells in
the spleen from adult mice were labeled with 5- (and-6)-
carboxyfluorescein diacetate and succinimidyl ester (CFSE,
Thermo Fisher Scientific, 2 μM), stimulated with anti-CD3-
coated (5 μg/ml, Invitrogen) plates and soluble anti-CD28
(1 μg/ml, eBioscience) antibody, and cultured alone or with
MDSCs at different ratios for 3 days. Cells were then stained
with CD4 and CD8a antibodies, and T cell proliferation was
analyzed by the intensity of CFSE fluorescence using a Cyto-
FLEX flow cytometer.

2.6. Quantitative Real-Time PCR. Total RNA was extracted
with TRIzol reagent (Thermo Fisher Scientific) according to
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the manufacturer’s instructions. StarScript III cDNA synthe-
sis kit (Genstar) was used to synthesize the cDNA. β-Actin
was used as a reference gene for normalization. The primer
sequences in the study were listed in the following page:
qPCR assay of β-actin forward, 5′-GACGGCCAGGTCATCAC-
TATTG-3′, qPCR assay of β-actin reverse, 5′-AGGAAGGCTG-
GAAAAGAGCC-3′; and qPCR assay of Arg1 forward,
5′-CTCCAAGCCAAAGTCCTTAGAG-3′, qPCR assay of
Arg1 reverse, 5′-AGGAGCTGTCATTAGGGACATC-3′.

2.7. ROS Production. ROS production was analyzed with the
oxidation-sensitive dye CM-H2DCFDA (Thermo Fisher Sci-
entific). Cells were incubated in RPMI 1640 with 1 μMCM-
H2DCFDA at 37°C for 30min and then stained with CD11b,
Ly6G, and Ly6C antibodies at 4°C for 30min. The MFI of
ROS in the MDSCs from neonatal mice was analyzed by flow
cytometry.

2.8. Statistics. Statistical analysis was analyzed with Graph-
Pad Prism 8.0 software (GraphPad Software). For data with
normal distributions, a two-tailed Student’s t test was per-
formed for comparing two groups, and one-way or two-way
ANOVA followed by a Tukey–Kramer multiple comparisons
test was performed for comparing three or more groups. For
data not obeying normal distributions, a Mann–Whitney U
test was performed. All data were displayed as meanÆ SEM,
and statistical significance was displayed as ∗P <0:05,
∗∗P <0:01, and ∗∗∗P <0:001.

3. Results

3.1. β-Glucan Did Not Affect the Numbers of Newborn
Myeloid Cells. To explore the effect of β-glucan on myeloid
cells in neonatal mice, neonatal mice at postnatal days 3–4
were injected i.p. with 0.5mg of β-glucan in 50 μl of PBS, and
i.p. injection of PBS alone was performed as control. After
3 days, the frequencies and numbers of myeloid cells from
neonatal mice in the spleen and bone marrow were deter-
mined by flow cytometry (Figure 1(a)). The flow cytometric
gating strategies for myeloid cells were showed in Figure1(b),
including CD11b+Ly6G−Ly6Chigh and CD11b+Ly6G+

Ly6Clo myeloid cells. It was showed that neonates with
β-glucan administration displayed comparable levels of mye-
loid cells with controls in the spleen (Figure 1(c)). In addi-
tion, the frequencies and numbers of myeloid cells were
comparable in the bone marrow between β-glucan chal-
lenged and control neonatal mice (Figure 1(d)). These obser-
vations suggested that β-glucan administration did not affect
the frequencies and numbers of myeloid cells in neonates.

3.2. β-Glucan Compromised the Immunosuppressive Activity
of MDSCs in Neonates. Previous reports had investigated that
splenic CD11b+Gr1+ myeloid cells from neonatal mice were
immunosuppressive and were regarded as MDSCs [19, 20].
To further functionally determine the effect of β-glucan on
myeloid cells in neonatal mice, CD11b+Gr1+ myeloid cells
were isolated from the spleen in neonatal mice after β-glucan
or PBS treatment, and a T cell coculture experiment was
performed (Figure 2(a)). The flow cytometric gating strate-
gies for T cell proliferation were showed in Figure 2(b). As

expected, splenic CD11b+Gr1+ myeloid cells from PBS con-
trol displayed a dose-dependent immunosuppressive effect
on T cells (Figure 2(c)), suggesting that they were MDSCs.
However, the corresponding cells isolated from the spleen
from β-glucan-treated neonatal mice apparently lowered the
immunosuppressive activity (Figure 2(c)). These results indi-
cated that β-glucan compromised the immunosuppressive
function of MDSCs in neonates.

3.3. β-Glucan-Derived PMN-MDSCs Produced Lower Levels
of ROS and Arg1.We next further investigated the functional
mechanism of β-glucan-derived MDSCs.

Consistent with the observations of downregulated immu-
nosuppressive function, β-glucan treatment caused the decrease
of ROS (Figure 3(a)), an important mediator of immunosup-
pression in PMN-MDSCs under certain conditions [21]. In line
with these results, a significant decrease of Arg1 expression, a
crucial regulator of immunosuppression in PMN-MDSCs [22],
was observed in PMN-MDSCs after β-glucan treatment in neo-
natal mice (Figure 3(b)). To further investigate the mechanism
underlying the regulatory effect of β-glucan on neonatal PMN-
MDSCs, we performed RNA sequencing (RNA-seq) to evaluate
the transcriptomes of splenic PMN-MDSCs from neonatal
mice after PBS or β-glucan treatment. Among the total of
24,913 transcriptomes, 922 genes were significantly upregu-
lated, and 522 genes were significantly downregulated in the
β-glucan treatment PMN-MDSCs (Figures S1(a) and S1(b)).
Similarly, volcano plot and heat plot analysis of RNA-seq dis-
played that mRNA transcripts of key immunosuppressive
molecules, such as Arg1, Cd274, and Ncam1 [22–24], were sig-
nificantly downregulated in β-glucan-derived PMN-MDSCs
(Figures 3(c) and 3(d)). However, RNA-seq revealed that
mRNA transcripts of ROS production molecules, including
Ncf1, Ncf2, Ncf4, Cyba, Cybb, and Rac1, were no changes
between β-glucan- and PBS-derived PMN-MDSCs (Figure S1
(c)), suggesting that the dysregulation of ROS in β-glucan-
derived PMN-MDSCs occurred at post-transcriptional level.
The Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Gene Ontology (GO) analysis of RNA-seq revealed that glyco-
lytic process ranked as one of the most enriched pathways in
PMN-MDSCs after β-glucan treatment (Figures 3(e) and 3(f)).
Considering that the glycolysis pathway has been reported to
regulate the immunosuppressive function of MDSCs [25, 26].
The precise signaling network that links the β-glucan, glycolysis,
and immunosuppressive function of PMN-MDSCs in neonatal
mice deserves further investigation.

3.4. β-Glucan Decreased the Percentage and ROS Level of
Neonatal PMN-MDSCs In Vitro. To further investigate
whether β-glucan influences MDSCs in vitro, we first cultured
neonatal mice lin- cells in the presence of GM-CSF with or
without β-glucan. After 5 days, the frequencies and ROS level
of MDSCs were evaluated by flow cytometry (Figure 4(a)).
Results showed that β-glucan significantly decreased the fre-
quency of PMN-MDSCs in a dose-dependent manner, whereas
the frequency of M-MDSCs was not affected (Figure 4(b) and
Figure S2(a)). We further analyzed the ROS level of PMN-
MDSCs, and the data showed that a significantly reduction of
ROS level was observed upon β-glucan administration in vitro
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FIGURE 1: Continued.
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(Figure 4(c)). Together, these results suggested that β-glucan
could reduce the frequency and ROS level of PMN-MDSCs
in vitro.

4. Discussion

Here, our study displayed that β-glucan administration sig-
nificantly compromised the immunosuppressive function of
MDSCs in neonates. The downregulation of ROS and Arg1 in
β-glucan-derived PMN-MDSCs might represent the func-
tional mechanism. β-glucan administration also could reduce
the frequency and ROS level of PMN-MDSCs in vitro culture.
These observations indicated that β-glucan promoted the
maturation of myeloid cells in early life, which might be help-
ful to resist the immune disorders later in life.

Our functional assay demonstrated that β-glucan admin-
istration compromised the immunosuppressive function of
MDSCs in neonates. Previous studies had reported that the
potential immunomodulation of MDSCs by β-glucan in the
tumor microenvironment [12–14, 27]. Tian et al. [13] found
that β-glucan treatment could promote the differentiation of
M-MDSCs into a more mature CD11c+F4/80+Ly6Clow pop-
ulation via dectin-1 pathway in vitro and inhibit the suppres-
sive function of M-MDSCs, leading to the delayed tumor
progression. Albeituni et al. [14] demonstrated that yeast-
derived particulate β-glucan (WGP) significantly decreased
the accumulation and immunosuppressive function of PMN-

MDSCs and reduced tumor weight and splenomegaly in
tumor-bearing mice. Lo et al. [27] investigated that β-glucan
could subvert the suppressive function of MDSC and augment
antitumor immunity in oral squamous cell carcinoma (OSCC)
patients. These findings onMDSCs’ function were similar with
our observations in β-glucan-challenged neonatal mice.

Our study found that β-glucan administration reduced
ROS levels of PMN-MDSCs in vivo and in vitro culture. We
also checked ROS levels of neonatal M-MDSCs in vivo and
in vitro. Results showed that β-glucan treatment also
decreased ROS levels of M-MDSCs in vivo and in vitro
(Figure S3). ROS signaling is a central mediator of MDSC
function and fate [21]. However, M-MDSCs exert immuno-
suppressive effects mainly through NO or ARG1 production
and less through ROS pathway [28]. The mechanism of
immunosuppressive function on M-MDSCs in neonatal
mice after β-glucan treatment needs to be further explored.

β-glucan functioned as a PAMP, and several membrane-
bound receptors including dectin-1, lactosylceramide, CR3,
CD11b/CD18, and scavenger receptors involved in these
immune responses following contact with β-glucan [29–33].
Dectin-1 is themost commonly studied β-glucan receptor and
a type II transmembrane protein C-type lectin receptor,
which results in the activation of the PI3K/Akt pathway and
the phosphorylation of its intracellular immunoreceptor
tyrosine-based activation motif [34, 35]. β-glucan binding to
dectin-1 ultimately causes phagocytosis, microbial killing, and
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FIGURE 1: β-glucan did not affect the numbers of newborn myeloid cells. Neonatal mice at postnatal days 3–4 were injected intraperitoneally
(i.p.) with 0.5mg of β-glucan in 50 μl of PBS, or with PBS as a control. Mice were sacrificed and cells were analyzed at day 3 after β-glucan
treatment. (a) Experimental design. (b) The flow cytometric gating strategies for MDSCs were displayed. (c) Representative flow cytometric
plots (left), and frequencies and numbers (right), of PMN-MDSCs and M-MDSCs in the spleen of neonatal mice after β-glucan treatment
(n= 6). (d) Representative flow cytometric plots (left), and frequencies and numbers (right), of PMN-MDSCs and M-MDSCs in the bone
marrow of neonatal mice after β-glucan treatment (n= 6). Data represented meanÆ SEM from two independent experiments. ns, not
significant.
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FIGURE 4: Continued.

Journal of Immunology Research 9



cytokine production [36, 37]. In addition, previous study and
other findings highly suggested that β-glucan had great poten-
tial for activating dectin-1 on myeloid cells [13], which could
mediate the immunosuppressive activity of MDSCs [38]. It is
worthy of further investigation to explore the detailed mech-
anism underlying the effect of β-glucan on the immunosup-
pressive function of MDSCs in neonates.

5. Conclusion

In conclusion, our study showed that β-glucan apparently com-
promised the immunosuppressive function of MDSCs in neo-
nates and promoted the maturation of myeloid cells in early life,
which might be helpful to resist immune disorders later in life.
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