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Our research addresses the critical environmental issue of a fine particulate matter (PM2.5), focusing on its association with the
increased infection risks. We explored the influence of PM2.5 on human beta-defensin 1 (HBD1), an essential peptide in mucosal
immunity found in the airway epithelium. Using C57BL/6J mice and human bronchial epithelial cells (HBE), we examined the
effects of PM2.5 exposure followed by Pseudomonas aeruginosa (P. aeruginosa) infection on HBD1 expression at both mRNA and
protein levels. The study revealed that PM2.5’s toxicity to epithelial cells and animals varies with time and concentration. Notably,
HBE cells exposed to PM2.5 and P. aeruginosa showed increased bacterial invasion and decreased HBD1 expression compared to
the cells exposed to P. aeruginosa alone. Similarly, mice studies indicated that combined exposure to PM2.5 and P. aeruginosa
significantly reduced survival rates and increased bacterial invasion. These harmful effects, however, were alleviated by adminis-
tering exogenous HBD1. Furthermore, our findings highlight the activation of MAPK and NF-κB pathways following PM2.5
exposure. Inhibiting these pathways effectively increased HBD1 expression and diminished bacterial invasion. In summary, our
study establishes that PM2.5 exposure intensifies P. aeruginosa invasion in both HBE cells and mouse models, primarily by
suppressing HBD1 expression. This effect can be counteracted with exogenous HBD1, with the downregulation mechanism
involving the MAPK and NF-κB pathways. Our study endeavors to elucidate the pathogenesis of lung infections associated
with PM2.5 exposure, providing a novel theoretical basis for the development of prevention and treatment strategies, with
substantial clinical significance.

1. Introduction

Fine particulate matter with an aerodynamic diameter of
2.5μm or less (PM2.5), predominantly originating from indus-
trial and vehicle emissions, is a global concern [1–3]. Numerous
epidemiological and clinical studies have established a connec-
tion between PM2.5 and a variety of diseases affecting different
systems [4–9]. Specifically, PM2.5 has been linked to respiratory
tract infections, including influenza, bronchitis, and exacerba-
tions of chronic obstructive pulmonary disease (COPD) [10–14].
Extensive clinical research across various populations has shown
a correlation between PM2.5 exposure and increased rates of
lung infections and mortality. For instance, a 10 µg/m3 increase
in PM2.5 concentration leads to a 6.32% rise in emergency room
visits for pneumonia and a 4.72% increase in respiratory

infections [15]. Children with cystic fibrosis are at a 24% higher
risk of initial Pseudomonas aeruginosa (P. aeruginosa) infections
with increased PM2.5 exposure [16]. Furthermore, every 2µg/m3

increase in PM2.5 levels is linked to a 3% increase in community
visits for pneumonia [17], while a 20µg/m3 increase correlates
with a 0.67% increase in hospital admissions for pneumonia
[18]. Collectively, these studies highlight the significant role of
PM2.5 exposure in escalating lung infection risks.

The respiratory tract, constantly exposed to a plethora of
external environmental potential pathogens, has garnered sig-
nificant research interest. Recent advancements have enhanced
our understanding of the impact of particulate matter (PM)
exposure, including PM2.5 from air pollution, on lung patho-
gen infections. Notably, urban PM exposure leads to increased
mucus production and goblet cell proliferation, causing airway
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obstruction and reduced pathogen clearance through muco-
ciliary action, potentially facilitating pathogen colonization
[19, 20]. Such exposure may also deplete commensal bacteria
in the airways, such as species of Prevotella, Clostridium,
Flavobacterium, and Vibrio, thus potentially favoring the
proliferation of pathogenic bacteria like Streptococcus spp.
[21–23]. Although, alveolar macrophages are the key in
pathogen defense, studies indicate that macrophages with
high PM uptake show decreased pathogen elimination effi-
ciency, increasing the risk of sustained infections [24, 25].
Chronic exposure to air pollutants triggers a Th2-mediated
inflammatory response, activating toll-like receptors and
generating reactive oxygen species, which perpetuates
inflammation and enhances vulnerability to lung pathogens
[26–31]. Some researches have also suggested that PM2.5
influences cytokine secretion in the lung epithelial
cells [32, 33].

Human bronchial epithelial (HBE) cells, a component of
the respiratory epithelium, secrete various antimicrobial pep-
tides, including defensins, to combat inhaled particles and
pathogens [34]. The β-defensin family, known for their
broad-spectrum antimicrobial properties, primarily function
by forming channels in the lipid bilayer, disrupting bacterial
cell membranes [35–38]. Human beta-defensin 1 (HBD1),
expressed in human airway epithelia, is critical in enhancing
the antimicrobial efficacy of airway surface fluid and in pro-
viding mucosal defense in the lungs [39]. HBD1 combats
Gram-positive bacteria by obstructing the cell wall synthesis
[40–42] and inhibits bacterial invasion by forming nanonets
to ensnare bacteria [43]. It also protects the epithelium from
colonization by commensal bacteria and opportunistic fungi
[44]. A decrease in HBD1 expression correlates with an
increased infection risk.

The impact of PM2.5 exposure on the downregulation of
HBD1 and its regulatory mechanisms remain an underex-
plored area of research. Building on the previous studies, we
hypothesized that PM2.5 hinders bacterial clearance by mod-
ulating HBD1 expression in the respiratory tract. Therefore,
our research primarily investigates the impact of PM2.5
exposure on P. aeruginosa infection and HBD1 expression,
delving into the associated mechanisms. This study aims to
elucidate the pathogenesis of lung infections arising from
PM2.5 exposure and to propose an innovative theoretical
framework for the prevention and management of these con-
ditions. The insights gained from this research have substan-
tial clinical relevance.

2. Material and Methods

2.1. Ethics Declarations. The animal experiments were con-
ducted in accordance with the Laboratory Animals-
Guideline of welfare and ethics and were consistent with
the ARRIVE guidelines. All methods used were approved
by the Experimental Animal Ethics Committee of Fudan
University and the Ethics Committee of Zhongshan
Hospital, Fudan University.

2.2. P. aeruginosa PAO1 Preparation. P. aeruginosa PAO1
(PAO1) marked by GFP was given by Prof. Yuanlin Song’s

group at Zhongshan Hospital, Fudan University. PAO1 was
cultured in P. aeruginosa selective medium (Chromagar,
France) and was diluted with PBS for further experiment.

2.3. Cell Culture. The HBE cells used in this study were
provided by Professor Yuanlin Song’s group at Zhongshan
Hospital, Fudan University. The HBE cells were cultured in
RPMI 1640 medium (Cat. No. R1383, Sigma-Aldrich, USA)
supplemented with FBS (Biological Industries, Israel) and
penicillin–streptomycin (Cat. No. C0222, Beyotime, China).
The cells were maintained in a 5% CO2 incubator at 37°C.
Standard PM2.5 (Cat. No. SRM2786, National Institute of
Standards and Technology, NIST, USA) was used as the
experimental material. A solution of this standard, diluted
in PBS, was added to the cells at 50%–60% confluency for
6 days prior to infection with PAO1. Cells were harvested
2 hr post-PAO1 addition. We developed PAO1 infected HBE
cell models at various multiplicities of infection (MOIs of 1,
10, and 20), and exposed them to gradient concentrations of
PM2.5 (0, 50, 100, and 200 μg/mL). Techniques such as col-
ony counting, laser confocal microscopy, and flow cytometry
were employed to assess viable bacterial count within the
cells and to examine changes in the bacterial invasion. Fur-
ther details are provided below.

To assess the alterations in HBD1 expression and PAO1
invasion, this research established four cell models (HBE and
A549): control, PM2.5: only exposure (100 μg/mL), PAO1:
only infection (MOI10), and combined PAO1 infection
(MOI10) with PM2.5 exposure (100 μg/mL). All cell models
were based on HBE cells, except for those illustrated in
Figure 1(d).

For the PM2.5-exposed HBE cell model, western blot
analysis was conducted to assess the expression of pathway
proteins. The cell models were divided into four groups:
control, PM2.5 exposure (100 μg/mL), PAO1 (MOI10) infec-
tion, and PAO1 (MOI10) infection plus PM2.5 (100 μg/mL)
exposure. Total proteins were collected and subjected to
western blot experiments to detect the expression levels of
MAPK/NF-κB pathway proteins.

To explore the effect of MAPK/NF-κB pathway inhibitors
on bacterial invasion in the PM2.5+PAO1 cell model, the
experimental conditions and grouping of cells are as follows:
PAO1 (MOI10) infection+ PM2.5 (100 μg/mL) exposure,
U0126 (10 μM) + PAO1 (MOI10) infection + PM2.5
(100μg/mL) exposure, SB203580 (10 μM)+PAO1 (MOI10)
infection + PM2.5 (100 μg/mL) exposure, SP600125
(10 μM)+ PAO1 (MOI10) infection+ PM2.5 (100 μg/mL)
exposure, and BAY11-7082 (5 μM) + PAO1 (MOI10)
infection+PM2.5 (100μg/mL) exposure. Bacterial invasion
was measured in these groups.

To explore the impact of MAPK/NF-κB pathway inhibi-
tors on HBD1 expression in the PM2.5+PAO1 cell model,
the experimental conditions and grouping of cells are as fol-
lows: PAO1 (MOI10) infection+PM2.5 (100 μg/mL) expo-
sure, U0126 (10 μM)+PAO1 (MOI10) infection+PM2.5
(100μg/mL) exposure, SB203580 (10μM)+PAO1 (MOI10)
infection+PM2.5 (100μg/mL) exposure, SP600125 (10μM)+
PAO1 (MOI10) infection+PM2.5 (100μg/mL) exposure,
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and BAY11-7082 (5μM)+PAO1 (MOI10) infection+PM2.5
(100μg/mL) exposure. The expression levels of HBD1 both
intracellularly and extracellularly were assessed.

2.4. Cell Viability Assay. Cell viability was assessed using the
Cell Counting Kit-8 (CCK-8) method, as per the instructions
of the CCK-8 kit (Cat. No. 40203ES60, Yeason Biotech Co.,
China). Cells treated with PM2.5 and PAO1 were incubated
with the CCK-8 solution at 37°C for 2 hr. Viability was deter-
mined bymeasuring the optical density (OD) at 450 nm using
a microplate reader. In addition, after coculturing HBE cells
with PM2.5 at concentrations ranging from 0 to 200 μg/mL
for periods of 0–48 hr, cell morphology and growth rate were
monitored under a microscope, and viability was evaluated
using the CCK-8 assay.

2.5. Animal Model. Male C57BL/6J mice (8−10-week old)
were procured from Shanghai Jihui Company, Shanghai,
China, and housed in the Experimental Animal Center at
Fudan University. The study protocols were approved by
both the Experimental Animal Ethics Committee and the
Ethics Committee of Zhongshan Hospital at Fudan Univer-
sity. The PM2.5 animal models were categorized into four
groups: a control group (25 μL PBS daily), a PM2.5 exposure
group (100 μg/25 μL PM2.5 daily), a PAO1+PM2.5 group
(5× 106 CFU PAO1 and 100 μg/25 μL PM2.5 daily), and a
PAO1+PM2.5+HBD1 group (5× 106 CFU PAO1, 100μg/

25 μL PM2.5, and 1 μg/25 μL HBD1 daily). Mice received
intratracheal instillation of the PM2.5 solution for 6 days or
were infected with PAO1 via intratracheal instillation on the
sixth day, as per the assigned group. Bronchoalveolar lavage
fluid (BALF) and lung tissues were collected post-euthanasia.
Survival was monitored at 2 hr intervals for the initial 50 hr
and subsequently every 3−4 hr for the remaining 50 hr to
calculate survival rates. Euthanasia was performed via an
overdose of intraperitoneal avertin, ensuring deep anesthesia
followed by exsanguination to confirm euthanasia.

To assess the impact of MAPK/NF-κB pathway inhibitors
on bacterial invasion and HBD1 expression in the PM2.5+
PAO1 animal model, the study was divided into several groups:
PAO1(5×106CFU) infection+PM2.5 (100μg/25μl/day) expo-
sure, U0126 (10mg/kg)+PAO1(5× 106CFU) infection and
PM2.5 exposure, SB203580 (10mg/kg)+PAO1 (5×106CFU)
infection and PM2.5 exposure, SP600125 (10mg/kg)+PAO1
(5×106CFU) infection and PM2.5 exposure, and BAY11-
7082 (10mg/kg)+PAO1 (5×106CFU) infection and PM2.5
exposure. The study measured bacterial invasion in the lungs
of mice and the expression levels of HBD1.

2.6. Hematoxylin and Eosin (H&E) and Immunohistochemical
Staining of Lung Tissues. The left lung lobe of C57BL/6J
mice was excised, fixed in 4% paraformaldehyde, dehydrated,
embedded in paraffin, and sectioned into 4 μm slices. These
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FIGURE 1: Expression of HBD1 at different conditions within the cell model. (a) ELISA was used to detect the levels of secretory HBD1 in the
supernatants of HBE cell cultures in the control, PM2.5, PAO1, and PM2.5+PAO1 groups (n= 3). (b) RT–qPCR was performed to detect
the mRNA levels of HBE in the control, PM2.5, PAO1, and PM2.5+PAO1 groups of HBE cells (n= 3). (c) Cell lysate smear plate colony
count (n= 3). (d) RT–qPCR was performed to detect the mRNA levels of A549 in the control, PM2.5, PAO1, and PM2.5+PAO1 groups of
A549 cells (n= 3). (a, b, d) ∗P <0:05, ∗∗P <0:01, ∗∗∗P <0:001 vs. control, &&&P <0:001 PAO1 vs. PAO1+PM2.5 (one-way ANOVA).
(c) ∗∗∗P <0:001 vs. PAO1, &&&P <0:001 PAO1+PM2.5 vs. HBD1+PAO1+PM2.5 (one-way ANOVA).
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sections were then stained with H&E using the HE reagent
(Cat. No. C0105S, Beyotime, China). For immunohistochem-
istry (IHC) staining, sections were incubated with specific
antibodies and developed with DAB (Cat. No. P0202, Beyo-
time, China). Microscopic evaluation of the sections was con-
ducted, with scoring based on the immuno-reactive score
(IRS) criteria. Two experienced pathologists independently
performed blinded scoring on three sections per sample,
and the average of these scores was recorded as the final
lung tissue damage score and IRS.

2.7. Enzyme-Linked Immunosorbent Assay (ELISA). BALF
was taken and the experiment was performed according to
the ELISA kit protocol (Cat. No. RX101515H, Ruixin Biotech
Co., China), and the OD450 value was measured with a
microplate reader.

2.8. Plate Count. Cells were dissociated using Trypsin-EDTA
(Cat. No. 25200056, Gibco, USA) at 37°C for 15min. The cell
lysate was subjected to gradient dilution, followed by inocu-
lation on P. aeruginosa-selective culture plates. Concur-
rently, the left lung lobe was excised from C57BL/6J mice,
sectioned, and homogenized before being transferred into
Eppendorf tubes. The samples were centrifuged at low speed
for 3min, and the supernatant was similarly diluted and
inoculated onto culture plates. These plates were then incu-
bated at 37°C overnight, after which the bacterial colonies
were enumerated.

2.9. Confocal Microscopy. Treated cells were fixed in 4%
paraformaldehyde and subsequently incubated with DiL
(Cat. No. C1036, Beyotime, China) in the dark. Following
this, cells were stained with DAPI (Cat. No. C1002, Beyo-
time, China) and examined under a confocal microscope
(Leica, Germany).

2.10. Reverse Transcription–Quantitative Polymerase Chain
Reaction (RT–qPCR). RNA was isolated using TRIzol reagent
(Cat. No. 15596026, Thermo Fisher Scientific Inc, USA). The
extracted RNA was then utilized for cDNA synthesis employing
the PrimeScript™ RT reagent Kit (Cat. No. RR037A, Takara
Bio, Japan). RT–qPCR was conducted with SYBR® Green
(Roche Group, Switzerland) on a Step One Plus Real-Time
PCR System. Gene expression levels were quantified and ana-
lyzed based on the 2−ΔΔCT method. The RT–qPCR primers
used are as follows: mice GAPDH forward, AGGTCG
GTGTGAACGGATTTG, mice GAPDH reverse, GGGGTCGT
TGATGGCAACA, mice DEFB1 forward, AGGTGTTG
GCATTCTCACAAG, mice DEFB1 reverse, GCTTATCTGGT
TTACAGGTTCCC, human GAPDH forward, CGGATTTG
GTCGTATTGGG, human GAPDH reverse, CTCGCTCCTG
GAAGATGG, human DEFB1 forward, ATGAGAACTTCCTA
CCTTCTGCT, and human DEFB1 reverse, TCTGTAACA
GGTGCCTTGAATTT.

2.11. Western Blot. Tissues and cells were lysed using RIPA
buffer (Cat. No. P0013B, Beyotime, China) supplemented
with phosphatase and protease inhibitors (Cat. No. P1005,
Beyotime, China). Proteins were quantified using a BCA kit

(Cat. No. P0010, Beyotime, China) and then separated by
SDS-PAGE (Cat. No. PG113, Epizyme Biomedical Technol-
ogy Co., China) before being transferred to PVDF mem-
branes (Millipore, USA). These membranes were incubated
with primary antibodies against iκB (39 kDa), P65 (65 kDa),
P44 (42–44 kDa), P38 (40 kDa), JNK (46–55 kDa) (Cat. No.
9926 T, 8242 T, 4814 T, Cell Signaling Technology, Inc.,
USA), β-actin (45 kDa), and Lamin-B (67 kDa) (Cat. No.
sc-374015, sc-47778, Santa Cruz Biotechnology, Inc., USA),
diluted in a 3% bovine serum albumin (BSA) solution at a 1 :
1,000 ratio. Subsequently, they were incubated with the cor-
responding secondary antibodies. Protein bands were visual-
ized using Super ECL Plus detection reagents (Cat. No.
H31500, Tianjin Tiandi Renhe Biotech Co., China) and
recorded using a chemiluminescence imaging analysis sys-
tem (Tanon 5200, YuanPingHao Biotech, China).

2.12. Drug Usage. Solution preparation is as follows: PM2.5
was prepared at a concentration of 50mg/mL using sterile
PBS, vortexed thoroughly, and stored in a tinfoil-sealed
refrigerator at 4°C, shielded from light. HBD1 (Cat. No.
NBP2-34906-5 μg, Novus Biologicals, LLC, USA) was dis-
solved in sterile water containing 0.02% acetic acid and
0.4% BSA to create a 1mg/mL storage solution, and stored
at −20°C. Pathway inhibitors were prepared as a 0.1 μM
stock solution in DMSO and stored at −20°C in a tinfoil-
sealed container.

For the animal groups, the control group received 25 μL
of PBS solution daily via airway administration. Mice in the
PM2.5 group were administered 25 μL of a 4 g/L PM2.5 solu-
tion daily. The bacterial solution was administered at a dose
of 5× 106 CFU. The HBD1 group received 25 μL of a 0.04 g/L
HBD1 solution daily. The inhibitor group received a dose of
10mg/kg.

In both animal and cellular experiments, commonly used
cell inhibitors include U0126, SP600125, SB203580, and
BAY11-7082 (Cat. No. abs810003-25mg, abs810008-50mg,
abs810002-10mg, abs810013-25mg, Absin (Shanghai) Bio-
technology Co., China).

2.13. Data Sources. The mRNA sequencing data reported in
this article were sourced from the study by Wang et al. [45].
Differentially expressed genes (DEGs) were identified based
on a fold change threshold of ≥1.5 and an adjusted p-value of
<0.05. The functional and pathway associations of these
DEGs were analyzed using the Gene Ontology (GO, https://
www.geneontology.org) and Kyoto Encyclopedia of Genes
and Genomes (KEGG, https://www.genome.jp/kegg) data-
bases. Data visualization was primarily conducted via the
SangerBox website (https://www.sangerbox.com).

2.14. Statistical Methods. Data analysis was performed using
GraphPad Prism 8 software (GraphPad Software Inc.), and
results were expressed as meanÆ standard deviation. The
Student’s t-test was employed for comparisons between
two groups. For multiple data groups, one-way ANOVA
followed by Newman–Keuls multiple comparisons test was
utilized. Survival analysis was conducted using the log-rank
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test. A p-value of <0.05 was considered indicative of the
statistical significance.

3. Results

3.1. Effects of PM2.5 on Bacterial Invasion. Upon 24-hr cocul-
ture with varying concentrations of PM2.5, morphological
changes in cells were observed microscopically. Increased entry
of PM2.5 particles into HBE cells was noted, with a rise in the
number of PM2.5-engulfed cells and a decrease in overall cell
count as PM2.5 concentration increased (Figure 2(a)–2(f)).
After 6 hr of coculture, no significant cytotoxicity was observed
in HBE cells at PM2.5 concentrations below 300μg/mL, as
indicated by CCK-8 assays. However, cell viability decreased
substantially after 12 hr at PM2.5 concentrations exceeding
100 μg/mL (Figure 2(g)). We established PAO1-infected HBE
cell models with different multiplicities of infection (MOI) and
PM2.5 concentration gradients to assess the impact of PM2.5
on PAO1 invasion. A notable increase in viable bacteria from
cell lysates was observed at PM2.5 concentrations of 50μg/mL
or higher compared to the control group (Figure 3(a)); in the
MOI 10 group, the number of viable bacteria in HBE was
concentration-dependent on PM2.5. The number of colonies
from HBE lysates also increased significantly at higher PM2.5
concentrations compared to the control group (Figure 3(b)).
These findings suggest that PM2.5 exposure enhances P. aeru-
ginosa infection.

In vivo, control group mice exhibited glossy white lung
tissues without noticeable bleeding or granularity, while
PM2.5-exposed lungs appeared dull with slight hemorrhage.
Lungs from PAO1-infected and PAO1+PM2.5 groups
showed pronounced edema and hemorrhage; the PAO1+
PM2.5 group exhibited more extensive hemorrhage, reddish-
black lungs, and severe pneumonia symptoms such as pleural
adhesion (Figure 3(c)). These results indicate that PM2.5 also
exacerbates P. aeruginosa-induced lung injury. Additionally,
we performed H&E staining on mouse lung tissues. The
PM2.5, PAO1, and PAO1+PM2.5 groups all exhibited vary-
ing degrees of inflammatory cell infiltration, alveolar lumen
exudation, slight hemorrhage, alveolar wall thickening, and
vasodilation. The PAO1+PM2.5 group was the most severe,
with over 90% of the field of view showing hyperemia, bleed-
ing, collapsed alveolar structure, and diffuse inflammatory
cell infiltration. Contrastingly, control mice had more intact
alveoli with minimal fluid exudation and inflammatory cell
infiltration (Figure 3(d)). Pathological scoring of H&E-
stained lung tissues quantified the inflammation, showing
significantly higher scores in all experimental groups com-
pared to the control group, with the PAO1+PM2.5 group
exhibiting the most remarkable increase (Figure 3(e)).

3.2. PM2.5 Downregulates HBD1 Expression In Vitro. We
evaluated HBD1 secretion levels in supernatants from con-
trol, PM2.5, PAO1, and PM2.5+PAO1 groups. The results
(Figure 1(a)) revealed a significant increase in HBD1 levels in
the PAO1 group compared to the control, which was inhib-
ited by PM2.5 stimulation. HBD1 levels in the PM2.5+
PAO1 group were lower than the other groups. Additionally,
DEFB1 (Defensin Beta 1) mRNA levels in HBE cells were

assessed using RT–qPCR, with results (Figure 1(b)) aligning
with those from ELISA.

To determine if exogenous HBD1 could mitigate PM2.5-
exposed HBE cells’ predisposition to P. aeruginosa, we added
HBD1 at a concentration of 10,000 ng/mL to the PAO1+
PM2.5 HBE cells. Intracellular viable bacteria were quanti-
fied using the plate count method. Results (Figure 1(c)) indi-
cated a significant reduction in intracellular viable bacteria in
the exogenously administered HBD1 group compared to the
PAO1+PM2.5 group.

3.3. PM2.5 Downregulates HBD1 Expression In Vivo. Lung
tissues were immunohistochemically stained (Figure 4(a)).
In the control group, HBD1 was primarily expressed in air-
way epithelial cells and to a lesser extent in the alveolar
epithelial cells. The PM2.5 group exhibited a significant
decrease in HBD1 levels. The PAO1 group had the highest
abundance of HBD1-expressing cells, with extensive HBD1
presence. The PAO1+PM2.5 group had more HBD1
expression in airway and alveolar epithelium than the con-
trol group. Quantitative IHC scoring showed higher scores in
the experimental group than in the control group, with the
highest score in the PAO1 group (Figure 4(b)). This suggests
that PAO1 stimulates HBD1 levels in lung epithelial tissues
in mice, but PM2.5 exposure reduces these elevated levels.

BALF was collected from mice, and the level of secretory
HBD1 in the lungs was assessed using ELISA. The results
(Figure 4(c)) showed significantly lower secretory HBD1 in
the PM2.5 and PAO1+PM2.5 groups than in the control
and PAO1 groups. Additionally, total mRNA from mouse
lung tissues was extracted using TRIzol reagent and analyzed
via RT–qPCR. The results (Figure 4(d)) were consistent with
those from ELISA.

The modeling flowchart is presented (Figure 4(e)). The
survival curve showed a statistically significant decrease in
the PAO1 and PAO1+PM2.5 groups compared to the con-
trol group (Figure 4(f ), Table 1), and a significant improve-
ment in the PAO1+PM2.5+HBD1 group compared to the
PAO1+PM2.5 group. The survival rates primarily declined
in the first 50 hr of observation, with the PAO1 group’s sur-
vival rates around 50%–60%, while the PAO1+ PM2.5
group’s rates dropped below 50%, showing a statistically
significant difference. Exogenous HBD1 administration
notably improved survival rates from below 50% to around
75% and significantly reduced pathological scores in the
PAO1+PM2.5 group (Figure 3(e)).

To assess viable bacteria in murine lung tissues, lung
tissues were homogenized and plated. Results (Figure 4(g))
demonstrated that PM2.5 exposure increased the number of
viable PAO1 bacteria in murine lungs, while airway HBD1
administration inhibited bacterial proliferation.

3.4. Effect of PM2.5 on MAPK and NF-κB Pathways. mRNA
high-throughput sequencing of PM2.5-exposed HBE cells
was performed. Results (Figure 5(a)) showed that 666 genes
were upregulated while 817 were downregulated. KEGG
metabolic pathway enrichment analysis (Figures 5(b) and
5(c)) revealed that upregulated genes were closely linked to
cancer, MAPK, and NF-κB pathways. This suggests that
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genes related to the MAPK pathway and most NF-κB
pathway-related genes were activated, likely contributing to
the downregulation of HBD1.

Proteins from PM2.5-exposed HBE cells were extracted
and analyzed for MAPK and NF-κB pathway-related protein
expression using western blot. Results (Figure 5(d)) indicated
that the NF-κB pathway-related protein, iκB, was downregu-
lated in the PAO1 and PAO1+PM2.5 groups, while no sig-
nificant change was observed in P65 expression. MAPK
pathway-related proteins were upregulated in the PM2.5,
PAO1, and PAO1+PM2.5 groups compared to the control

group, with more pronounced upregulation in the PAO1 and
PAO1+PM2.5 groups than in the PM2.5 group. The PAO1
+PM2.5 group showed less upregulation of P44 and JNK
compared to the PAO1 group. These results demonstrate
that PM2.5 activated the MAPK and NF-κB pathways.

3.5. PM2.5 Downregulates HBD1 Expression through MAPK/
NF-κB Pathway In Vitro. Administration of MAPK pathway
inhibitors (SB203580/SP600125) and the NF-κB pathway
inhibitor BAY11-7082 significantly reduced CFU in plate
colony counts from cell lysates (Figure 6(a)).
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TABLE 1: P-value after log-rank statistics for survival data for each group of mice (n= 10, log-rank test).

Control group Treatment group Log-rank P-value

Blank PAO1 0.005
Blank PAO1+PM2.5 <0.001
Blank PAO1+PM2.5+HBD1 0.065
PAO1+PM2.5 PAO1+PM2.5+HBD1 0.004
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RT–qPCR results (Figure 6(b)) suggested that DEFB1
mRNA expression was significantly elevated inMAPKpathway-
inhibited groups (SP600125 and SB203580). In contrast,
treatment with the MAPK pathway inhibitor U0126 and
NF-κB pathway inhibitor BAY11-7082 did not result in ele-
vated DEFB1 mRNA levels.

Laser confocal microscopy revealed a remarkable decrease
in intracellular viable bacteria in MAPK pathway-inhibited
groups (U0126/SB203080/SP600125) and NF-κB pathway-
inhibited groups (BAY11-7082) compared with the control
group. The results (Figures 6(c) and 6(d)) showed a reduction
in intracellular PAO1 in all groups. Therefore, we concluded
that PM2.5 downregulates DEFB1 expression through the
MAPK/NF-κB pathway in vitro.

3.6. PM2.5 Downregulates HBD1 Expression through MAPK/
NF-κB Pathway In Vivo. The modeling flowchart is depicted
in Figure 7(a). Analysis of the survival curve indicated a
statistically significant enhancement in survival rates for
the groups treated with SP600125 and BAY11-7082 com-
pared to the control group (Figure 7(b), Table 2). Further-
more, the PAO1+PM2.5+HBD1 group exhibited a marked
improvement in survival compared to the PAO1+PM2.5
group.

RT–qPCR analysis of lung tissue from mice treated with
inhibitors showed an increase in DEFB1 mRNA expression

across all MAPK/NF-κB-inhibited groups. Notably, this upregu-
lation was statistically significant in the U0126, SB203580, and
BAY11-7082 groups relative to the control group (PM2.5+
PAO1; Figure 7(c)).

The HBD1 concentration in BALF was significantly
higher in the MAPK inhibitor groups (U0126/SB203580/
SP600125) compared to the control group (PM2.5+PAO1)
as illustrated in Figure 7(d). However, the increase in HBD1
secretion was not significant in the NF-κB inhibitor-treated
group.

IHC staining of lung tissues from mice treated with the
inhibitors demonstrated that IRC were elevated in all inhibi-
tor groups compared to the control group (PM2.5+PAO1).
The increase was statistically significant in the U0126,
SB203580, and BAY11-7082 groups, as shown in Figure 7(e).

4. Discussion

Air pollution, with PM2.5 as a key component, has been
acknowledged globally as a critical environmental issue
[46]. PM2.5 exposure is implicated in the etiology of numer-
ous diseases [47–49].

High concentrations of PM2.5 in the environment can
disrupt the balance of the human respiratory tract micro-
biota, altering the richness, evenness, and composition of
the microbiome in mice’s respiratory tracts [23, 50] and
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FIGURE 5: mRNA-seq results of KEGG pathway enrichment analysis and western blot results. (a) mRNA sequencing results of cells exposed to
PM2.5, (a1) heat map and (a2) volcano map (n= 3). (b) KEGG pathway enrichment analysis. Upregulated genes are mainly tumor, MAPK,
and NF-κB pathway-related genes (n= 3). (c) Signaling pathway related genes change: (c1) MAPK pathway and (c2) NF-κB pathway (n= 3).
(d) Western blot detected the expression of MAPK pathway and NF-κB pathway proteins, and the experimental groups were control group,
PM2.5 group, PAO1 group, and PAO1+PM2.5 group. Among them, iκB and P65 were NF-κB pathway proteins, P44, P38, and JNK were
MAPK pathway proteins, and β-actin and lamin-B were internal reference proteins (n= 3).
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increasing susceptibility to pathogenic microorganisms like
pneumococcus [51]. High PM2.5 levels also directly enhance
the growth rate of opportunistic pathogens such as Escher-
ichia coli and P. aeruginosa, significantly increasing the pro-
duction of their biofilms and altering the virulence of these

pathogens [52]. Our study results show that in the PM2.5-
exposed in vitro model, the number of live P. aeruginosa per
airway epithelial cell is higher compared to the unexposed
group. In vivo models reveal more severe lung damage in
PM2.5-exposed mice than in unexposed ones, with greater
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FIGURE 6: Changes in bacterial invasiveness in the PM2.5+PAO1 cell model in the presence of pathway inhibitors. (a) Cell lysate dilution
coating plate colony count (n= 3). (b) Detection of DEFB1 mRNA expression in lung tissue homogenates by RT–qPCR (n= 3). (c) Laser
confocal microscopy photographed intracellular live bacterial infection in each group under the effect of inhibitors. Yellow arrows indicate
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lung injury and higher numbers of viable bacteria per unit lung
tissue, and lower survival rates after P. aeruginosa infection. This
is consistent with the previous findings, revealing that PM2.5
exposure increases the invasiveness of P. aeruginosa on airway

epithelia, exacerbates lung damage caused by infection, and
reduces survival time after infection.

There are many reported mechanisms by which PM2.5
increases bacterial invasion, such as impairing macrophage
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FIGURE 7: Mouse model and HBD1 expression under inhibitor action. (a) Flowchart of the animal model. (b) Survival curves in each group
under the effect of inhibitors. (c) Detection of DEFB1 mRNA expression in lung tissue homogenates by RT–qPCR (n= 6). (d) ELISA for
secreted HBD1 in the supernatant of alveolar lavage fluid (n= 6). (e) IHC scoring of lung tissue in mice (n= 6). ∗P <0:05, ∗∗P <0:01,
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function, reducing lung natural killer cells, and activating
chronic inflammation in the lungs [24–31, 53]. However,
the impact of PM2.5 exposure on the expression of defensins
is inconsistent [54, 55]. Our study found that after HBE cells
are exposed to PM2.5, HBD1 is reduced at all expression
levels. PM2.5-exposed airway epithelial cells show a higher
number of invasive live bacteria intracellularly compared to
the unexposed infection group. Administering exogenous
HBD1 improves the situation of bacterial invasion in the
in vitro model post-PM2.5 exposure, and in the mouse
model, not only is the invasion improved, but lung injury
is reduced, and survival time postinfection increases. HBD1
is a key component of innate immunity, regulating the com-
position of the body’s microbiota without inducing antibiotic
resistance like antibiotics do [56]. Although HBD1 is consti-
tutively expressed in tissues, its expression level is regulated
by various factors. In colorectal cancer models, HBD1
expression is suppressed [57] and can be enhanced by
administering immune boosters [58]. HBD1 levels are also
affected by the body’s infection status, with high expression
in urethral and gingival epithelial cells during the early
innate immune response to viral and bacterial infections
[59, 60]. Our study reveals that PM2.5 exposure downregu-
lates HBD1 expression, thereby increasing the invasiveness
of P. aeruginosa. Furthermore, after PM2.5 exposure fol-
lowed by P. aeruginosa contact, HBD1 expression cannot
return to levels seen in simple P. aeruginosa infections.
This implies that under real environmental conditions,
with PM2.5 exposure, the immune processes represented
by HBD1 are suppressed, making it more difficult to control
bacterial invasion in the respiratory tract.

Studies have shown that in vitro exposure to soluble
PM2.5 extracts can reduce the vitality of airway epithelial
cells and increase apoptosis, with soluble PM2.5 extracts
inducing oxidative stress and enhancing pro-inflammatory
factor expression by activating the NF-κB and MAPK signal-
ing pathways [61]. PM2.5 can also activate the ATR-CHEK1/
CHK1 pathway in airway epithelia, leading to TP53-depen-
dent autophagy and VEGFA production, activating chronic
inflammation in the airway epithelia [62]. Our study indi-
cates that in the PM2.5-exposed in vivo model, MAPK path-
way proteins P44 and JNK are upregulated, while the NF-κB
pathway inhibitory protein iκB is downregulated. Adding
MAPK and NF-κB pathway inhibitors reduces the number
of invasive live bacteria in single cells in the in vitro model
post-PM2.5 exposure compared to groups without pathway
inhibitors, with improved invasion situations, reduced lung
injury, and increased survival time postinfection in in vitro
experiments with inhibitors. Qian et al.’s [63] study

demonstrated that cigarette smoke can downregulate
HBD1 levels in oral mucosal epithelial cells by activating
the NF-κB pathway, consistent with our findings. Thus, we
reveal for the first time that PM2.5 exposure downregulates
HBD1 in the respiratory tract, predisposing cells to bacterial
invasion via MAPK and NF-κB pathway activation.

Our study, however, has limitations: (1) It focuses pri-
marily on HBD1 levels in HBE cells, with no significant
PM2.5-induced changes observed in alveolar epithelial cells
(A549), and the effects on other cell types remain unex-
plored. (2) We used P. aeruginosa, a common bacterium in
hospital-acquired pneumonia (HAP), but the effects of
PM2.5 on other pathogens, like Streptococcus pneumoniae
prevalent in community-acquired pneumonia (CAP), war-
rant further investigation. (3) Our research lacks direct clini-
cal evidence to support our findings.

Despite these limitations, this study illuminates the path-
ogenesis and potential clinical interventions for respiratory
infections related to PM2.5 exposure. It provides a theoreti-
cal foundation for using HBD1 as a potential antimicrobial
agent against PM2.5-induced infections, facilitating the
development of therapeutic strategies targeting MAPK and
NF-κB pathways, and offering experimental insights into the
mechanisms for mitigating airway inflammation and restor-
ing mucosal immune functions.

5. Conclusions

In conclusion, this study confirmed the toxic effects of PM2.5
and established that PM2.5 enhances P. aeruginosa bacterial
invasion by diminishing HBD1 levels, a process that can be
counteracted with exogenous HBD1. Furthermore, our find-
ings revealed that PM2.5 suppresses DEFB1 expression
through the activation of MAPK and NF-κB pathways. Addi-
tionally, inhibiting these pathways was shown to elevate
HBD1 levels and reduce bacterial invasion.
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TABLE 2: P-value after log-rank statistics for survival data for each group of mice (n= 10, log-rank test).

Control group Treatment group Log-rank P-value

PAO1+PM2.5 U0126+PAO1+PM2.5 0.062
PAO1+PM2.5 SP600125+PAO1+PM2.5 0.016
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PAO1+PM2.5 BAY117082+PAO1+PM2.5 0.029
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