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The immunological signatures driving the severity of coronavirus disease 19 (COVID-19) in Ghanaians remain poorly understood.
We performed bulk transcriptome sequencing of nasopharyngeal samples from severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2)-infected Ghanaians with mild and severe COVID-19, as well as healthy controls to characterize immune signatures
at the primary SARS-CoV-2 infection site and identify drivers of disease severity. Generally, a heightened antiviral response was
observed in SARS-CoV-2-infected Ghanaians compared with uninfected controls. COVID-19 severity was associated with immune
suppression, overexpression of proinflammatory cytokines, including CRNN, IL1A, S100A7, and IL23A, and activation of pathways
involved in keratinocyte proliferation. SAMD9L was among the differentially regulated interferon-stimulated genes in our mild and
severe disease cohorts, suggesting that it may play a critical role in SARS-CoV-2 pathogenesis. By comparing our data with a publicly
available dataset from a non-African (Indians) (GSE166530), an elevated expression of antiviral response-related genes was noted in
COVID-19-infected Ghanaians. Overall, the study describes immune signatures driving COVID-19 severity in Ghanaians and
identifies immune drivers that could serve as potential prognostic markers for future outbreaks or pandemics. It further provides
important preliminary evidence suggesting differences in antiviral response at the upper respiratory interface in sub-Saharan
Africans (Ghanaians) and non-Africans, which could be contributing to the differences in disease outcomes. Further studies using
larger datasets from different populations will expand on these findings.

1. Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
emerged to be a significant public health concern driving the
ongoing coronavirus disease 19 (COVID-19) pandemic [1].
Beyond the conventional health complications, infection with
SARS-CoV-2 was also associated with psychological alterations,
including heightened levels of anxiety, stress, and depression,

even in hospitalized patients, and this was particularly prevalent
during the initial wave of the pandemic [2, 3]. SARS-CoV-2
utilizes the angiotensin-converting enzyme 2 as a receptor for
host cell tropism, which is mainly enhanced by the transmem-
brane protein TMPRSS2 [1, 4]. SARS-CoV-2 infection occurs
primarily through the upper respiratory interface, and airway
immunity is essential in determining the fate of SARS-CoV-2
infection [5]. COVID-19 is characterized by varying degrees of
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clinical phenotypes. The majority of SARS-CoV-2 infections
remain asymptomatic. Among symptomatic cases, the most
common symptoms include fatigue, cough, body pain, weakness,
loss of appetite, and fever [6]. About 14%–18% of symptomatic
COVID-19 cases progress to a severe clinical phenotype charac-
terized by an aberrant inflammatory response associated with
cytokine storm-mediatedmultiorgan failure and acute respiratory
distress syndrome, ultimately leading to COVID-19-associated
death [1, 6, 7]. Though other factors may be involved, the
differential host gene expression, particularly in relevant tis-
sues, can influence the immune response against infectious
pathogens, including SARS-CoV-2. Airway epithelial cells are
directly infected by SARS-CoV-2, rendering them essential
for identifying immune signatures driving COVID-19 clinical
phenotypes. A large body of transcriptomic data describes
immune signatures mediating SARS-CoV-2 susceptibility
and COVID-19 clinical phenotypes. For instance, using naso-
pharyngeal swabs (NS), Jain et al. [8] reported a significant
association between overexpression of CCL2, CXCL12, IL10,
and COVID-19 severity. In a similar study conducted on 36
COVID-19-positive Indian patients, commonly upregulated
genes involved in innate immune response were reported [9].
Additionally, marked expression of Th1 chemokines CXCL9/11
and antiviral genes, including IFIT1 and OAS gene isoforms,
was associated with enhanced host antiviral response [10].
Generally, all these studies found an association between a
compromised antiviral response and uncontrolled inflamma-
tory response mediated by hyperactivation of JAK-STAT,
NF-κB, and TGF-β signaling pathways through overexpression
of proinflammatory cytokines, including IL6, IL10, IL23A,TNF-α,
and IL18, and COVID-19 severity [8–13]. Though some differ-
ences exist due to differences in tissue type, studies have also
demonstrated that NS and blood samples share common
immune response pathways [14, 15]. Although these studies
have shed important insights into SARS-CoV-2 pathophysiol-
ogy and pathogenic mechanisms, they were primarily con-
ducted in non-Africans. Africans are more genetically diverse
than non-Africans, and West Africans, in particular, have
a high infectious disease burden [16]. Compared with non-
Africans and Black African Americans, marked differences in
COVID-19 clinical outcomes were observed in sub-Saharan
Africans, particularly West Africans [17–19]. There is currently
no publicly available bulk host transcriptomic data from sub-
Saharan African populations, especially West Africans. that
describe the transcriptome profile at the primary site of SARS-
CoV-2 infection. It is, therefore, essential to investigate the
differential gene expression in the upper airway epithelial
tissue of SARS-CoV-2-infected West Africans underpinning
the varying clinical phenotypes.

Ghana is a sub-Saharan African country that reported
considerably higher COVID-19 cases among other African
countries. Available epidemiologic data reports about 171,600
SARS-CoV-2 infections in Ghana (https://www.afro.who.int/
health-topics/coronavirus-covid-19), albeit still lower than
seroprevalence studies suggest [20, 21]. Though most of the
reported COVID-19 cases are asymptomatic or mild, about
0.9% (1,422) of these infections resulted in COVID-19-associated
deaths in Ghanaians. The underlying immunological signatures

mediating COVID-19 severity in Ghanaians remain elusive.
This study investigated the transcriptomic differences in the
upper respiratory interface of SARS-CoV-2-infected Gha-
naians with mild and severe clinical phenotypes to character-
ize immune signatures at the primary SARS-CoV-2 infection
site and identify drivers of disease severity. We further com-
pared our data with a publicly available dataset from a SARS-
CoV-2-infected non-African population to determine if there
are differences in antiviral response.

2. Materials and Methods

2.1. Study Population.The study population (n= 75) included
52 unvaccinated SARS-CoV-2 infected and 23 uninfected
Ghanaians from whom NS samples were collected following
informed consent at the Ridge Hospital Accra, Ghana.
COVID-19-related symptoms accompanied by a positive
SAR-CoV-2 polymerase chain reaction (PCR) test were the
criteria for inclusion into our COVID-19 disease cohort,
while a negative SARS-CoV-2 PCR result and no symptoms
of respiratory infection were used as criteria for inclusion as
healthy controls. Samples from the SARS-CoV-2-infected
individuals were collected at an acute stage of the disease.
Clinicians classified COVID-19-infected patients as severe
or mild cases according to the disease case definitions. Con-
firmatory tests for SARS-CoV-2-specific genetic material by
real-time reverse transcription-quantitative PCR were per-
formed at the West African Centre for Cell Biology of Infectious
Pathogens (WACCBIP), University of Ghana. The clinical record
was available only for a few study participants (Supplementary 1).

2.2. RNA Extraction. RNA was extracted from 300 µl of NS
samples using the Quick-RNA Miniprep Plus kit (Zymo
Research) following the manufacturer’s instructions. Briefly,
samples were lysed for 30min, and nucleic acid was precipi-
tated using absolute ethanol. Sample enrichment for RNA
was archived by DNAse treatment followed by column puri-
fication. Isolated RNA was eluted in nuclease-free water, and
only RNA samples with A260/A280 ratio >1.8 and concen-
trations above 1 ng/µl were considered for library prepara-
tion, as previously examined [22].

2.3. Library Preparation and mRNA Sequencing. The NEB-
Next® Ultra II Directional RNA Library Prep Kit (#7760 L)
for Illumina (New England Biolabs) was used for sequencing
library construction according to manufacturers’ instruc-
tions. Briefly, oligo dT-bound beads were used to isolate
mRNA, followed by fragmentation for 15min at 94°C and
complementary DNA (cDNA) synthesis. Sequencing librar-
ies were then constructed and amplified using the NEBNext
multiple oligos, following manufacturers’ instructions. Qubit
and TapeStation were used to determine library concentra-
tion and size using the high-sensitivity DNA kits. Libraries
were generated and sequenced pair-end (150 cycles× 2) on
the Illumina Novaseq 6000 system at the Scripps Research
Institute using the Novaseq SP reagent kit. Output read files
were adapter trimmed and demultiplexed using bcl2fastq
v2.20.0.422 (Illumina) to generate unique FASTQ files per
sample, with near zero mismatches.
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2.4. Differential Gene Expression Analysis. FASTQ files were
pseudo-aligned to an indexed genome generated from the
human cDNA fasta sequence (GRCh38) using Kallisto v0.48.0
[23]. Only samples with >5 million pseudo-aligned human
reads (Supplementary 1) were used for downstream analysis
in RStudio v4.2.1. To control for gender and age in the analy-
sis, the median age of participants, 46.5 years (17–94 years),
and DDX3Y gene (Y-linked) expression were used to infer
participant age and gender, respectively, when absent in the
metadata. Transcript IDs were mapped to human genes using
an annotated human reference genome (hg38) available in
biomaRt v1 [24]. Transcript counts were normalized, and
differences in gene expression between groups, while control-
ling for gender and age, were examined using the likelihood
ratio test (lrt) and Wald test (wt) in Sleuth v0.27.3 [25]. The
false discovery rate was corrected using the Benjamin–
Hochberg test, and gene expression differences with an
adjusted p-value <0.05 were considered statistically signifi-
cant. A heatmap of the top differentially expressed genes
(DEGs) was generated using the Bioconductor package,
ggplot2 version 3.3.6 [26]. Volcano plots were generated using
EnhancedVolcano package version 1.14.0 [27], and genes
with p-value< 0.05 and log2 fold change (log2fc) >1 were
reported as upregulated, while those with log2fc <0 were
reported as downregulated. GraphPad Prism v9.4.1 was used
to construct the violin plots with log-transformed expression
values of selected genes, and the significant level was deter-
mined using the unpaired t-test. ClusterProfiler package
v 4.8.2 [28] was used in R version 4.3.1 software for gene set
enrichment (GSE) analysis of DEGs to identify associated
biological pathways. Pathways with adjust-value< 0.05 were
reported.

3. Results

After quality control steps, 64 samples (n= 64) were ana-
lyzed to characterize SARS-CoV-2-induced immune signa-
tures in Ghanaians. Age and gender were self-reported by
study participants or, in some cases, by a close relative. The
median age of participants, 46.5 years (17–94 years), and
DDX3Y gene (Y-linked) expression were used to infer par-
ticipant age and gender, respectively, when absent in the
metadata. Females were slightly more represented in the
study population at ∼53.1%. Thirty-six individuals (18 males
and 18 females) with a median age of 46 years had mild
COVID-19. The median age for severe cases in the study
population was 79.5 years, and severity was higher in females
(4 (66.7%)) compared with men in our study cohort
(Table 1). Hypotension was reported in one of the severe
cases, while HIV infection, stroke, and hyperglycemia were
reported for some individuals with mild COVID-19 for
whom clinical records were available (Supplementary 1).

3.1. Heightened Antiviral Response in the Upper Respiratory
Interface of SARS-CoV-2-Infected Ghanaians. To define immune
pathways activated during COVID-19 infection in Gha-
naians, differences in gene expression in upper respiratory
airway epithelial tissue from unvaccinated, uninfected con-
trols and COVID-19-infected Ghanaians (Table 1) were

investigated via bulk RNA sequencing of NS. On average,
79% of sequence reads were successfully mapped to the
human transcriptome (hg38) (Supplementary 1). The likeli-
hood ratio test (lrt) was implemented in the Sleuth package
v0.27.3 to identify DEGs [25]. As expected, there was a
marked difference in the expression of some immune response
genes in the upper respiratory interfaces of COVID-19-infected
individuals compared with uninfected controls. We found
1,922 host genes to be differentially expressed in the infected
cohort compared with uninfected controls, q-value< 0.05,
of which 508 and 1,414 were upregulated (log2fc> 1) and
downregulated (log2fc<−1), respectively (Figure 1(b), Sup-
plementary 2 and 3). Most upregulated genes in the SARS-
CoV-2-infected Ghanaian cohort were interferon-stimulated
genes (ISGs) such as BST2, ISG15, OAS1, IRF7, IF16, IFIT1,
IFTIM, SAMD9L, CCL8, RSAD2, CCL2, CXCL10, and IFI44L
(Supplementary 2), known to interfere with viral replication
[29–31]. Pathways and processes involved in antiviral immune
response, including cytokine-mediated signaling pathway, regu-
lation of adaptive immune response, and immune response
process, were significantly activated in the COVID-19-infected
cohort (Figure 2(a)), suggestive of a heightened antiviral immune
response [29, 32]. There was also evidence of adaptive immune
system activation marked byHLA-A andHLA-DR upregulation
(Supplementary 2, Figure 2(a)) [32]. In addition to protein-
coding genes, the noncoding gene LGALS17A was among
the top five upregulated genes in SARS-CoV-2-infected
Ghanaians. Downregulated genes in our SARS-CoV-2-
infected cohort, including TAF9B, TUBA1A, and NPBWR1,
are known to be involved in biosynthesis and cellular pro-
cesses (Supplementary 3) [33, 34]. These genes enriched for
cellular component biogenesis, which was a significantly
downregulated pathway in the COVID-19-infected Cohort
(Figure 2(a)), suggesting host cellular function suppression.

The expression of certain ISGs, such as ISG15, IFIT1, and
CXCL8, have been reported to be different in males versus
females infected with SARS-CoV-2 (p-value< 0.05) [35]. By
comparing the expression of these genes in our dataset, the
difference in their expression in Ghanaian males vs females
in our COVID-19 cohort was not statistically significant
(Figure 2(d)–2(f)), contrary to a previous report [35].

3.2. Impaired Upper-Airway Antiviral Response and Dysregulated
Inflammatory Response Mediated by CRNN and IL1A
Overexpression Drive COVID-19 Severity in Ghanaians. To
identify immune signatures mediating COVID-19 severity in
Ghanaians, we compared gene expression differences in the
upper respiratory airway of Ghanaians with severe (n= 6)
and mild (n= 36) COVID-19. The median age for severe and
mild COVID-19 was 79.5 and 46 years, respectively. Females
were more likely to have severe COVID-19 in our study
cohort (Table 1). We found 4750 genes to be downregulated
(log2fc<−1), while 87 genes were upregulated (log2fc> 1) in
individuals with Ghanaians with severe COVID-19 (Figure 3(a),
Supplementary 4 and 5). Most downregulated genes in the
severe COVID-19 cohort, including ISG15, OAS1, SAMD9L,
and IFIT1, are associated with antiviral response pathways,
and immune response-related pathways and processes were
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TABLE 1: Disease characteristics of COVID-19-infected Ghanaians used in this study.

Participants characteristics All participants (N= 64)
COVID-19 cases (N= 42)

Uninfected control (N= 22)
Mild (N= 36) Severe (N= 6)

Female 34 (53.1%) 18 (50%) 4 (66.7%) 12 (54.5%)
Male 30 (46.9%) 18 (50%) 2 (33.3%) 10 (45.5%)
Age (median) 46.5 (years) 46 (years) 79.5 (years) 49.7 (years)
Symptoms

Fever — 31 (86.1%) 6 (100%) 1 (4.5%)
Cough — 27 (75%) 6 (100%) 0
Shortness of breath — 0 6 (100%) 0
Headache — 36 (100%) 4 (66.7%) 2 (9.1%)
Running nose — 32 (88.9%) 5 (83.3%) 0
Sore throat — 19 (52.8%) 5 (83.3%) 0
Fatigue — 9 (25%) 6 (100%) 0
Muscle and joint pain — 13 (36.1%) 6 (100%) 0
Chill — 0 6 (100%) 0
Required mechanical ventilation — 0 2 (33.3%) 0

Shortness of breath, chills, and mechanical ventilation were associated with severity.
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FIGURE 1: (a) Heatmap of transcript abundance for the top 40 differentially expressed genes in each sample. (b) Volcano plot of upregulated
and downregulated genes in SARS-CoV-2 infected Ghanaians compared with uninfected controls. Log2 fold change (FC) cutoff= 1, −Log10
p-value.
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FIGURE 2: Gene ontology (GO) pathway analysis of top differentially expressed genes in the study cohort. (a) Dotplot showing top activated and
suppressed pathways in SARS-CoV-2-infected Ghanaians. Immune response pathways were activated, while cellular biogenesis-related processes
were suppressed. (b) Cnetplot showing protein–protein interaction network analysis for the top DEG genes in the COVID-19-infected cohort.
(c) Dotplot showing activated and suppressed pathways in severe compared to mild COVID-19 cohorts. Immune response-related pathways or
processes were suppressed in individuals with severe COVID-19. Top enriched pathways are shown p.adjusted<0.05. (d–f ) Violin plots compare
the expression of selected antiviral gene expressions in male and female SARS-Cov-2-infected Ghanaians.
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plot showing up- and downregulated genes. CRNN was the top overexpressed gene in the severe COVID-19 cohort. (b–d) Violin plots of
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suppressed in individuals with severe COVID-19, suggesting
an impaired upper-respiratory airway immune response
(Figures 2(c) and 3(e)–3(h), Supplementary 5). These antiviral-
related genes were, however, upregulated in individuals with
mild COVID-19, which could explain the immune features
underlying the disease’s mildness. There was a hyperactivation
of keratinization pathways associated with CRNN overexpres-
sion [36] and overexpression of proinflammatory cytokines,
including IL23A, S100A7, and IL1A (log2fc> 1, p-value< 0.05)
in Ghanaians with severe COVID-19 compared with mild
(Figures 2(c) and 3(a)–3(d). CRNN overexpression has
been associated with inflammatory disease [36]. The MAL
gene, an essential component in NF-κB pathway activation
[37], and serine protease TMPRSS11B were among the top
overexpressed genes in our severeCOVID-19 cohort (Figure 3(a),
Supplementary 4).

Taken together, we found that COVID-19 severity in the
Ghanaian cohort was associated with dysregulated inflamma-
tory response mediated by MAL, IL1A, IL23A, CRNN, and
S100A7 overexpression and suppression of antiviral immune
response-related pathways. A similar association has been
reported in other populations [8, 11–13, 38].

3.3. Antiviral Genes Are Differentially Expressed in COVID-
19-Infected Ghanaians Compared with Non-Africans. We
further sought to determine whether the expression of anti-
viral response genes in the upper respiratory interface of
SARS-CoV-2-infected Ghanaians differs in other popula-
tions. Toward this, we compared our data with a publicly
available dataset (GSE166530) from Singh et al. [9] studying
COVID-19 immune response signatures in a small cohort of
SARS-CoV-2-infected Indians (n= 36) within South Telan-
gana, a population characterized by higher COVID-19 sever-
ity and mortality [9]. The selection of this data was based on
the availability of publicly accessible raw FASTQ data files.
Additionally, the data were generated from a similar tissue
type, specifically upper airway epithelial tissue, which facilitated a
direct comparison. We grouped all cases reported by Singh et al.
[9] as a SARS-CoV-2-infected Indian cohort and grouped all
the cases from our study to form a SARS-CoV-2-infected
Ghanaian cohort. Compared with SARS-CoV-2-infected
Indians, an overexpression of antiviral responses-related genes,
including TMEM265, IFI6, ISG15, IFITM3, IFIT1, BST2, CCL2,
LCN2, and OAS1, was observed in Ghanaians infected with
SARS-CoV-2 (Figures 4(a) and 4(b(1))–4(b(3)), Supplementary 6
and 7).

Though preliminary, these observed differences in anti-
viral gene expression at the primary site of SARS-CoV-2
infection may suggest a more robust innate antiviral immune
response in SARS-CoV-2-infected Ghanaians compared to
their Indian counterparts. This may have contributed to the
reduced COVID-19 severity in Ghanaians and likely other
sub-Saharan Africans. Most of these upregulated antiviral
genes in SARS-CoV-2-infected Ghanaians were also found

to be upregulated in Ghanaians with mild COVID-19 com-
pared to those with severe COVID-19 and uninfected con-
trols (Supplementary 2).

4. Discussion

The immunological signatures driving COVID-19 severity in
Ghanaians remain elusive and need to be better understood.
This study investigated the transcriptome differences at the
upper respiratory interface of SARS-CoV-2-infected Gha-
naians with mild and severe clinical phenotypes to character-
ize immune signatures at the primary SARS-CoV-2 infection
site and identify drivers of disease severity. Consistent with
earlier studies [8, 9, 11, 12], we report an upregulation of
immune response-related genes accompanied by activation
of antiviral pathways and suppression of cellular biogenesis path-
ways in the upper airway epithelial tissue from COVID-19-
infected Ghanaians compared with uninfected controls. HLA-
A and HLA-DR genes were upregulated in the upper airway of
SARS-CoV-2-infected Ghanaians (Supplementary 2) and are
known mediators of the adaptive immune response by antigen
processing and presentation [39, 40], suggesting that HLA-A
and HLA-DR overexpression may be activating the adaptive
immune response vital to virus-infected cell elimination [32].
Cytokines are known regulators of immune response via cell-
to-cell communication. Regulation of adaptive immune
response was the top enriched activated pathway in our
COVID-19-infected cohort compared to controls (Figure 2(a)),
suggesting the involvement of cytokineswith immune regulatory
potential, including IL-2 [41–43]. In addition to protein-coding
genes, non-protein-coding LGALS17Awas found among the top
upregulated genes. Considering the role of noncoding genes in
regulating the activities of their target protein-coding genes,
LGALS17A upregulation may suggest a critical role in SARS-
CoV-2 pathophysiology by regulating the activities of a relevant
gene(s) involved in SARS-CoV-2 replication.Neuropeptide B/W
receptor-1 (NPBWR1) is the receptor for Neuropeptides B
(NPB) and is required for the activation of NPB/NPBWR1 sig-
naling, which plays a vital role in physiological processes, includ-
ing energy homeostasis and metabolism [44]. Earlier work has
shown that NPBWR1 knockout mice had defective cellular
metabolic processes compared to the wild-type [33, 34].
In this study, NPBWR1 was among the top downregulated
protein-coding genes in our SARS-Cov-2-infected cohort, with
cellular component biogenesis being one of the suppressed pro-
cesses (Figure 2(a)). Noting the critical role of NPBWR1 in
metabolic processes to provide the energy and building blocks
required for cellular component biogenesis, NPBWR1 downre-
gulation may be driving the suppression of cellular component
biogenesis pathways. This could present a previously unde-
scribed SARS-CoV-2 pathogenic mechanism. Comparing Gha-
naians with mild vs severe COVID-19 reveals a diminished
antiviral response in Ghanaians with severe COVID-19 marked
by downregulation of antiviral genes OAS1, CCL8, SAMD9L,

selected overexpressed proinflammatory cytokines (IL1A, IL23A, and S100A7) in Ghanaians with severe COVID-19. (e–h). Violin plots of
selected antiviral-related genes (ISG15, SAMD9L, IFIT1, and CXC11) that were downregulated in severe cases. Log2fc cutoff= 1, −Log10
p-value, ∗p-value< 0.05; ∗∗p-value< 0.01; ∗∗∗∗p-value< 0.001.
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HLA-A, CXCL11, ISG15, IL32, and IFIT2, and suppression of
antiviral immune response pathways. A similar trend was also
observed in previous studies in other populations [8, 11, 13].
Severe COVID-19 has been chiefly associated with inflamma-
tory cytokines such as interleukin 6 (IL-6), IL-8, and IL-10 over-
expression [8, 11, 12, 45, 46]. Though Tapela et al. [47] reported
some association between IL-6 and IL-8 cytokine concentration
in plasma samples and COVID-19 severity, the expression of
these cytokines was not found to be significantly upregulated in
our severe COVID-19 cohort. However, in this study, an upre-
gulation of other pro-inflammatory cytokines, includingCRNN,
IL1A, IL23A, IVL, and S100A7, was associated with severe

COVID-19. CRNN was the most upregulated gene, and kerati-
nization was the top-activated process in individuals with severe
COVID-19 cohort. Keratinocytes represent the first line of the
host defense system, and their hyperproliferation contributes to
the pathogenesis by infiltration of inflammatory cells [48, 49].
CRNN overexpression was previously shown to aberrantly reg-
ulate keratinization by activating the Phosphoinositide 3-
Kinase/Akt Pathway, leading to inflammatory diseases, such
as psoriasis [36]. Epithelial cells are directly infected during
SARS-CoV-2; thus, CRNN overexpression in our severe
COVID-19 cohort may represent a potential pathogenic mech-
anism employed by SARS-CoV-2 to induce dysregulated
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inflammatory response via upregulating keratinization at the
primary site of infection. In addition, theMAL gene, an impor-
tant component in NF-κB signaling pathway activation [37],
and TMPRSS11B were among the top 10 upregulated genes
in Ghanaians with severe COVID-19. TMPRSS11B is impli-
cated as a driver of lung carcinoma [50], and severe
COVID-19 is associated with lung abnormalities [51, 52].
Since SARS-CoV-2 is known to induce pathology in the
lung, TMPRSS11B upregulation in individuals with severe
COVID-19 may also represent another SARS-CoV-2 patho-
genic mechanism. TMPRSS11B also interacts with CRNN
(Supplementary 1). Our result on immune signatures mediat-
ing COVID-19 severity in Ghanaians agrees substantially with
findings from other studies [8, 11, 12, 46, 53]. The SAMD9L
pathway was previously shown to be a critical host barrier that
poxviruses subvert most to establish an infection [54] and was
among the ISGs found to be significantly downregulated in
Ghanaians with severe COVID-19 compared with mild cases.
The suppression of SAMD9L in individuals with severe
COVID-19 suggests that it may also be a critical host restric-
tion factor that SARS-CoV-2 must antagonize to establish
disease. Additionally, MUC21, a gene previously associated
with lung adenocarcinoma, was also upregulated in Ghanaians
with severe COVID-19 [55]. We found an insignificant differ-
ence in the expression of previously reported antiviral genes,
ISG15, IFIT1, and CXCL8, in males and females Ghanaians
infected with SARS-CoV-2, contrary to a previous report [35].
However, this observation might be influenced by the sample
size used in this study (Table 1).

COVID-19 severity is considerably lower in sub-Saharan
Africans, particularly West Africans, compared with non-
Africans and BlackAfricanAmericans [16, 21, 56].We observe
an upregulation of genes involved in antiviral response path-
ways, includingOAS1 thatmediates RNase L pathway [57, 58],
IFIT1, and APOE at the upper respiratory airway of COVID-
19-infected Ghanaians compared with a relevant publicly
available dataset (GSE166530) from an Indian COVID-19
cohort [9] (Figure 4). The upregulation of these antiviral genes
in COVID-19-infected Ghanaians may suggest a more robust
antiviral response at this critical interface. Though prelimi-
nary, this observed difference in antiviral gene expression at
primary infection sites may have contributed to the reduced
COVID-19 severity in sub-Saharan Africans, particularly Gha-
naians. To our knowledge, this is the first direct comparison of
immune response-related gene expression in the upper respi-
ratory interface between SARS-CoV-2-infected West Africans
and a non-African population and the first COVID-19 bulk
host transcriptome dataset from West Africans.

5. Conclusions

In conclusion, this study describes immune signatures at the
primary site of SARS-CoV-2 infection and identifies immune
signatures driving COVID-19 severity in SARS-CoV-2-infected
Ghanaians. It further provides important preliminary evidence
suggesting that antiviral genes are more highly expressed at the
primary site of SARS-CoV-2 infection in sub-Saharan Africans
(Ghanaians) compared with non-Africans (Indians), which may

be driving the differences in antiviral response and clinical out-
comes. Our overall report on DEGs in COVID-19-infected
Ghanaians corroborates previous reports from similar studies.

Data Availability

Processed data are available in the Gene Expression Omni-
bus (GEO) database with accession number GSE215906.

Additional Points

Limitations. First, the proportion of individuals with severe
COVID-19 was small (n= 6) compared with the mild
(n= 36). Additionally, records on comorbid conditions for
most of the participants were unavailable. This was partly
due to the challenge of obtaining clinical records during
pandemics. Nevertheless, since our findings are generally
consistent with previous studies in other populations, we
can confidently assume that there were no major comorbid-
ities in our cohort that could have significantly impacted our
results. Future bulk transcriptome profiling studies using air-
way epithelial tissue from a much larger COVID-19-infected
Ghanaian cohort with established clinical records would
strengthen and extend this work.
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