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Background. Serine proteinase inhibitors, clade B, member 3 (SerpinB3) and B4 are highly similar in amino acid sequences and
associated with inflammation regulation. We investigated SerpinB3 and B4 expression and their roles in chronic rhinosinusitis with
nasal polyps (CRSwNP). Methods. The expression of SerpinB3 and B4 in nasal mucosa tissues, brush cells, and secretions from
CRSwNP patients was measured, and their regulation by inflammatory cytokines were investigated. Their functions were also
analyzed using air–liquid interface (ALI)-cultured primary human nasal epithelial cells (HNECs) and transcriptomic analysis.
Results. Both SerpinB3 and B4 expression was higher in nasal mucosa, brush cells, and secretions from eosinophilic (E) CRSwNP
and nonECRSwNP patients than in healthy controls. Immunofluorescence staining indicated that SerpinB3 and B4 were primarily
expressed in epithelial cells and their expression was higher in CRSwNP patients. SerpinB3 and B4 expression was upregulated by
interleukin-4 (IL-4), IL-5, IL-6, and IL-17a. Transcriptomic analysis identified differentially expressed genes (DEGs) in response to
recombinant SerpinB3 and B4 stimulation. Both the DEGs of SerpinB3 and B4 were associated with disease genes of nasal polyps
and inflammation in DisGeNET database. Pathway enrichment indicated that downregulated DEGs of SerpinB3 and B4 were both
enriched in cytokine–cytokine receptor interactions, with CXCL8 as the hub gene in the protein–protein interaction networks.
Furthermore, CXCL8/IL-8 expression was downregulated by recombinant SerpinB3 and B4 protein in ALI-cultured HNECs, and
upregulated when knockdown of SerpinB3/B4. Conclusion. SerpinB3/B4 expression is upregulated in nasal mucosa of CRSwNP
patients. SerpinB3/B4 may play an anti-inflammatory role in CRSwNP by inhibiting the expression of epithelial cell-derived
CXCL8/IL-8.

1. Introduction

Chronic rhinosinusitis (CRS) is a heterogeneous inflamma-
tory disease that develops in the mucosa of the nasal cavity
and the paranasal sinus. CRS affects 8% and 10.9% of the total
population of China and Europe, respectively, has a debili-
tating effect on the quality of life, and is associated with a
heavy economic burden [1, 2]. CRS patients with nasal polyps
(CRSwNP) commonly combine with lower airway inflamma-
tion such as asthma, and usually experience severe symptoms,
require more surgeries, and have higher recurrence rates

following surgery—important points to be considered during
clinical treatment [3].

CRSwNP pathogenesis is associated with various inflam-
matory responses. CRSwNP can be divided into two subtypes
based on the infiltration of eosinophils into the nasal mucosa:
eosinophilic (E) CRSwNP and nonECRSwNP. ECRSwNP is
characterized by type 2 (T2) inflammation, with high levels of
cytokines such as interleukin 4 (IL-4), IL-5, and IL-13, while
nonECRSwNP is characterized by type 1 (T1) and/or type 3
(T3) inflammation and is associated with increased levels of
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cytokines such as IFN-γ and/or IL-17 [4]. Proinflammatory
cytokines such as IL-1β, IL-6, and IL-8 (CXCL8) are also
associated with multiple subtypes of inflammation and play
a vital role in CRSwNP [5].

Serine proteinase inhibitors (Serpins) are a superfamily
of homologous proteins. Numerous studies have shown that
clade B Serpins (SerpinBs) play important roles in various
immune and inflammatory functions [6]. For example, Ser-
pinB5 is expressed by epithelial cells and is involved in the
immune response to ulcerative colitis [7]; while SerpinB10 is
related to asthma by inhibiting the apoptosis of allergenic Th2
cells [8]. Moreover, SerpinB1 can restrict the production of
neutrophil extracellular traps [9]. Recently, certain SerpinBs
has been found to be associated with CRS. In a study on
biomarkers related to inflammatory endotypes of CRS
patients without nasal polyps (CRSsNP), SerpinB2 and Ser-
pinB10 were found to be significantly increased in T2
CRSsNP, which can be regulated by IL-13 and STAT6 [10].
The expression of SerpinB2 was also found to be significantly
increased in polyp tissue and exosomes in CRSwNP [11].
However, whether other SerpinBs are associated with CRS
are largely unknown.

Increased expression of SerpinB3 and B4 have been found
in some inflammatory conditions, such as asthma, atopic
dermatitis (AD) and psoriasis, and tuberculosis [12]. In psoriatic
skin lesions, increased SerpinB3 and B4 expression facilitate a
feedforwardmechanism tomodulate immune response through
Pso p27 [13]. In asthma and AD patients, the induction of
SerpinB3 and B4 can be caused by elevated Th2 cytokines
IL-4 and IL-13 [14, 15]. As CRSwNP is also a type 2 dominated
inflammation, little is known on the relationship between Ser-
pinB3/B4 and CRSwNP. Since human SerpinB3 and B4 are
evolutionarily homologous that share 95% and 92% nucleotide
and amino acid sequence identity, their regulation and func-
tion were often been discussed together [12]. The present study
aimed to investigate the expression, regulation, and function of
SerpinB3/B4 in the nasal mucosa of patients with CRSwNP.

2. Materials and Methods

2.1. Subjects and Specimens. This study was conducted at
Beijing Tongren Hospital from March 2019 to May 2022.
A total of 97 participants, including 36 patients with ECRSwNP,
30 patients with nonECRSwNP, and 31 healthy controls, were
enrolled into the study at Beijing TongRenHospital. CRSwNP
was diagnosed based on the European Position Paper on Rhi-
nosinusitis and Nasal Polyps 2020 guidelines [16]. ECRSwNP
and nonECRSwNP were defined in accordance with previous
studies, and were based on whether or not the percentage of
infiltrating eosinophils exceeded 27% of the total cells in nasal
tissue [17]. Patients undergoing septoplasty due to anatomic
variations but with no sinonasal diseases were selected as
controls. Healthy volunteers were also included as controls
for noninvasive sampling of brush cells and secretions. Spe-
cific inclusion/exclusion criteria for the volunteers of both
groups are as follows:

The inclusion criteria for volunteers in control group and
CRSwNP group include: (i) age 18–75 years; (ii) underwent

surgical treatment of a deviated nasal septum or diagnosed as
CRSwNP; and (iii) informed written consent.

The exclusion criteria for volunteers in control group and
CRSwNP group include: (i) CRSwNP, antrochoanal polyps,
fungal rhinosinusitis, cystic fibrosis, immunodeficiency, or
primary ciliary dyskinesia; (ii) sinonasal fungal or viral infec-
tion; (iii) treat with antibiotics or oral corticosteroids in the
month prior to inclusion; and (iv) treat with biologics in the
3 months prior to inclusion.

The study was approved by the Medical Ethics Commit-
tee of Beijing TongRen Hospital, Capital Medical University,
and Beijing Institute of Otolaryngology. All patients enrolled
into the study provided written informed consent. All of
them in the control, ECRSwNP, and nonECRSwNP groups
were matched by ethnicity and geographic location. Detailed
demographic and clinical characteristics of the participants
are presented in Table S1.

2.2. Nasal Sample Collection and Preparation Procedure.
Otolaryngology specialists assessed the visual analog scale
(VAS) scores for all patients with CRSwNP, and biopsies
were obtained from nasal polyps in each CRSwNP patient.
Nasal tissues of uncinate process from patients with nasal
septum deviation were collected for comparison as controls.
All biopsy samples were immediately immersed in 0.9% nor-
mal saline and transport with ice and processed as previously
described [18].

Nasal secretions were obtained through a scissored post-
operative sinus sponge pack Merocel (Medtronic Xomed,
Jacksonville, FL, USA) as previously described [18]. The sponge
was inserted into the middle meatus of each nostril parallel to
the sagittal plane for 5min. Next, 1mL of 0.9% normal saline
was added to the sponge for extraction of the secretion, after
which all sponges were stored at 4°C for 2 hr. Later the
sponges were centrifuged at 1,500 g for 15min at 4°C. The
supernatants were collected and stored in aliquots at −80°C
until further analysis.

Brush cells were collected as previously described [19].
Briefly, a nasal brush (Copan, Italy) was inserted in the infe-
rior turbinate of CRSwNP patients and control subjects by
direct visual inspection under nasal endoscopy. The brush
was pressed against the surface of the nasal mucosa and
rotated for more than 10 full turns to acquire mucosal cells.
After sampling, the brush was soaked with 1mL TRIzol
reagent (Thermo Fischer Scientific, MA, USA) in RNase-
free collection tubes for RNA extraction.

2.3. RNA Isolation, Reverse Transcription, and Real-Time PCR.
Total RNA was extracted from nasal polyps, nasal mucosa,
brush cells, and cultured cells using TRIzol reagent (Thermo
Fischer Scientific, MA, USA) as previously described [20].
Concentrations and quality of the RNA were estimated using
the NanoDrop 2000 (Thermo Fischer Scientific), and single-
strand cDNA was compounded by using PrimeScript™ RT
Master Mix (TaKaRa Biotechnology Inc., Shiga, Japan). Finally,
quantitative real-time PCR was performed using TB Green
Premix Ex Taq™ II (TaKaRa Biotechnology Inc.) on an
Applied Biosystems ViiA 7 Dx System (Applied Biosystems,
CA, USA) using 12 μL reactions (6 μL of SmartChip TBGreen
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Gene Expression Master Mix, 0.2 μL ROX reference dye II,
0.4μL of 10μmol/L of each primer, and 5μL of cDNA) to assess
mRNA levels in the samples. Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was used as the reference gene.
mRNA expression was calculated as arbitrary units (AUs)
using the following transformation: expression= 2(−Δct)×
1,000 AUs. The primer sequences used in this study are
presented in Table S2.

2.4. Western Blotting. Total protein was extracted from nasal
tissues of ECRSwNP patients, nonECRSwNP patients, and
healthy controls using RIPA lysate containing proteinase
inhibitor cocktail, and the concentration of each sample was
measured using a BCA protein assay kit (Beyotime, Shanghai,
China) as previously described [21]. 30 μg of the total protein
was loaded onto 10% sodium dodecyl sulfate-polyacrylamide
gels and the different proteins separated electrophoretically
in 90min. The separated protein bands were transferred to
a nitrocellulose membrane (Millipore Corp., MA, USA) and
blocked with 5% nonfat milk. After incubating with anti-
bodies, the blots were visualized using enhanced chemilu-
minescence (Thermo Fischer Scientific), and the intensity of
each band was quantified using the VersaDoc imaging sys-
tem (Bio-Rad Laboratories, CA, USA). Blots were probed
with anti-SerpinB3 (1 : 2,000, Abcam, MA, USA), anti-Ser-
pinB4 (1 : 2,000, Santa Cruz, CA, USA), and anti-GAPDH
(1 : 5,000, Abcam) at 4°C overnight and further immuno-
blotted with HRP-conjugated IgG antibody (1 : 5,000, Cell
Signaling Technology, MA, USA) at room temperature for
60min, developed with enhanced chemiluminescence sub-
strate (Millipore, Darmstadt, Germany) and chemilumines-
cence detection by ChemiDocTM MP Imaging System
(Bio-Rad, United Kingdom). Band density was quantitated
using the Image Lab™ software Version 6.0.0 (Bio-Rad,
United Kingdom).

2.5. Enzyme-Linked Immunosorbent Assay (ELISA). Nasal
secretions were collected as previously described [22]. Briefly,
samples were collected from study participants using infla-
tion sponges and soaked in 500 μL of 0.9% sodium chloride
solution at 4°C for 2 hr. The samples were processed in
a high-speed centrifuge spinning at 1,500× g for 15min
at 4°C and the secretions stored at −80°C. SerpinB3
(#P29508, RayBiotech, Norcross, GA, USA) and SerpinB4
(#P48594, RayBiotech) concentrations in the nasal secretions,
and IL-8 (RAB0319, Millipore Corp., MA, USA) concentra-
tion in supernatants from the basal chamber of air–liquid
interface (ALI) cultures were measured using a “sandwich”
enzyme-linked immunosorbent assay (ELISA) technique
according to the manufacturer’s protocols.

2.6. Immunofluorescence Assay. To localize the expression of
SerpinB3 and B4, nasal tissues from healthy controls and
ECRSwNP and nonECRSwNP patients were performed for
immunofluorescence analysis, as previously described [23].
Briefly, paraffinized tissue sections were deparaffinized, rehy-
drated, and processed using retrieval buffer (pH 6.0; Dako,
Agilent, Santa Clara, CA) before blockingwith 10% goat serum
and incubating overnight at 4°C with primary antibodies

and then with Alexa Fluor 488- or 594-conjugated second-
ary antibodies for 1 hr at room temperature in the dark. The
slides were then mounted with Antifade reagent with DAPI.
SerpinB3 antibody (1 : 500; ab154971, Abcam) and SerpinB4
antibody (1 : 500; sc-28384, Santa Cruz) were used as the pri-
mary antibodies. Isotype controls without primary antibody
were also stained in nasal tissues from ECRSwNP and
nonECRSwNP patients, and healthy controls. All the photos
took by Olympus camera and processed by FV10-ASW
Viewer software (Ver.4.2b) with same parameters and with-
out adjustment post-acquisition.

2.7. Cell Culture and Stimulation. Human primary nasal epi-
thelial cells (HNECs) were isolated from nasal polyps obtained
from patients with CRSwNP who underwent elective endo-
scopic sinus surgery. Following enzymatic digestion, the iso-
lated HNECs were subjected to ALI cell cultivation, as
described by Wang et al. [21] After 2 weeks, 20–100 ng/mL
of inflammatory cytokines (IL-6, IL-1β, TGF-β1, IL-4, IL-5,
IL-13, IFN-γ IL-17a, and IL-8) and 1 μg/mL of recombinant
SerpinB3 (6528-PI, R&D Systems, Minneapolis, MN, USA)
or SerpinB4 (6437-PI, R&DSystems) proteins were separately
added to the culture solution for 24 hr. Cells were then col-
lected and analyzed by RNA sequencing.

2.8. Transcriptome Sequencing. RNA was extracted from
ALI-cultured HNECs following stimulation with recombi-
nant SerpinB3 and B4. Sequencing was performed as previ-
ously described [24]. The quantity and quality of RNA were
measured using NanoDrop 2000 spectrophotometer (Thermo
Fischer Scientific) and 2100 TapeStation Automated Electro-
phoresis System (Agilent Technologies Inc., CA, USA). Sam-
ples with RNA integrity values greater than 7.0 were selected
and used to build the RNA sequencing library. Ribosomal
RNA was removed and an RNA-seq library prepared for
sequencing using the VAHTS Universal V8 RNA-seq Library
Prep Kit (Vazyme Biotech, China) following the manufacturer’s
instructions. RNA sequencing was performed on the Illumina
HiSeq platform and 150 bp paired-end reads generated.

2.9. Pathway Enrichment and Gene-Disease Association Analyses.
Gene expression was quantified as fragments per kilobase of
transcript per million mapped reads (FPKM). The DEseq2
package was used to identify genes that were differentially
expressed between the groups, with P<0:05 as the cutoff for
significant differentially expressed genes (DEGs). The sig-
nificant DEGs were loaded into Metascape (https://metasca
pe.org/gp/index.html#/main/step1) for pathway enrichment
and associated disease analysis. The parameters for Gene
Ontology Biological Process (GO-BP) and KEGG pathway
analyses were: minimum overlap= 3; P value cutoff= 0.05;
minimum enrichment= 1.5. Diseases associated with the genes
were identified using the DisGeNET database on theMetascape
platform [25, 26].

2.10. Construction of Protein–Protein Interaction (PPI) Networks.
TheDEGswere uploaded to the STRINGdatabase (version 11.5;
https://string-db.org/) for prediction of PPIs as previously
described [27]. The filter condition for the construction
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of a PPI network had a combined score >0.15. Cytoscape
(version 3.8.0), an open-source network visualization and
analysis software, was used to visualize the PPIs [26]. Node
connectivity degree is defined as the number of links incident
upon a node and is an important measure of the importance
of a protein within the PPI network. Topological analysis of
PPIs included measurements of connectivity degree, with
nodes having higher degrees being classified as hub genes
within the PPI networks. The major regulated genes were
selected based on the topological measures and cytokine-
related pathways.

2.11. Small Interfering RNA (siRNA) Transfection.The sequence
“CTTGTGAACGCAATCTATT” and “CTGCAACATAT-
CATGTTGA” were targeted for simultaneously knockdown
of SerpinB3 and B4, and designed siRNA was synthesized
by RiboBio, China. HNECs were seeded at a density of 1.5× 105

cells per well on 24 well plates, and were incubated overnight
at 37°C. Transfection of siRNA was performed with Lipofec-
tamine RNAiMAX reagent (Invitrogen, USA) according to
the manufacturer’s protocol, as described by Liu et al. [28]
Cells were harvested after 24 or 72 hr for real-time PCR or
ELISA analysis.

2.12. Validation of the Effect of SerpinB3 and B4 on CXCL8/
IL-8. After establishing the ALI cultures of HNECs, 1 μg/mL
of recombinant SerpinB3 (6528-PI, R&D Systems, Minnea-
polis, MN, USA) or SerpinB4 (6437-PI, R&D Systems) were
separately added to ALI cultures. Cells and supernatant were
harvested after 24 or 72 hr for real-time PCR or ELISA
analysis to detect intracellular and extracellular CXCL8/IL-8
expression.

2.13. Statistical Analysis. Data were analyzed and graphs
generated using GraphPad Prism V.8.0 software (GraphPad
Software, CA, USA). Results are presented asmeanÆ standard
deviation (SD). Descriptive statistics were used to present gen-
eral information on the study participants, and the distribution
of the data was assessed for normality. Mann–Whitney U test
or Student’s t-test was used to analyze differences between
groups, depending on the normality of data distribution. Com-
parison of paired data, such as in vitro cultured cells, was
analyzed using the Wilcoxon matched-pairs signed-rank test.
Differences were considered statistically significant when
P<0:05.

3. Results

3.1. Upregulated SerpinB3 and B4 Expression in Patients with
CRSwNP. Assessment of SerpinB3 and SerpinB4 mRNA
expression showed that SerpinB3 and B4 expression were sig-
nificantly higher in nasal tissues from patients with ECRSwNP
and nonECRSwNP than in healthy controls (P<0:01, respec-
tively (Figures 1(a) and 1(b)). No significant difference was
found in SerpinB3/B4 expression levels between ECRSwNP
and nonECRSwNP groups. SerpinB3 and B4 protein levels
were evaluated using western blotting. The levels of both pro-
teins were significantly higher in patients with ECRSwNP
(P<0:05) and nonECRSwNP (P<0:01) than in healthy con-
trols (Figure 1(c)–1(f)). These results indicate that SerpinB3

andB4 expression are elevated in ECRSwNPand nonECRSwNP
patients both at mRNA and protein levels.

Noninvasive specimens, nasal brushing, and secretions
from healthy controls and patients with ECRSwNP and
nonECRSwNP were further analyzed using real-time PCR
and ELISA to determine the expression of SerpinB3 and B4.
SerpinB3 and B4 mRNA levels were significantly higher in
brush cells collected from participants in the ECRSwNP
(P<0:05) and nonECRSwNP (P<0:05) groups compared
with those collected from participants in the control group.
Additionally, there were no differences in mRNA levels between
ECRSwNP and nonECRSwNP groups (Figures 2(a) and
2(b)). Similarly, the concentrations of SerpinB3 and B4
proteins in nasal secretions were significantly higher in patients
with ECRSwNP (P<0:05) and nonECRSwNP, compared to
control group (P<0:01, Figures 2(c) and 2(d)).

Furthermore, we performed immunofluorescence stain-
ing of SerpinB3 and B4 on nasal tissues from participants in
the ECRSwNP, nonECRSwNP, and control groups. Both Ser-
pinB3 and B4 were predominantly expressed in the epithelial
layer, while isotype control did not show any positive staining
and the positive control CLU performed well (Figure 3 and
Figure S3). Additionally, ECRSwNP and nonECRSwNP patients
had relatively higher SerpinB3 and B4 levels compared with
controls (Figure 3).

To elucidate the association between SerpinB3/B4 and
disease severity, we conducted correlation analysis between
SerpinB3 and B4 mRNA expression and VAS score of indi-
vidual patients. Our findings revealed a positive correlation
between SerpinB4 expression and VAS scores (P<0:05;
Figure S2), suggesting a potential link between elevated
SerpinB4 expression and disease severity.

3.2. SerpinB3 and B4 are Regulated by Inflammatory Cytokines.
HNECs derived from CRSwNP patients were cultured in vitro
under ALI conditions to mimic the native conditions of the
airway epithelium. Cells were cultured for 2 weeks in ALI-
condition and then incubated with IFN-γ (T1 cytokine), IL-4,
IL-5, and IL-13 (T2 cytokines), IL-8 and IL-17a (T3 cyto-
kines), TGF-β1 (epithelial remodeling cytokine), and IL-1β
and IL-6 (proinflammatory cytokines) for 24 hr [29]. The
effects of these cytokines on SerpinB3 and B4 expression
were measured using real-time PCR. SerpinB3 and B4 expres-
sion was significantly upregulated by stimulation with IL-4,
IL-5, IL-6, and IL-17a (P<0:05, respectively; Figures 4(a) and
4(b)), but was not altered by cytokines IL-1β, TGF-β1, IFN-γ,
IL-8, and IL-13.

3.3. Potential Function of Genes in Response to SerpinB3 and
SerpinB4. ALI-cultured HNECs were stimulated with recom-
binant SerpinB3 and B4 proteins, respectively, and then per-
formed RNA sequencing to investigate genes that potentially
regulated by SerpinB3 and SerpinB4. A total of 144 DEGs
were identified in SerpinB3-treated HNECs compared with
the nonstimulated HNECs, including 78 upregulated and 66
downregulated genes (Figure 5(a)). Furthermore, 187 upregu-
lated and 93 downregulated genes were identified in HNECs
treated with SerpinB4 (Figure 5(b)). PPI networks were gener-
ated for the DEGs of SerpinB3 and SerpinB4, respectively.
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Based on the degree of genes in the PPI networks, IL-6 (degree,
84), CXCL8 (degree, 62), and GRIN1 (degree, 44) were identi-
fied as the top three hub genes that were potentially regulated
by SerpinB3, whereas CXCL8 (degree, 140), S100A7 (degree,
106), and CXCL1 (degree, 98) were identified as the top three
hub genes influenced by SerpinB4. Remarkably, CXCL8 is a
common hub gene between the PPI networks of SerpinB3 and
B4 (Figures 5(c) and 5(d)).

GO-BP and KEGG pathways enriched by those DEGs
were analyzed to determine the possible downstream events
in response to SerpinB3 and B4. As showed in Figures 5(e)
and 5(f), Figure S4, DEGs were associated with inflammatory-
related signaling pathways. For example, the cytokine–cytokine
receptor interaction pathway was both enriched by DEGs of
SerpinB3 and B4. Moreover, when subjected to GO-BP path-
way enrichment, downregulated DEGs of SerpinB4 were
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FIGURE 1: SerpinB3 and B4 expression in nasal tissues of patients with CRSwNP: (a, b) SerpinB3 and SerpinB4mRNA levels in nasal tissues of
ECRSwNP and nonECRSwNP patients measured by real-time PCR. n= 24 for ECRSwNP patients, n= 16 for nonECRSwNP patients, and
n= 15 for healthy controls. RNA expression is measured from ABI ViiA™ 7 real-time PCR system and calculated as arbitrary units (2(–Δct)×
1,000). Data are presented as meanÆ SD and shown through Graphpad prism 8.0. GAPDH is used as the reference gene, (c, d) SerpinB3 and
B4 protein levels in nasal tissues of nonECRSwNP and ECRSwNP patients and healthy controls measured by western blotting, and (e, f )
intensities of western blot bands measured by image lab. Protein levels were normalized to those of GAPDH. n= 8 for ECRSwNP and
nonECRSwNP patients and healthy controls. ∗P<0:05, ∗∗P<0:01, ∗∗∗P<0:001. CRSwNP, chronic rhinosinusitis with nasal polyps;
ECRSwNP, eosinophilic CRSwNP; SerpinB, serine proteinase inhibitor, clade B; and GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
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related to positive regulation of cytokine production. Addi-
tionally, DEGs of both SerpinB3 and B4 were linked to neu-
trophil chemotaxis. The downregulation of specific DEGs,
including CXCL8 and CCL3 by SerpinB3, and CXCL8,
CXCL10, EDN1, CCL20, S100A12, CXCL1, CXCL3, CXCL2,
and S100A8 by SerpinB4, was verified through real-time PCR
(Figure 6(c)–6(e) and Figure S5). This validation indicates the
inhibitory role of SerpinB3/B4 in impending neutrophil
infiltration.

To further elucidate the molecular interactions, down-
regulated DEGs involved in the cytokine–cytokine receptor
interaction pathway were further employed to construct PPI
networks and visualized using Cytoscape software. Among
the several cytokines downregulated by SerpinB3 and Ser-
pinB4 in the PPI networks, CXCL8 was the central gene in
both networks with highest connective degree (Figures 6(a)
and 6(b)).

The DisGeNET database is a disease-related gene data-
base that integrates information on gene-disease associations
and variant-disease associations from several public data
sources. Using the Metascape platform, we matched DEGs
with the target genes of diseases in the DisGeNET database
and found that both DEGs of SerpinB3 and SerpinB4 were
associated with nasal polyps and inflammation (Figure S6(a)
and S6(b)).

3.4. SerpinB3 and B4 Suppress CXCL8/IL-8 Expression in
Nasal Epithelial Cells. We performed additional analysis to
evaluate the expression of the hub gene, CXCL8, at both
the RNA and protein levels in Figures 6(a) and 6(b). The
results demonstrated a significant downregulation of CXCL8
upon stimulation with SerpinB3 and B4, compared to the
untreated group, which was consistent with the sequencing
results (P<0:01; Figure 6(c)). Furthermore, there was a
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FIGURE 2: SerpinB3 and B4 expression in noninvasive samples from patients with CRSwNP: (a, b) SerpinB3 and SerpinB4 mRNA levels in
nasal brush cells of ECRSwNP and nonECRSwNP patients measured by real-time PCR. n= 12 for ECRSwNP patients, n= 14 for
nonECRSwNP patients, and n= 16 for controls. RNA expression is measured from ABI ViiA™ 7 real-time PCR system and calculated
as arbitrary units (2(–Δct)× 1,000). Data are presented as meanÆ SD and shown through Graphpad prism 8.0. GAPDH is used as the reference
gene and (c, d) SerpinB3 and B4 protein levels in nasal secretions of nonECRSwNP and ECRSwNP patients measured by ELISA. Protein
content were measured by BioTek Epoch 2Microplate spectrophotometer and produced by Epoch Gen5 software. Data are presented as mean
Æ SD and shown through Graphpad prism 8.0. n= 16 for ECRSwNP patients, nonECRSwNP patients, and healthy controls. ∗P<0:05,
∗∗P<0:01. CRSwNP, chronic rhinosinusitis with nasal polyps; ECRSwNP, eosinophilic CRSwNP; SerpinB, serine proteinase inhibitor, clade
B; and GAPDH, Glyceraldehyde 3-phosphate dehydrogenase.
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FIGURE 3: Localization of SerpinB3 and B4 in nasal tissues. Immunofluorescence staining of SerpinB3 and B4 (both in red) and negative
control in nasal tissues collected from ECRSwNP and nonECRSwNP patients and healthy controls. Cell nuclei (blue) were visualized using
DAPI counterstaining. Bars= 25 μm. CRSwNP, chronic rhinosinusitis with nasal polyps; ECRSwNP, eosinophilic CRSwNP; SerpinB, serine
proteinase inhibitor, clade B, and DAPI, 4′-6-Diamidino-2- phenylindole dihydrochloride.
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FIGURE 4: Regulation of SerpinB3 and B4 by cytokines: (a, b) SerpinB3 and SerpinB4 expression are measured using real-time PCR 24 hr after
stimulating ALI-cultured HNECs with IL-6, IL-1β, TGF-β1, IL-4, IL-5, IL-13, IFN-γ, IL-17a, and IL-8 (n= 5). RNA expression is measured
from ABI ViiA™ 7 real-time PCR system and calculated as arbitrary units (2(–Δct)× 1,000) and normalized according to untreated group.
Data are presented as meanÆ SD and shown through Graphpad prism 8.0. GAPDH is used as the reference gene. ∗P<0:05, ∗∗P<0:01.
SerpinB, serine proteinase inhibitor, clade B; ALI, air–liquid interface; and HNECs, primary human nasal epithelial cells.
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notable decrease in the concentration of intracellular IL-8
and the secretion level of IL-8 in the supernatant (P<0:05,
respectively; Figures 6(d) and 6(e)).

To further investigate the inhibitory effect of SerpinB3/B4
on CXCL8/IL-8 in HNECs, we used siRNA to simultaneously
knock down the expression of SerpinB3 and B4 (P<0:01;
Figure 6(f)). Nucleotide alignment of SerpinB3 and B4 CDS
showed high alignment score and the siRNA was designed
targeting a common sequence in SerpinB3 and B4 CDS

(Figure S1). The results demonstrated that the knockdown
of SerpinB3 and B4 led to an upregulation of CXCL8 expres-
sion and an increase in IL-8 secretion in the supernatant
(P<0:05, respectively; Figures 6(g) and 6(h)).

4. Discussion

CRSwNP is characterized by persistent inflammation of
the sinonasal mucosa, involving complex interactions among
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FIGURE 6: CXCL8 is downregulated by SerpinB3 and B4 in nasal epithelial cells: (a, b) PPI networks constructed by downregulated DEGs
involved in the inflammatory pathway. The degree of genes is represented by the depth of the color and the size and font of the node,
(c) CXCL8 expression validated by real-time PCR (n= 5), (d) the intracellular levels of IL-8 in cultured HNECs that treated with recombinant
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(n= 5), (f ) expression of SerpinB3 and B4 after transfection with SerpinB3/B4 siRNA in HNECs (n= 7), detected by real-time PCR.
SerpinB3/B4 siRNA was designed for simultaneously knockdown of SerpinB3 and B4. Black column represents siNC group, and orange
column represent siSerpinB3/B4 group, (g) the gene expression of CXCL8 after transfected with SerpinB3/B4 siRNA in HNECs (n= 7), and
(h) the production of IL-8 in supernatant of cultured HNECs (n= 7) that transfected with SerpinB3/B4 siRNA. ∗P<0:05, ∗∗P<0:01. PPI,
protein–protein interaction; DEGs, differentially expressed genes; SerpinB, serine proteinase inhibitor, clade B; HNECs, primary human
nasal epithelial cells, siNC, negative control siRNA, and siSerpinB3/B4, SerpinB3/B4 siRNA.

Journal of Immunology Research 9



various immunological factors. SerpinBs have been implicated
in providing cellular protection against proteases released from
activated immune cells or lysosomes [30]. However, certain
SerpinBs, including SerpinB2 and SerpinB10, have been
shown to play a pathogenic role in lower airway inflammation
[8, 31]. Therefore, it is crucial to investigate the expression
and roles of SerpinBs under specific inflammatory conditions.
Our study reveals a significant upregulation of SerpinB3/B4
expression in the nasal mucosa of CRSwNP patients compared
to healthy controls. Furthermore, SerpinB3/B4 was found to
suppress the expression of CXCL8/IL-8 derived from epi-
thelial cells. Specifically, SerpinB4 was observed to inhibit
the expression of neutrophil chemokines, including CXCL1,
CXCL2, and CCL20, derived from epithelial cells. These
findings suggest a potential anti-inflammatory role of Ser-
pinB3/B4 in CRSwNP. To our knowledge, this is the first
study to demonstrate the expression and functional signifi-
cance of SerpinB3 and B4 in the context of CRSwNP.

We observed significantly higher SerpinB3/B4 expression
in the nasal mucosa of patients with CRSwNP. Several stud-
ies have reported increased SerpinB3/B4 expression during
inflammatory diseases such as allergic dermatitis [32], psori-
asis [33], COPD [34], and asthma [35], indicating potentially
important roles for SerpinB3/B4 in the regulation of inflam-
matory processes. As CRSwNP is a multifactorial and highly
heterogeneous disease, we investigated the expression of Ser-
pinB3/B4 in different CRSwNP subtypes, including ECRSwNP
and nonECRSwNP. Comparable high expression of SerpinB3
and B4was found between ECRSwNP and nonECRSwNP, and
these results were supported by data from cultured nasal epi-
thelial cells stimulated with inflammatory cytokines. SerpinB3/
B4 expression can be upregulated by various inflammatory
cytokines related to the pathogenesis of different endotypes
of CRSwNP. For example, IL-4 and IL-5 which responsible
for T2 inflammation, IL-17a which related to T2 inflamma-
tion, and the proinflammatory cytokine IL-6, are all contribute
to the upregulation of SerpinB3/B4, consistent with results of
previous studies [36]. Biological markers in nasal brushing and
secretions provide valuable information on nasal pathophysi-
ology. For example, CLC has previously been identified in
nasal brush samples and can serve as a predictor of CRSwNP
recurrence [37]. The inflammation-associated biomarker,
cystatin SN, is present in nasal secretions and can be used to
evaluate CRSwNP prognosis [18]. Our immunofluorescence
staining indicates that SerpinB3 and B4 are mainly expressed
in epithelial cells of the nasal mucosa, which may serve as
noninvasive biomarkers for CRSwNP. Consistently, we found
that the expression of SerpinB3/B4 are significantly increased
in nasal brush cells and secretions from patients with CRSwNP,
which is even more sensitive than that in nasal mucosa tissues.

The primary function of SerpinBs appears to be cellular
protection against proteases released either from activated
immune cells or from lysosomes [30]. Proteases that are highly
expressed by neutrophils, mast cells, macrophages, and epithe-
lial cells can lead to an increase in chemokines and proin-
flammatory cytokines that induce chemotaxis and leukocyte
recruitment, and can therefore lead to persistent inflammation
and lung infections [38]. SerpinB3 functions as a cathepsin L

inhibitor, while SerpinB4 is an inhibitor of cathepsin G. Previous
studies showed that both cathepsin L and G are associated with
CRSwNP pathogenesis [39]. Besides as inhibitors of proteases,
the function of SerpinB3 and B4 have not been investigated,
especially in CRSwNP. Our findings demonstrate for the first
time that SerpinB3/B4 can downregulate CXCL8/IL-8 expres-
sion in nasal epithelial cells. However, the mechanistic link
between SerpinB3/B4 and CXCL8/IL-8 is still unclear. Interest-
ingly, previous studies found that cathepsin L plays an important
role in CXCL8/IL-8 processing, and cathepsin G can directly
promote CXCL8 expression [40, 41]. Thus, one of the possible
mechanisms that mediates CXCL8/IL-8 downregulationmay be
associated with the inhibitory role of Serpin B3/B4 on their
targeted proteases.

CXCL8, a protein coding gene that encodes for IL-8, is a
proinflammatory chemokine involved in promoting neutro-
phil chemotaxis and degranulation [42]. The expression of
CXCL8/IL-8 is significantly upregulated during CRSwNP,
and is also associated with disease severity. A recent study sug-
gested that patients with elevated levels of CXCL8/IL-8 often
have difficult-to-treat chronic rhinosinusitis [43].Modulation of
the overproduction of CXCL8/IL-8 may be one of the mechan-
isms through which inflammation is attenuated in many dis-
eases. In the airway, p38MAPK pathway is an important way in
the regulation of CXCL8/IL-8 production [44]. Activation of
p38 MAPK mediates epithelial CXCL8/IL-8 expression. It has
been reported that SerpinB3 and B4 can inhibit the activa-
tion of p38 MAPK pathway by inhibiting the phosphoryla-
tion of p38 MAPK, which might be another mechanism in
mediating the suppression of CXCL8/IL-8 [45, 46]. Overall,
our findings suggest a protective role of SerpinB3/B4 in
attenuating neutrophilic inflammation in CRSwNP.

While our findings demonstrated the inhibitory role of
SerpinB3/B4 on CXCL8/IL-8 expression in nasal epithelial
cells, it is important to note that CXCL8/IL-8 levels have been
reported to be elevated in CRSwNP mucosa, particularly in
cases with neutrophilic inflammation [47]. As CXCL8/IL-8
can be produced by various cell types and is subject to multi-
ple upstream regulatory mechanisms. Apart from nasal epi-
thelial cells, neutrophils, endothelial cells, and eosinophils are
also known to produce CXCL8/IL-8 [48], which may contrib-
ute to the inconsistent observation of CXCL8/IL-8 levels orig-
inated from mucosa tissue and merely nasal epithelial cells in
CRSwNP patients. In addition, CXCL8/IL-8 expression can
be upregulated by inflammatory cytokines, such as IL-1 and
TNF [49]. Therefore, further investigations are warranted to
determine whether SerpinB3/B4 exert an inhibitory effect on
CXCL8/IL-8 expression in other cell types.

Additionally, the cell location of SerpinB3 and B4 indicates
that epithelial cells could be the most likely cells contacted and
targeted by SerpinB3/B4. Previous studies have also suggested
the roles of SerpinB3 and B4 on epithelial cells of lower airway
[14, 35]. Our findings suggest that the impact of SerpinB3/B4 on
inflammatory cells might be an indirect action mediated by
CXCL8/IL-8. However, further study is needed to investigate
whether SerpinB3/B4 have direct effect on inflammatory cells.

Our study however has some limitations. Firstly, the roles
of SerpinB3 and B4 were investigated only using nasal
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epithelial cells. The effects of SerpinB3 and B4 on other
models such as inflammatory cells and tissue explants need
further exploration. Secondly, due to the high homology of
SerpinB3 and B4, siRNAs commonly targeted SerpinB3 and
B4 have been used in this study. Further separate investiga-
tions to discern the functional differences between SerpinB3
and B4 should be performed. Thirdly, both recurrent (5 of
24) and primary polyp samples were used to evaluate the
expression of SerpinB3 and B4 in this study. As previous
study showed that nonrecurrent and recurrent CRSwNPs
have different types of inflammatory patterns [50], the recur-
rent rate should be considered a deviation factor.

In conclusion, our findings demonstrate that SerpinB3/
B4 expression is upregulated in nasal mucosa of patients with
CRSwNP and may function as noninvasive biomarkers for
CRSwNP. SerpinB3/B4 may play an anti-inflammatory role
in CRSwNP by inhibiting the expression of epithelial cell-
derived CXCL8/IL-8.
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