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Background. Observational studies have suggested an association between inflammatory cytokines and Parkinson’s disease (PD). This
Mendelian randomization (MR)was conducted to further assess the causal correlations between inflammatory cytokines and PD.Methods.
Genetic instruments associated with inflammatory cytokines were extracted from a large summary genome-wide association studies
(GWAS) involving 8,293 European participants. Summary-level statistics for PD were obtained from a large-sample GWAS containing
17 studies that involved European participants. Causalities of exposures and outcomes were explored mainly using inverse variance
weighted (IVW) method. Results. The IVW method indicated that basic fibroblast growth factor (FGFBasic), interleukin-2 (IL-2), and
macrophage migration inhibitory factor (MIF) may be suggestively associated with the risk of PD (OR: 0.71, 95%CI: 0.52–0.96, P=0.027;
OR: 1.18, 95%CI: 1.01–1.38, P=0.041; and OR: 1.23, 95%CI: 1.04–1.46, P= 0.018). In the reverse direction, monokine induced by
interferon gamma (MIG), beta nerve growth factor (bNGF), interleukin-17 (IL-17), and interferon gamma (IFNg) are suggested to be
the consequences of PD. Conclusion. Our MR analysis indicated that suggestive associations between circulating levels of FGFBasic, IL-2,
and MIF and PD risk. In addition, MIG, bNGF, IL-17, and IFNg are more likely to be involved in the development of downstream PD.

1. Introduction

Parkinson’s disease (PD) is a common neurodegenerative dis-
ease that occurs in middle-aged and elderly individuals, with
insidious onset and slow progression [1]. Its characteristic
pathological changes are progressive degenerative reduction
of nigrostriatal dopaminergic neurons and the formation of
Lewy bodies, which leads to a reduction of dopamine transmit-
ters in striatal regions [2]. The clinical manifestations of PD are
primarily characterized by symptoms such as bradykinesia,
resting tremor, myotonia, and postural balance disorders.
These symptoms are often accompanied by a range of nonmo-
tor symptoms, including olfactory disorders, cognitive disor-
ders, mental disorders, constipation, and sleep disorders [3].
The diagnosis of PD primarily depends on a comprehensive
medical history and a thorough neurological physical

examination. Currently, there is no specific test available for diag-
nosing PD. The exact cause of PD remains incompletely under-
stood, and there are no reliable clinical or testing methods to
determine its cause. However, most scholars currently believe
that PD is influenced by a combination of age factors, envi-
ronmental factors, and genetic factors [4, 5]. According to
epidemiological studies, the prevalence of PD among indivi-
duals aged 60 and above in European and American countries
is approximately 1% [6]. Moreover, the prevalence of PD
among individuals over 80 years old exceeds 4%. In 2016,
the global number of PD patients was estimated to be around
6.1 million [7]. As the disease advances, both the motor and
nonmotor symptoms of PD progressively worsen. This not
only hampers the patient’s daily activities but also imposes a
significant burden on the patient’s family and society.
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Several studies have confirmed that the degenerative necrosis
ofmidbrain nigrostriatal dopamine neurons is the primary path-
ological change in PD [8]. The immune-inflammatory response
is closely associated with both central neurodegeneration and
nigrostriatal–striatal damage, which may contribute to the onset
and progression of PD, attracting significant attention [8]. Vari-
ous factors, such as neuronal degeneration, microglia activation,
infiltration of peripheral blood lymphocytes, and disruption of
the blood–brain barrier (BBB) caused by the inflammatory
response have been implicated as etiological factors in PD [9].
Neuronal degeneration, activation of microglia, invasion of
peripheral blood lymphocytes, and damage to the BBB caused
by inflammatory reactions have become the causes of PD [10].
Microglia activated upon external stimuli upregulate a variety of
cellular inflammatory factors through the nuclear transcription
factor pathway, and these inflammatory factors include tumor
necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and
others [11]. The expression of inflammatory factors is then
involved in the necrosis and damage of dopaminergic neurons,
and these inflammatory factors can add to the degeneration and
loss of neurons. TNF-α can activate caspase-specific protease
(Caspase) directly and contribute to neuronal necrosis and apo-
ptosis through the apoptosis mechanism [12]. According to
Muller and Beharka et al., IL-6 inflammatory cytokines have
the potential to repair neurons and promote neuron regenera-
tion in patients with PD [13, 14]. Furthermore, it has been
suggested by some researchers that the decrease in the number
of glial cells during the progression of the disease results in a
significant reduction in peripheral blood IL-6. However, there is
currently no definitive evidence to determinewhether alterations
in peripheral blood IL-6 levels have a detrimental or protective
impact on neurons.

In the treatment of PD, there has been extensive discussion
on reducing levels of inflammatory cytokines to inhibit the pro-
gression of PD [15]. However, there are limited observational
studies that link specific circulating inflammatory cytokines to
the risk of PD, and these studies have relatively small sample
sizes [16]. Additionally, the results of these studies may be influ-
enced by confounders, reverse causality, and other biases that
were not measured. To address these potential limitations and
strengthen the evidence for a potential causal role of circulating
inflammatory cytokines in PD risk, Mendelian randomization
(MR) can be implemented [17]. MR is a method that uses
genetic variation as an instrumental variable (IV) to investigate
causal associations between exposures and outcomes. Since
genetic variation is randomly inherited, MR can be considered
as a natural randomized controlled trial (RCT) [18]. In this
study, we extracted valid genetic variants from pooled data of
41 inflammatory cytokines from published genome-wide asso-
ciation studies (GWAS) to examine their association with PD.
We also explored the direction of causation by reversing the
exposure and outcome.

2. Methods

2.1. Study Design. The bidirectional MR study flow for this
study is shown in Figure 1. No additional ethical approval
was required as we used pooled statistics from published

studies. MR analysis was performed following three key
assumptions, namely correlation, independence, and exclu-
sion restrictions [19]. The selected genetic variants were
highly correlated with risk factors (correlation) but not
with any confounders in the outcome associations (indepen-
dence), and they did not influence the outcome in any way
other than the associated risk factors (exclusion restriction)
[20]. In this bidirectional study, we utilized genetic variants
associated with 41 systemic inflammatory cytokines and PD
extracted from published GWAS. This study followed the
Strengthening the Reporting of Observational Studies in Epi-
demiology Using Mendelian Randomization (STROBE-MR)
reporting guidelines [21].

2.2. Data Sources. We extracted genetic variation from pub-
lished large-scale GWASmeta-analyses of circulating concentra-
tions of 41 inflammatory cytokines in 8,293 European
participants from three independent cohorts: the Finnish Young
People’s Cardiovascular Risk Study (YFS), FINRISK1997, and
FINRISK2002 [22]. Quantitative analyses of cytokines were per-
formed from FINRISK 1997 ethylenediaminetetraacetic acid
plasma, FINRISK 2002 heparin plasma, and serum from the
YFS, and were measured using the Bio-Plex Pro Human
Cytokine 27-plex Assay, the Bio-Plex 200 reader, and the Bio-
Plex 6.0 software [22]. The mean age of participants in the YFS
studywas 37 years. Themean age of participants in the FINRISK
investigation was 60 years. Genetic associations were meta-
analyzed for the three cohorts. We collected summary data of
PD from a large-sample GWAS containing 17 studies that
involved only European participants (2,638 cases and 477,380
controls) [23]. Participants had an identical genetic background,
and there was no overlap between exposure GWASs and
outcome GWASs.

2.3. Selection of Genetic Instruments. To fulfill the three key
assumptions of the MR analysis, we selected genetic variants
as IVs that met the following criteria: (1) genetic variants
must be closely associated with exposure. We used P<5×
10−8 as the genome-wide significance threshold to select
single nucleotide polymorphisms (SNPs) that are strongly
associated with PD and inflammatory cytokines. Since few
SNPs were identified as IVs when using inflammatory cyto-
kines as exposure, we selected SNPs with P<5× 10−6 as IVs
for 41 inflammatory cytokines [19]; (2) genetic variants were
assayed by linkage disequilibrium (LD) with the parameters
set at 10,000 kb, R2< 0.001, to identify SNPs in LD status,
and these SNPs were isolated [20]; (3) when merging expo-
sure data and outcome data, use the “harmonise” function
and “action= 2” to remove palindromic sequences; (4) to
exclude potential multiple effects, we searched for secondary
phenotypes of each SNP in PhenoScanner V2, and SNPs
corresponding to phenotypes unrelated to exposure were
excluded, and we eliminated those that were missing from
the results and had not been identified by R software to
identify appropriate alternative SNPs, and the remaining
SNPs were used for further analysis [24]; and (5) for the
screened IVs, we assessed the strength of the IVs using the
variance (R2) and the F statistic, and the correlation between
the IVs and the exposure was considered to be sufficiently
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strong if F> 10 and the results of theMRanalyseswere protected
from weak instrumental bias [25]. F=R2 (NK−1)/(K(1−R2)),
where R2 refers to the cumulative explained variance of the
selected SNPs during exposure, K is the number of SNPs finally
analyzed, and N is the sample size of the selected GWAS [26].

2.4. Statistical Analyses. Five MR analysis methods were con-
ducted in this study to assess the causal association between
inflammatory cytokines and PD, including the inverse vari-
ance weighted (IVW) method, the weighted median (WM)
method, the MR-Egger method, the simple model, and the
weighted model. The IVW method is the main method of
MR analysis and is considered to be the most effective
method to evaluate the causal effect [27]. The premise of
the IVWmethod is that all genetic variations are valid instru-
mental variables, but may not be established in practice [27].
Therefore, we also use other robust methods to give a

consistent estimate of causal parameters without the need
for all genetic variations to be valid IVs. The WM method
is more tolerant of invalid IVs, allowing at least half of the
IVs to be valid [26]. The MR-Egger method provides causal
estimates even when all IVs are invalid [27].

To determine whether IVs have unbalanced pleiotropic
effects that lead to bias, we performed theMendelian random-
ization pleiotropy residual sum and outlier (MR-PRESSO)
method and MR-Egger regression intercept. We calculated
the intercept of the MR-Egger regression, and P >0:05
suggested the presence of horizontal pleiotropy [28].
MR-PRESSO is based on the IVW regression framework and
detects horizontally ambiguous IVs as outliers in regression [29].
The MR-PRESSO method detects possible IV outliers through
global testing and provides unbiased causal estimates by elimi-
nating identified outliers.We used Cochran’s Q statistic to quan-
tify heterogeneity, and P <0:05 was considered significant

41 inflammatory
cytokines: 8,293
Finnish individuals
from YES and 
FINRISK

Parkinson’s disease:
2,638 cases and
477,380 controls from
a large-scale GWAS

Data source Instrumental
variables

SNPs-cytokines

SNPs-Parkinson’s
disease

Univariable MR:
inverse-variance weighted
MR-Egger regression
weighted median
simple mode
weight mode

MR analysis

Sensitivity tests

Outcomes:
Parkinson’s disease

Exposure:
inflammatory cytokines

Confounding factors

Instrumental variables:
SNPs

Stage 1 Exposure:
inflammatory cytokines

Outcomes:
Parkinson’s disease

Outcomes:
inflammatory cytokines

Exposure:
Parkinson’s disease

Stage 2

FIGURE 1: Overview of the assumptions of the Mendelian randomization (MR) design and the study design.
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heterogeneity [26, 30]. We also performed a leave-one-out sen-
sitivity analysis, leaving out each SNP in turn to determine
whether a specific variant drove the association between expo-
sure and outcome, and applying an IVW approach to the
remaining SNPs.

The results are reported as effect sizes (ESs) along with
their corresponding 95% confidence intervals (CIs). All sta-
tistical analyses were conducted using two-sided tests. A
P-value of less than 0.0012 (adjusted to 0.05/41 using the
Bonferroni method) was considered statistically significant,
while a P-value between 0.0012 and 0.05 was considered
suggestive. The TwoSampleMR and MRPRESSO software
packages in R version 4.2.2 were utilized for all analyses.

3. Results

3.1. Causal Effects of Different Inflammatory Cytokines on the
Risk of Parkinson’s Disease. In three independent population
cohorts, all 41 inflammatory cytokines using the less stringent
cutoff value of P<5× 10−6 had three or more SNPs with
F statistics ranging from 20.83 to 132.61, suggesting that the
weak instrumentation bias was not significant (Tables S1–S3).
Figure 2 shows the causal relationship between 41 systemic
inflammatory cytokines and PD risk in the IVW method.

Regarding basic fibroblast growth factor (FGFBasic), we
identified a suggestive association between circulating FGFBasic
levels and PD risk in IVW analysis. Specifically, for one SD
decrease of FGFBasic levels, the OR of PD risk was 0.71 (odd
ratio (OR): 0.71, 95% CI: 0.52–0.96; P= 0.027, Figure S1). Fur-
ther analysis showed a lack of evidence of heterogeneity among
SNPs in the suggestive association of FGFBasic with PD risk as
measured by Cochran’s Q test (P= 0.258; Table S2). In addition,
no potential pleiotropy was detected using the MR-Egger
method (Table S2). For interleukin-2 (IL-2), we found by the
IVW method that genetically determined higher IL-2 levels
(one-SD increase) were suggestively associated with 18% higher
odds for PD (OR: 1.18, 95%CI: 1.01–1.38, P= 0.041, Figure S2).
Furthermore, we did not observe any significant heterogeneity as
measured by Cochran’s Q test (P= 0.117) and no evidence of
potential pleiotropymeasured byMREggermethod (P= 0.947).
Regarding macrophage migration inhibitory factor (MIF), we
identified a suggestive association between circulatingMIF levels
and PD risk in IVW analysis (OR: 1.23, 95%CI: 1.04–1.46,
P=0.018, Figure S3). The scatter plots MR analyses for FGFBa-
sic, IL-2, and MIF on PD are exhibited in FIgures S1–S3. Mean-
while, the P-values for the intercepts from Egger regression did
not demonstrate any pleiotropy (P=0.987) and no evidence of
heterogeneity measured by Cochran’s Q test (P= 0.789).

Apart from FGFBasic, IL-2, andMIF, the other 38 inflam-
matory cytokines were not shown to be associated with PD
risk in the main IVW analysis and four supplementary analy-
ses (Table S1). For each cytokine, no marked heterogeneity
was found between related SNPs, except for granulocyte
colony-stimulating factor (GCSF) and IL-18 (all P <0:05).
Meanwhile, the P-values for the intercepts from Egger regres-
sion did not demonstrate any pleiotropy.

3.2. Causal Impact of Parkinson’s Disease on Different
Inflammatory Cytokines. Overall, 21 SNPs significantly asso-
ciated with PD were identified at the genome-wide signifi-
cant level (P<5× 10−8) and LD based on R2< 0.001.
F statistics ranged from 30.02 to 181.49, suggesting that the
results of MR analyses are rarely affected by weak instrumen-
tal variables (Tables S4–S6). Detailed information on the
reverse IVW analysis is shown in Figure 3 and Table S4.

In the reverse MR analysis, we did not detect heteroge-
neity and horizontal pleiotropy, so the IVW method was
used as the primary analysis of PD with inflammatory factors
(Tables S4–S6). The findings of the IVW method demon-
strated that PD was suggestively correlated with an decreased
level of monokine induced by interferon gamma (MIG; OR:
0.91, 95%CI: 0.84–0.98, P= 0.014), beta nerve growth factor
(bNGF; OR: 0.92, 95%CI: 0.85–0.99, P= 0.019), interleukin-
17 (IL-17; OR: 0.94, 95%CI: 0.89–0.99, P= 0.028), IL-2 (OR:
0.92, 95%CI: 0.86–0.99, P= 0.036), and interferon gamma
(IFNg; OR: 0.95, 95%CI: 0.90–1.00, P= 0.044). The scatter
plots MR analyses for PDF on MIG, bNGF, IL-17, and IFNg
are exhibited in Figure S4–S8. Apart from MIG, bNGF,
IL-17, IL-2, and IFNg, the other 36 inflammatory cytokines
were not shown to be associated with PD in the reverse IVW
analysis and four supplementary analyses (Table S4).

4. Discussion

In this study, we conducted a two-sample MR analysis using
the largest publicly available GWAS data set to explore
potential causal relationships between 41 inflammatory cyto-
kines and PD. We examined 41 inflammatory cytokines,
including growth factors, interleukins, and chemokines, as
exposure variables, with PD as the outcome. Our findings
suggest that FGFBasic, IL-2, and MIF may be involved in the
development of PD as upstream factors. Additionally, when
PD is considered as an exposure variable in MR, it may lead
to decreased levels of MIG, bNGF, IL-17, IL-2, and IFNg
through pathogenic pathways. These results indicate that
several biomarkers could potentially initiate PD, while other
inflammatory regulators are more likely to be downstream
factors in the progression of the disease.

Previous studies have demonstrated a strong link
between PD and inflammatory biomarkers [31, 32]. For
example, a Meta-analysis study involving 25 studies based
on 25 inflammatory biomarkers containing a case group of
1,547 patients and a control group of 1,107 patients found
that patients with PD had elevated levels of inflammatory
cytokines, providing clinical evidence in support of the
inflammatory response accompanying the disease. Cytokines
significantly increased in PD patients compared to healthy
individuals included IL-6, TNF, IL-1β, IL-2, IL-10, and
C-reactive protein (CRT), as well as the chemokines, which
is associated with inflammatory cell infiltration [33]. More-
over, a study was conducted to evaluate the plasma levels of
inflammatory vesicle-associated proteins and the down-
stream inflammatory cytokine IL-18 in 32 patients with
PD and compared them with age-matched unaffected
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Exposures
Chemokines
CTACk
Eotaxin
GROa
IP10
MCP1
MCP3
MIG
MIP1
MIP1b
RANTES
SDF1a
Growth factors
bNGF
FGFBasic
GCSF
HGF
MCSF
PDGFbb
SCF
SCGFb
VEGF
Interleukins
IL-10
IL-12p70
IL-13
IL-16
IL-17
IL-18
IL1b
IL1-ra
IL-2
IL2-ra
IL-4
IL-5
IL-6
IL-7
IL-8
IL-9
Others
IFNg
MIF
TNFa
TNFb
TRAIL

0.4 1 1.6

SNPs

12
17
12
12
16
6
11
4
22
10
9

4
7
9
9
12
14
10
21
18

15
15
14
10
8
13
3
10
7
9
14
8
11
14
8
6

12
10
4
5
16

P-value 

0.256
0.23
0.459
0.89
0.417
0.626
0.452
0.203
0.09
0.454
0.867

0.957
0.027
0.597
0.517
0.246
0.642
0.283
0.289
0.438

0.514
0.848
0.434
0.682
0.087
0.524
0.743
0.308
0.041
0.385
0.289
0.643
0.083
0.332
0.965
0.73

0.889
0.018
0.844
0.921
0.391

OR  (95%CI)

1.14  (0.91–1.41)
1.11 (0.94–1.31)
0.95 (0.82–1.09)
1.01 (0.87–1.18)
0.92 (0.76–1.12)
1.03 (0.90–1.19)
1.07 (0.89–1.29)
0.89 (0.75–1.06)
1.15 (0.98–1.35)
1.08 (0.89–1.31)
0.98 (0.74–1.29)

1.01 (0.81–1.24)
0.71 (0.52–0.96)
0.91 (0.63–1.30)
0.90 (0.67–1.23)
0.93 (0.83–1.05)
0.94 (0.75–1.20)
0.84 (0.61–1.16)
1.06 (0.95–1.18)
0.94 (0.81–1.10)

0.93 (0.75–1.16)
1.02 (0.84–1.24)
1.95 (0.83–1.08)
1.02 (0.92–1.13)
0.82 (0.65–1.03)
0.94 (0.76–1.15)
0.94 (0.67–1.32)
1.10 (0.91–1.33)
1.18 (1.01–1.38)
1.09 (0.89–1.34)
0.88 (0.71–1.11)
1.03 (0.91–1.17)
0.77 (0.57–1.03)
0.96 (0.88–1.05)
1.00 (0.91–1.11)
1.04 (0.82–1.32)

1.02 (0.81–1.27)
1.23 (1.04–1.46)
1.03 (0.74–1.44)
1.01 (0.87–1.16)
0.94 (0.82–1.08)

FIGURE 2: Causal correlations of 41 inflammatory cytokines on Parkinson’s disease in inverse variance weighted method. bNGF, beta nerve
growth factor; CTACK, cutaneous T cell-attracting chemokine; FGFBasic, basic fibroblast growth factor; GCSF, granulocyte colony-
stimulating factor; GROa, growth-regulated oncogene-a; HGF, hepatocyte growth factor; IFNg, interferon gamma; IL, interleukin; IP,
interferon gamma-induced protein 10; MCP1, monocyte chemotactic protein 1; MCP3, monocyte-specific chemokine 3; MCSF, macrophage
colony-stimulating factor; MIF, macrophage migration inhibitory factor; MIG, monokine induced by interferon gamma; MIP1a, macrophage
inflammatory protein-1a; MIP1b, macrophage inflammatory protein−1b; PDGFbb, platelet-derived growth factor BB; RANTES, regulated
upon activation normal T cell expressed and secreted factor; SCF, stem cell factor; SCGFb, stem cell growth factor beta; SDF1a, stromal
cellderived factor-1 alpha; SNPs, single-nucleotide polymorphisms; TNFa, tumor necrosis factor alpha; TNFb, tumor necrosis factor beta;
TRAIL, TNF-related apoptosis-inducing ligand; VEGF, vascular endothelial growth factor; and OR, odd ratio.
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Outcomes
Chemokines
CTACk
Eotaxin
GROa
IP10
MCP1
MCP3
MIG
MIP1
MIP1b
RANTES
SDF1a
Growth factors
bNGF
FGFBasic
GCSF
HGF
MCSF
PDGFbb
SCF
SCGFb
VEGF
Interleukins
IL-10
IL-12p70
IL-13
IL-16
IL-17
IL-18
IL1b
IL1-ra
IL-2
IL2-ra
IL-4
IL-5
IL-6
IL-7
IL-8
IL-9
Others
IFNg
MIF
TNFa
TNFb
TRAIL

0.8 1 1.3

SNPs

21
21
21
21
21
21
21
21
21
21
21

21
21
21
21
21
21
21
21
21

21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21

21
21
21
21
21

P-value 

0.783
0.129
0.878
0.649
0.949
0.474
0.014
0.322
0.302
0.337
0.288

0.019
0.202
0.739
0.172
0.814
0.614
0.065
0.571
0.704

0.426
0.313
0.672
0.522
0.028
0.475
0.371
0.174
0.036
0.808
0.591
0.857
0.378
0.881
0.99
0.29

0.044
0.909
0.724
0.606
0.488

OR  (95%CI)

1.01 (0.94–1.09)
1.96 (0.92–1.01)
1.01 (0.93–1.08)
0.98 (0.91–1.06)
1.00 (0.95–1.05)
1.05 (0.91–1.22)
0.91 (0.84–0.98)
0.96 (0.89–1.04)
0.97 (0.93–1.02)
1.04 (0.96–1.12)
0.97 (0.93–1.02)

0.92 (0.85–0.99)
0.97 (0.92–1.02)
1.01 (0.96–1.06)
0.96 (0.91–1.02)
0.99 (0.89–1.10)
0.99 (0.94–1.04)
0.95 (0.91–1.00)
0.97 (0.89–1.06)
0.99 (0.93–1.05)

0.98 (0.93–1.03)
0.97 (0.93–1.03)
0.98 (0.91–1.06)
0.98 (0.91–1.05)
0.94 (0.89–0.99)
0.97 (0.89–1.06)
0.97 (0.89–1.04)
0.95 (0.88–1.02)
0.92 (0.86–0.99)
1.01 (0.94–1.09)
0.99 (0.94–1.04)
0.99 (0.92–1.07)
0.98 (0.93–1.03)
1.01 (0.93–1.08)
1.00 (0.94–1.06)
0.96 (0.89–1.03)

0.95 (0.90–1.00)
1.00 (0.92–1.07)
0.99 (0.92–1.06)
1.03 (0.92–1.16)
1.02 (0.97–1.07)

FIGURE 3: Causal correlations of Parkinson’s disease on 41 inflammatory cytokines in inverse variance weighted method. bNGF, beta nerve
growth factor; CTACK, cutaneous T cell-attracting chemokine; FGFBasic, basic fibroblast growth factor; GCSF, granulocyte colony-
stimulating factor; GROa, growth-regulated oncogene-a; HGF, hepatocyte growth factor; IFNg, interferon gamma; IL, interleukin; IP,
interferon gamma-induced protein 10; MCP1, monocyte chemotactic protein 1; MCP3, monocyte-specific chemokine 3; MCSF, macrophage
colony-stimulating factor; MIF, macrophage migration inhibitory factor; MIG, monokine induced by interferon gamma; MIP1a, macrophage
inflammatory protein-1a; MIP1b, macrophage inflammatory protein-1b; PDGFbb, platelet-derived growth factor BB; RANTES, regulated
upon activation normal T cell expressed and secreted factor; SCF, stem cell factor; SCGFb, stem cell growth factor beta; SDF1a, stromal
cellderived factor−1 alpha; SNPs, single-nucleotide polymorphisms; TNFa, tumor necrosis factor alpha; TNFb, tumor necrosis factor beta;
TRAIL, TNF-related apoptosis-inducing ligand; VEGF, vascular endothelial growth factor; OR, odd ratio.
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controls [34]. The study findings suggest that levels of Cas-
pase-1 and IL-18 proteins were significantly higher in
patients with PD compared to controls. The researchers
assessed the reliability of each protein as a biomarker of
inflammation in PD by plotting their subject operating char-
acteristic (ROC) curves. Caspase-1 showed an AUC value of
0.96, a specificity of 85%, and a sensitivity of 96.88%. The
inflammatory cytokine IL-18 had an AUC value of 0.85, a
specificity of 75%, and a sensitivity of 90.63% [34]. Further-
more, a multiple linear regression analysis using a stepwise
approach was performed by the researchers, demonstrating
that inflammatory vesicle proteins are reliable biomarkers of
inflammation in PD. Additionally, it was found that inflam-
matory vesicle proteins significantly contribute to IL-18
levels in PD [34].

Neuroinflammation is a common pathologic feature of sev-
eral central nervous system diseases [35]. It has been reported
that neuroinflammation plays the role of a double-edged sword
in the nervous system [35]. A moderate inflammatory response
can remove necrotic cells and toxic proteins and maintain
the stability of the blood–brain barrier, which is conducive to
the recovery of the disease, but an excessive inflammatory
response can cause a large amount of inflammatory cytokines
to be released, which can damage the blood–brain barrier, mito-
chondrial function, and cellular energy metabolism, and aggra-
vate the damage of brain tissue [36]. In our forwardMR analysis,
IVW results suggest that FGFBasic, IL-2, and MIF may be
involved in the development of PD as upstream factors. FGFBa-
sic is amultifunctional peptide growth factor that activates intra-
cellular signaling cascades by binding to tyrosine kinase
fibroblast growth factor receptors (FGFRs) [37]. FGFs are widely
present in various organisms and have crucial roles in cellular
processes through paracrine, autocrine, or endocrine functions.
They are involved in embryonic development, angiogenesis, tis-
sue homeostasis, wound repair, and cancer genesis and develop-
ment [38]. During embryonic development, FGF regulates cell
proliferation, differentiation, and migration, contributing to
morphogenesis. In adults, FGF serves as a homeostatic factor,
regulating tissue repair, wound healing, nervous system control,
and tumor angiogenesis [38]. IL-2, a growth factor related to
T cells, has the ability to enhance the killing activity of NK cells
and stimulate the production of immunoglobulins by B cells [39].
It also plays a role in the development of regulatory T cells (Tregs),
which contribute to peripheral T cell immune tolerance and reg-
ulate the proliferation and differentiation of activated T cells [40].
Tregs, as important immune negative regulatory cells, play a
crucial role in various neurological diseases. Loss of Tregs
exacerbates the inflammatory response in mouse models of
multiple sclerosis (MS), stroke, or traumatic brain injury, leading
to worsened disease progression [41]. IL-2 is vital for the survival
and stability of Tregs, and low-dose IL-2 has shown promising
outcomes in different autoimmune disease models. Yshii et al.
[41] discovered the regulatory effect of IL-2 on Treg cells in the
brain and proposed an astrocyte-based gene delivery system
capable of crossing the blood–brain barrier and enhancing the
immune response. They observed IL-2 secretion by astrocytes
and its protective effects on the nervous system in mouse
models of traumatic brain injury, stroke, and MS [41].

Parthanatos-associated apoptosis-inducing factor nuclease
(PAAN), also known as macrophage migration inhibitory
factor (MIF), is a member of the PD-D/E(X)K nuclease family
[42]. It serves as the final executioner in parthanatos [43]. In a
study by Park et al. [44], it was demonstrated that pathologic
α-synuclein (α-syn) triggers neurological degeneration
through the activity of PAAN/MIF nuclease. Deletion of the
PAAN/MIF gene and amutant lacking nuclease activity effec-
tively prevented dopaminergic neuronal deficits and behav-
ioral defects in the α-syn preformed fiber (PFF) mouse model
[44]. Consistent with the findings of many previous observa-
tional studies, altered levels of MIF and IL-2 were associated
with the risk of PD. This may be attributed to the potential
role of an active inflammatory response in neuronal
degeneration.

In reverse MR analysis, we found that PD affects the
levels of MIG, bNGF, IL-17, IL-2, and IFNg through patho-
logical pathways. bNGF, a member of the neurotrophic fac-
tors family, consists of β subunits. It acts as a regulator for
nerve cell growth, with dual functions of neurotrophic sup-
port and promoting neurite growth. bNGF plays a crucial
role in regulating the development, differentiation, growth,
regeneration, and functional characteristics of both the cen-
tral and peripheral nervous systems [45]. IL-17 is closely
associated with chronic inflammatory diseases such as MS
and arthritis [46]. It is a highly conserved component of the
vertebrate immune system and plays a crucial role in regu-
lating infections and autoimmune diseases [46]. Regen et al.
[46] demonstrated that mice lacking IL-17 are less suscepti-
ble to experimental autoimmune encephalomyelitis (EAE).
However, when the bacterial flora is restored, their suscepti-
bility to EAE is also restored. Moreover, restoring the expres-
sion of IL-17 in the intestinal epithelium can also reinstate
the susceptibility of IL-17-deficient mice to EAE. These find-
ings suggest that IL-17 indirectly modulates autoimmune
diseases of the central nervous system through the influence
of intestinal flora [47]. Inconsistent with the results of previ-
ous studies, our findings suggest that PD leads to reduced
levels of inflammatory factors such as MIG, bNGF, IL-17,
IL-2, and IFNg through pathological pathways, which may
be attributed to the fact that the levels of inflammatory mar-
kers are influenced by the course, extent, and duration of PD.

5. Strengths

To our knowledge, no MR studies have been reported on the
causal effect of inflammatory markers on PD or vice versa.
Our study utilized multiple IVs from GWAS of inflamma-
tory markers and PD to increase the statistical efficacy of
detecting causality, providing a more precise assessment of
effect size. According to our MR analysis, there is a causal
relationship between certain inflammatory factors and PD
(FGFBasic, IL-2, and MIF, etc.). Therefore, it is crucial to
identify and predict PD at an early stage. We encourage
researchers to focus on studying PD and inflammatory fac-
tors, actively search for risk factors associated with PD,
explore predictive markers for the development and progres-
sion of PD, and offer early intervention and treatment.
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6. Conclusion

In conclusion, this MR analysis shows suggestive associa-
tions between circulating levels of FGFBasic, IL-2, and MIF
and PD risk. In addition, MIG, bNGF, IL-17, and IFNg are
more likely to be involved in the development of down-
stream PD. Our findings bring new insights into the patho-
genesis of PD.

Data Availability

The original contributions presented in the study are included
in the article/Supplementary Materials. Further inquiries can
be directed to the corresponding authors.

Additional Points

Limitations. Our study has several limitations. Firstly, the
second and third hypotheses could not be accurately tested
due to the constraints of MR analysis, potentially introducing
bias. Secondly, our survey data came from two large-scale
global genomic studies, and due to the lack of specific demo-
graphic information and clinical records, it was not possible
to analyze subgroups of Parkinson’s patients, such as early-
onset PD, male PD, female PD, etc. Thirdly, our data only
included assessments of bioinflammatory marker concentra-
tions in peripheral blood, rather than cerebrospinal fluid sam-
ples. Analyzing the inflammatory components in cerebrospinal
fluid could provide a clearer understanding of the neuroinflam-
matory process underlying PD. Fourthly, although we have
learned that the functional impact of PD may be altered by a
series of interactions between cytokines, there is a lack of a series
of experiments (e.g., cytokine profiling by enzyme linked immu-
nosorbent assay (ELISA) or multiplex assays) to understand
complex interaction of cytokines in PD pathology. We hope
that future researchers will undertake a series of experiments
on PD to gain a better understanding of the complex cytokine
interactions involved in its pathology. Lastly, the findings may
not be universally applicable, and caution is neededwhen extrap-
olating the conclusions to other ethnicities, as the genetic and
environmental factors influencing PD may vary across
populations.
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