
Appendix A

Architecture

Overview of the architecture is depicted in Figure 1. The down- and up blocks define the down- and

upscaling path of the architecture. The down block decreases the resolution of its input with a 

convolutional layer (with stride=2). The up block increases the resolution of its input with a 

transposed convolutional layer. The down- and up blocks contain a residual block followed by an 

alpha dropout layer (with p=0.5) [1] which maintains the self-normalising property within the 

model after performing a dropout. The residual block introduced an identity shortcut connection 

which enables deeper networks without degrading network performance due to poor convergence of

learning [2].

Figure 1: Overview of the deep learning architecture.

The residual block introduced an identity shortcut connection which enables deeper networks 

without degrading network performance due to poor convergence of learning [2] (Figure 2).

Figure 2: The overview of the residual block: the input is expanded to the desired number of filters

with a convolutional 2D layer with kernel size 1. After a sequence of convolutional layers with 

kernel size 3, batch normalisation [3] and ReLU activation function [4], the output is summed with

the output of the first convolutional layer followed by a final ReLU activation function.

Training

The Adam optimizer [5] was used to train each model with the generalized Dice loss [6] as an 

objective function for a maximum number of 10.000 epochs. The initial learning rate was 1e-2 but 



was reduced after each epoch using the following formula: 1e-2/√epoch . An L2 regularizer with

a small lambda of 1e-3 was used to prevent overfitting. The weights of the convolutional layers 

were initialized with orthogonal random matrices [7] with a gain of √(2)  and biases were set to a 

small value of 0.1. All hyper-parameters were obtained by performing k-fold cross-validation on the

training set (with k = 5) and a fixed random seed (Table 1).

Optimizer Adam [5] Learning rate 1e-2 Weight init Orthogonal 

matrices [7]

Objective Dice [6] Learning decay 1e-2/√epoch Bias init 0.1

Max. epochs 10000 Regularizer L2 with λ=1e-3 K-folding k=5

Table 1: Training details. All hyper-parameters were obtained by performing k-fold cross-

validation on the training set (with k = 5) and a fixed random seed.

Data-augmentation

A high capacity model and data-augmentation handled the bias-variance trade-off specific to 

statistics and machine learning. The high capacity model yielded a low bias because it could  

identify relevant relations between features and target outputs. Data-augmentation lowered the high 

variance caused by the small size of the training set. The model was able to generalize well beyond 

the training set with a low bias and low variance.

The following data augmentation strategies were used: random rotation, random value dropout and 

random calcification placement, each with probability 0.5 of occurring during sample generation. 

Random rotation rotates the input images with a random angle (sampled between -45 and 45 

degrees) to increase the robustness of the model against rotation. Random value dropout fills 

randomly positioned squares in the aortic annular planes with 0’s, which is similar to the working of

dropout [8] but was added to control the Hounsfield values of the input before the batch 

normalisation of the model. Most of the aortic annular planes contained an amount of calcification 

around the aortic annulus which interfered with the accuracy. Therefore the addition of random 

calcification in the aortic annular plane was used during training. This addition increased the 

robustness of the model for calcified areas. It was achieved by filling randomly positioned squares 

in the aortic annular planes with Hounsfield values that represent calcification. The calcification 

values were sampled from a normal distribution (mu = 1100 and sigma = 50, which were obtained 

from the training cohort) (Table 2). 

Rotation Rotates the input images with a random angle: sampled between -45 and 

45 degrees



Calcification 

placement

Add random areas of calcification in the input images: samples from 

normal distribution μ=1100 and σ = 50.

Table 2: Data-augmentation details. All parameters were similarly obtained as the training details. 
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