Research Article

Evaluate Short-Term Outcomes of abciximab in ST-Segment Elevation Myocardial Infarction Patients Undergoing Percutaneous Coronary Intervention: A Meta-Analysis of Randomized Clinical Trials

Nan Bai,1 Ying Niu,1 Ying Ma,1 Yao-Sheng Shang,1 Peng-Yu Zhong,1 and Zhi-Lu Wang2

1The First Clinical Medical College of Lanzhou University, Lanzhou, China
2Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, China

Correspondence should be addressed to Zhi-Lu Wang; wangzhl@lzu.edu.cn

Received 21 January 2022; Revised 23 April 2022; Accepted 26 April 2022; Published 29 May 2022

Copyright © 2022 Nan Bai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objectives. This meta-analysis was to verify the short-time efficacy and safety of abciximab in patients with ST-segment elevation myocardial infarction (STEMI) undergoing percutaneous coronary intervention (PCI).

Background. Abciximab has long-term efficacy in patients with STEMI undergoing PCI, but the short-term efficacy is still controversial.

Methods. We conducted a systematic review and meta-analysis compared with or without abciximab in patients with STEMI undergoing PCI. The relevant randomized controlled trials were included by searching PubMed, EMBASE, Cochrane Library, and Web of Science databases and other sources. The relative risk (RR) and 95% confidence intervals (CI) of outcomes were calculated by the fixed-effects model.

Results. Ten randomized controlled trials with 5008 patients met inclusion criteria. There were no significant differences in risk of all-cause death at 30-day (RR 0.79, CI 0.55–1.12, \(P = 0.18 \)), major bleeding (1.37, 0.93–2.03, \(P = 0.11 \)), and transfusion (1.23, 0.94–1.61, \(P = 0.13 \)) between the two groups. However, there were significant differences in risk of all-cause death at 6 months (0.57, 0.36–0.90, \(P = 0.02 \)), recurrent myocardial infarction (0.55, 0.33–0.92, \(P = 0.02 \)), repeat revascularization (0.58, 0.43–0.78, \(P = 0.0004 \)), final TIMI flow < 3 (0.77, 0.62–0.96, \(P = 0.02 \)), minor bleeding (1.29, 1.02–1.63, \(P = 0.04 \)), and thrombocytopenia (2.04, 1.40–2.97, \(P = 0.0002 \)).

Conclusions. The application of abciximab can lead to a lower risk of reinfarction, revascularization, and all-cause death at 6 months, but a higher risk of minor bleeding, and thrombocytopenia.

1. Introduction

As the first glycoprotein (GP) IIb/IIIa inhibitor (GPI) studied, abciximab inhibits thrombus formation by blocking the binding of fibrinogen, von Willebrand factor, or other ligands to IIb/IIIa receptors [1]. Abciximab has a strong antiplatelet aggregation effect and can exert the maximal antiplatelet effect 10 minutes after its bolus administration [2]. In the 2000s, it was used as an antiplatelet drug for patients with non-ST-segment elevation myocardial infarction and ST-segment elevation myocardial infarction (STEMI) undergoing percutaneous coronary intervention (PCI) [3, 4]. In addition, abciximab can bind to the vitronectin receptor and may have non-GP IIb/IIIa-dependent anti-inflammatory properties, and its importance in clinical outcomes is not completely understood [1, 5].

Animal experiments and early clinical trials have demonstrated that abciximab can provide potent action of antiaggregation [6, 7]. Subsequently, various studies on the efficacy of abciximab in patients undergoing PCI were carried out. Several trials have consistently concluded that abciximab can bring long-term clinical benefits in reducing composite ischemic endpoints, including mortality. The long-term refers to a follow-up period of at least 1 year and sustained out to 3 years [8–11]. However, the short-term efficacy of abciximab in patients with STEMI undergoing PCI is controversial in the follow-up period of 30-day or 6-month. Two meta-analyses showed that abciximab...
significantly reduced the incidence of the primary endpoint at 30 days and 6 months [12, 13]. Another study showed the primary endpoint of all-cause death, myocardial infarction (MI), or urgent revascularization decreased significantly only at 30 days, but not at 6 months [14]. Even trials have shown there is no clinical benefit with the application of abciximab regardless of at 30 days or 6 months [15, 16]. Some trials have shown that the short-term benefit of abciximab is affected by thienopyridines or fibrinolysis [17, 18]. Obviously, this issue needs clarification further.

Therefore, this meta-analysis was to verify the short-time efficacy and safety of abciximab in patients with STEMI undergoing PCI. The results showed that despite the increased risk of bleeding and thrombocytopenia, abciximab can provide short-term benefits for patients with STEMI, and the adverse reactions of the drug can be weakened by selecting thienopyridines.

2. Methods

The literature was searched by PubMed, Embase, Cochrane Library, Web of Science databases, and clinicalTrials.gov from inception to 17 April 2022. The study only included randomized controlled trials comparing short-term efficacy and safety of abciximab in patients with STEMI undergoing PCI. The keywords were as follows: "abciximab," "ST-segment elevation myocardial infarction," and "randomized controlled trial" (Supplementary Table 1). There were no language and year of publication restrictions. An update reminder for PubMed was created to keep up with the latest research. The inclusion criterion of the study met the following requirements: (1) STEMI defined clinically with persistent myocardial ischemia symptoms and electrocardiographic evidence but without angiographic selection criteria, (2) reperfusion therapy with PCI, (3) comparison of patients with or without abciximab, and (4) the trials that reported the risk of mortality at 30 days or 6 months. The exclusion criterion of the study included nonrandomized controlled trial and observation studies, as well as patients with non-STEMI. The title, abstract, and full text were independently read to determine whether the trials met the inclusion and exclusion criteria by 2 investigators (Bai N and Niu Y). The discrepancy was solved by consultation with the third party (Ma Y, Shang YS, and Zhong PY). Obviously, this issue needs clarification further.

The characteristics and outcomes of trials included are shown (Tables 1, 2). All the patients included were adults (>18 years old). The average age of the patients included in the study was 61.06 years old. Meanwhile, 75.04% patients were males, patients with hypertension accounted for 52.77%, and patients with diabetes mellitus accounted for 17.15%. The proportion of patients with dyslipidemia was 42.71%, who included patients with hyperlipidemia and hypercholesterolemia. The onset time of acute myocardial infarction in the included patients ranged from 6 hours to 48 hours. In 8 trials, patients randomized to the abciximab

3. Results

3.1. Search Results and Study Characteristics. A total of 799 articles are included which are extracted from the above medical databases. Another article named “Deferred stenting in patients with anterior wall STEMI” came from the clinicalTrials.gov, and it is still recruiting patients (NCT03744000). Finally, 18 articles are initially identified by reading title and abstract (Figure 1). After reading the full text, ten randomized controlled trials with a total of 5008 patients with STEMI undergoing PCI were determined [3, 4, 22–29]. Among them, 2518 patients were divided into abciximab group and 2490 patients were divided into control group. The characteristics and outcomes of trials included are shown (Tables 1, 2). All the patients included were adults (>18 years old). The average age of the patients included in the study was 61.06 years old. Meanwhile, 75.04% patients were males, patients with hypertension accounted for 52.77%, and patients with diabetes mellitus accounted for 17.15%. The proportion of patients with dyslipidemia was 42.71%, who included patients with hyperlipidemia and hypercholesterolemia. The onset time of acute myocardial infarction in the included patients ranged from 6 hours to 48 hours. In 8 trials, patients randomized to the abciximab
Table 1: Characteristics of the trials included.

<table>
<thead>
<tr>
<th>Study</th>
<th>Journal</th>
<th>Publication year</th>
<th>No. of centers</th>
<th>No. of patients</th>
<th>Patients</th>
<th>Randomization</th>
<th>Types of stent</th>
<th>Time of treatment</th>
<th>Follow-up duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antoniucci et al. [27]</td>
<td>JACC</td>
<td>2003</td>
<td>—</td>
<td>400</td>
<td>With CS</td>
<td>Abciximab (n = 200) vs. placebo (n = 200)</td>
<td>BMS Before PCI</td>
<td>30 days 6 months</td>
<td></td>
</tr>
<tr>
<td>Brener et al. [22]</td>
<td>Circulation</td>
<td>1998</td>
<td>36</td>
<td>483</td>
<td>No CS</td>
<td>Abciximab (n = 241) vs. placebo (n = 242)</td>
<td>BMS Before angiography</td>
<td>30 days 6 months</td>
<td></td>
</tr>
<tr>
<td>Ernst et al. [23]</td>
<td>JACC</td>
<td>2004</td>
<td>Single-center</td>
<td>119</td>
<td>No CS</td>
<td>Abciximab (n = 30) vs. placebo (n = 89)</td>
<td>BMS Before PCI</td>
<td>—</td>
<td>In-hospital 30 days</td>
</tr>
<tr>
<td>Mehilli et al. [24]</td>
<td>Circulation</td>
<td>2009</td>
<td>5</td>
<td>800</td>
<td>No CS</td>
<td>Abciximab (n = 401) vs. placebo (n = 399)</td>
<td>BMS Before PCI</td>
<td>30 days</td>
<td></td>
</tr>
<tr>
<td>Montalescot et al. [4]</td>
<td>N Engl J Med</td>
<td>2001</td>
<td>26</td>
<td>300</td>
<td>With CS</td>
<td>Abciximab (n = 149) vs. placebo (n = 151)</td>
<td>BMS Before angiography</td>
<td>30 days 6 months</td>
<td></td>
</tr>
<tr>
<td>Neumann et al. [25]</td>
<td>Circulation</td>
<td>1998</td>
<td>—</td>
<td>200</td>
<td>—</td>
<td>Abciximab (n = 102) vs. placebo (n = 98)</td>
<td>BMS —</td>
<td>14 days 30 days</td>
<td></td>
</tr>
<tr>
<td>Neumann et al. [25]</td>
<td>JACC</td>
<td>2000</td>
<td>—</td>
<td>401</td>
<td>—</td>
<td>Abciximab (n = 201) vs. placebo (n = 200)</td>
<td>BMS —</td>
<td>—</td>
<td>30 days 1 year</td>
</tr>
<tr>
<td>Petronio et al. [28]</td>
<td>Am Heart J</td>
<td>2005</td>
<td>—</td>
<td>60</td>
<td>No CS</td>
<td>Abciximab (n = 30) vs. placebo (n = 30)</td>
<td>BMS Before PCI</td>
<td>30 days 6 months</td>
<td></td>
</tr>
<tr>
<td>Tcheng et al. [26]</td>
<td>Circulation</td>
<td>2003</td>
<td>76</td>
<td>2082</td>
<td>No CS</td>
<td>Abciximab (n = 1052) vs. placebo (n = 1030)</td>
<td>BMS —</td>
<td>30 days 1 year</td>
<td></td>
</tr>
<tr>
<td>Zorman et al. [29]</td>
<td>Am J Cardiol</td>
<td>2002</td>
<td>—</td>
<td>163</td>
<td>With CS</td>
<td>Abciximab (n = 112) vs. placebo (n = 51)</td>
<td>BMS Both</td>
<td>In-hospital 6 months</td>
<td></td>
</tr>
</tbody>
</table>

CS: cardiac shock; BMS: bare-metal stent; DES: drug-eluting stent; PCI, percutaneous coronary intervention.
group received the drug as a bolus of 0.25mg/kg body weight, followed by a 12h infusion at a rate of 0.125g/kg/min. In the other 2 trials, the maintenance dose of abciximab was $10\mu\text{g/min}$ while the initial dose was the same. Unfractionated heparin and aspirin were used in all studies, but the specific usage and dosage were not exactly the same in different trials. Clopidogrel and ticlopidine were used in all studies, but the specific usage and dosage were not exactly the same.

3.2. Quality Assessment. All studies in this meta-analysis were randomized controlled trials, and the risk of bias for each trial was assessed by the Cochrane tool of Collaboration. The results of the quality assessment are presented (Supplementary Figure 1). The risk of bias in selection, detection, and reporting was low in all trials, but the risk of bias for performance was high in 7 of 10 trials because 5 of 7 trials were nonblind and 2 were single-blind. In addition, a high risk of bias for attrition was found in 5 trials because of incomplete data on clinical outcomes.

The assessment of the evidence quality for each outcome is shown (Supplementary Table 2). The evidence quality of outcomes was determined to be moderate for major bleeding, minor bleeding, thrombocytopenia, and high for all-cause death at 30 days and 6 months, recurrent MI, repeat revascularization, final TIMI flow <3, and transfusion.

The TSA of each outcome is conducted (Supplementary Figures 3 and 4). The curve of the all-cause death at 6 months reached both the conventional boundary and TSA boundary, while the curve of repeat revascularization and thrombocytopenia exceeded the expected sample size. The curve of the recurrent MI, final TIMI flow <3, and minor bleeding met the conventional boundary only, and the curve of the all-cause death at 30 days, major bleeding, and transfusion did not meet the conventional boundary, TSA boundary, and anticipated sample size. There was no publication bias, and the results showed that the distribution is symmetrical in the funnel plot, and the P value of Begg’s and Egger’s is >0.05 in all outcomes (Supplementary Figures 3 and 4).
<table>
<thead>
<tr>
<th>Study</th>
<th>Patients (n)</th>
<th>Age (mean) (years)</th>
<th>Male (%)</th>
<th>Hypertension (%)</th>
<th>Diabetes (%)</th>
<th>Previous MI (%)</th>
<th>Previous TVR (%)</th>
<th>Smoking (%)</th>
<th>Dyslipidemia (%)</th>
<th>Multivessel disease (%)</th>
<th>Aspirin</th>
<th>Unfractionated heparin</th>
<th>Clopidogrel</th>
<th>Ticlopidine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antoniucci 2003</td>
<td>200</td>
<td>64</td>
<td>76</td>
<td>46</td>
<td>17</td>
<td>10</td>
<td>6</td>
<td>39</td>
<td>40</td>
<td>54</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Brener 1998</td>
<td>200</td>
<td>63</td>
<td>79</td>
<td>47</td>
<td>19</td>
<td>12</td>
<td>9</td>
<td>41</td>
<td>46</td>
<td>57</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ernst 2004</td>
<td>241</td>
<td>60</td>
<td>73</td>
<td>46</td>
<td>23</td>
<td>17</td>
<td>14</td>
<td>41</td>
<td>50</td>
<td>62</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mehilli 2009</td>
<td>242</td>
<td>62</td>
<td>72</td>
<td>50</td>
<td>22</td>
<td>21</td>
<td>2</td>
<td>41</td>
<td>28</td>
<td>62</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Montalescot 2001</td>
<td>30</td>
<td>62.5</td>
<td>70</td>
<td>43.0</td>
<td>9.0</td>
<td>10.0</td>
<td>4.0</td>
<td>63</td>
<td>28</td>
<td>52.0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Neumann 1998</td>
<td>401</td>
<td>66.0</td>
<td>70</td>
<td>35.0</td>
<td>19.0</td>
<td>10.0</td>
<td>4.0</td>
<td>63</td>
<td>39.6</td>
<td>52.0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Neumann 2000</td>
<td>399</td>
<td>62.4</td>
<td>70</td>
<td>30.0</td>
<td>19.0</td>
<td>10.0</td>
<td>2.0</td>
<td>63</td>
<td>42.0</td>
<td>42.0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zorman 2002</td>
<td>149</td>
<td>61.8</td>
<td>70</td>
<td>30.0</td>
<td>19.0</td>
<td>10.0</td>
<td>2.0</td>
<td>63</td>
<td>44.0</td>
<td>44.0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tcheng 2002</td>
<td>151</td>
<td>60.6</td>
<td>70</td>
<td>30.0</td>
<td>19.0</td>
<td>10.0</td>
<td>2.0</td>
<td>63</td>
<td>44.0</td>
<td>44.0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zorman 2002</td>
<td>102</td>
<td>62.1</td>
<td>70</td>
<td>65.7</td>
<td>19.0</td>
<td>10.0</td>
<td>2.0</td>
<td>63</td>
<td>44.0</td>
<td>44.0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

A, the abciximab group; C, the control group; MI, myocardial infarction.
Table

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Abciximab Events</th>
<th>Control Events</th>
<th>Total Events</th>
<th>Total (95% CI)</th>
<th>Weight (%)</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antonyucci 2003</td>
<td>7</td>
<td>200</td>
<td>207</td>
<td>710 (95% CI)</td>
<td>32%</td>
<td>0.88 [0.32, 2.37]</td>
<td></td>
</tr>
<tr>
<td>Brener 1998</td>
<td>3</td>
<td>241</td>
<td>244</td>
<td>1052 (95% CI)</td>
<td>7%</td>
<td>0.75 [0.17, 3.33]</td>
<td></td>
</tr>
<tr>
<td>Mehilli 2009</td>
<td>13</td>
<td>401</td>
<td>414</td>
<td>1672 (95% CI)</td>
<td>12%</td>
<td>1.29 [0.57, 2.92]</td>
<td></td>
</tr>
<tr>
<td>MONTALESCOT 2001</td>
<td>5</td>
<td>149</td>
<td>154</td>
<td>571 (95% CI)</td>
<td>9%</td>
<td>0.51 [0.18, 1.45]</td>
<td></td>
</tr>
<tr>
<td>Neumann 1998</td>
<td>2</td>
<td>102</td>
<td>104</td>
<td>366 (95% CI)</td>
<td>7%</td>
<td>0.48 [0.09, 2.56]</td>
<td></td>
</tr>
<tr>
<td>Neumann 2000</td>
<td>4</td>
<td>201</td>
<td>205</td>
<td>751 (95% CI)</td>
<td>8%</td>
<td>0.44 [0.14, 1.41]</td>
<td></td>
</tr>
<tr>
<td>Tcheng 2003</td>
<td>20</td>
<td>1052</td>
<td>1072</td>
<td>3024 (95% CI)</td>
<td>14%</td>
<td>0.85 [0.47, 1.54]</td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI): 2446 / 2320 = 100.0 % 0.79 [0.55, 1.12]

Heterogeneity: Chi^2 = 3.51, df = 6 (P = 0.74); I^2 = 0%

Test for overall effect: Z = 1.33 (P = 0.18)

Figure 2: Continued.
Study or Subgroup & Abciximab & Control & Weight (%) & Risk Ratio & Risk Ratio
& Events & Total & Events & Total & M-H, Fixed, 95% CI & M-H, Fixed, 95% CI
Antonucci 2003 & 6 & 200 & 8 & 200 & 4.7 & 0.75 [0.27, 2.12]
Brener 1998 & 36 & 241 & 36 & 242 & 21.2 & 1.00 [0.66, 1.54]
Ernst 2004 & 4 & 30 & 17 & 89 & 5.1 & 0.70 [0.25, 1.91]
Mehilil 2009 & 31 & 401 & 31 & 399 & 18.3 & 1.00 [0.62, 1.61]
MONTALESCOT 2005 & 7 & 149 & 20 & 151 & 11.7 & 0.35 [0.15, 0.81]
Patrimonio 2005 & 1 & 39 & 4 & 30 & 2.4 & 0.25 [0.03, 2.11]
Tcheng 2003 & 37 & 1052 & 56 & 1030 & 33.4 & 0.65 [0.43, 0.97]
Zorman 2002 & 11 & 112 & 4 & 51 & 3.2 & 1.25 [0.42, 3.74]
Total (95% CI) & 2215 & 2192 & 100.0 & 0.77 [0.62, 0.96]

Figure 2: Comparison of primary efficacy outcomes between the abciximab and control groups. (a) All-cause death at 30-day, (b) all-cause death at 6 month, (c) recurrent MI, (d) repeat revascularization, and (e) final TIMI flow <3.

\[P = 0.0004, I^2 = 0\% , P_{\text{Heterogeneity}} = 0.91 \] were significantly lower in the abciximab group than those in the control group. In addition, 8 trials mentioned the outcome of final TIMI flow <3, and there is a significant difference between the two groups (6.0% vs. 8.0%, RR 0.77, 0.62–0.96, \(P = 0.02 \), \(I^2 = 18\% , P_{\text{Heterogeneity}} = 0.29 \)) (Figure 2(e)).

3.4. The Safety Outcomes and Sensitivity Analysis

Five trials reported the risk of major bleeding and minor bleeding. The result reveals that the risk of major bleeding events was similar between the two groups, with mild heterogeneity but without significant difference (2.9% vs. 2.4%, RR 1.37, 0.93–2.03, \(P = 0.11 , I^2 = 15\% , P_{\text{Heterogeneity}} = 0.32 \)) (Figure 3(a)). The risk of minor bleeding events increased in the abciximab group compared with the control group (7.0% vs. 5.4%, RR 1.29, 1.02–1.63, \(P = 0.04 , I^2 = 67\% , P_{\text{Heterogeneity}} = 0.02 \)) (Figure 3(b)). However, there was moderate heterogeneity in the outcome of minor bleeding. One trial produced heterogeneity was identified by sensitivity analysis, the heterogeneity of minor bleeding outcomes was reduced after excluding the results of this trial (\(I^2 = 42\% , P_{\text{Heterogeneity}} = 0.16 \)) [26], and there is still a significant difference between the two groups (13.0% vs. 7.8%, RR 1.59, 1.22–2.09, \(P = 0.0007 \)) (Supplementary Figure 5). Five trials declared the thrombocytopenia events, and the incidence of thrombocytopenia outcome is significantly higher in the abciximab group (4.8% vs. 2.3%, RR 2.04, 1.40–2.97, \(P = 0.0002 , I^2 = 1\% , P_{\text{Heterogeneity}} = 0.40 \)) (Figure 3(c)). In addition, there is no significant difference in the incidence of transfusion between the two groups in 6 trials (5.5% vs. 4.5%, RR 1.23, 0.94–1.61, \(P = 0.13 , I^2 = 0\% , P_{\text{Heterogeneity}} = 0.42 \)) (Figure 3(d)).

3.5. The Meta-Regression Analysis and Subgroup Analyses

The meta-regression analysis is performed according to the year of publication, sample size (the total number of patients over 1000 is defined as a large sample trial, while that less than 400 is defined as a small sample trial, and that between 400 and 1000 is defined as a medium sample trial), patient classification (patients with cardiac shock were divided into the high-risk group and patients without cardiac shock were divided into the low-risk group), and timing of application of abciximab (before coronary angiography or before PCI but after coronary angiography). Sample size may be a factor that results in the heterogeneity of minor bleeding (Supplementary Figures 6A–6D).

The subgroup analyses are performed in major bleeding and minor bleeding according to the antiplatelet strategy (combined with clopidogrel or ticlopidine) (Figures 4(a) and (b)). In major bleeding, there was no significant difference in risk of major bleeding between the two groups in patients with clopidogrel (1.6% vs. 3.9%, RR 0.58, 0.23–1.46, \(P = 0.25 , I^2 = 57\% , P_{\text{Heterogeneity}} = 0.13 \)) instead, there was a significant difference in patients with ticlopidine (3.3% vs. 1.9%, RR 1.76, 1.13–2.75, \(P = 0.01 , I^2 = 0\% , P_{\text{Heterogeneity}} = 0.94 \)). Meanwhile, there were differences between the two strategies with statistically significant (\(I^2 = 77.9\% , P_{\text{interaction}} = 0.03 \)) (Figure 4(a)). In minor bleeding, no significant difference was found in the clopidogrel group (3.9% vs. 1.8%, RR 2.24, 1.00–5.01, \(P = 0.05 , I^2 = 0\% , P_{\text{Heterogeneity}} = 0.76 \)) and the ticlopidine group (8.0% vs. 6.7%, RR 1.21, 0.94–1.55, \(P = 0.13 , I^2 = 80\% , P_{\text{Heterogeneity}} = 0.007 \)). In addition, the difference between the two groups was not statistically significant (\(I^2 = 51.3\% , P_{\text{interaction}} = 0.15 \)) (Figure 4(b)).

When only double-blind trials were included [4, 22, 24], the application of abciximab still increased the risk of minor bleeding, but with moderate heterogeneity (13.3% vs. 8.5%, RR 1.57, 1.20–2.07, \(P = 0.001 , I^2 = 58\% , P_{\text{Heterogeneity}} = 0.09 \)) (Supplementary Figures 7A–7F).

4. Discussion

The meta-analysis demonstrates the relative risk reduction of all-cause death at 30 days and 6 months was 21% and 43%, respectively. Although the antiaggregation effect of abciximab on platelets can last for 15 days after administration [30], the period of clinical benefit can be as long as months or even years [9–11]. Clinical studies have shown that distal embolization is associated with larger infarct size, lower left
ventricular ejection fraction, and higher risk of mortality [31]. The application of abciximab can reduce the formation of distal embolization and improve myocardial perfusion, thereby bringing about long-term benefits [18, 32]. However, less than 20% of patients with distal embolization can be recognized during the angiography [31]. Combined with the more common problems of distal embolization in patients with anterior or multivessel diseases and previous MI, the application of abciximab in this population may be beneficial [31]. In addition, it is unclear how it is affected by the dual...
antiplatelet drugs currently used. Therefore, it is necessary to further study whether the combination of abciximab on the basis of dual antiplatelet will benefit from patients who may have distal embolization. The risk ratio of recurrent MI, repeat revascularization, and final TIMI flow <3 were significantly reduced by 45%, 42%, and 23%, respectively, which had significant clinical benefits. However, the curve of recurrent MI and final TIMI flow (<3) did not exceed the TSA boundary, which demonstrates more randomized controlled trials are needed to meet the anticipated sample size.

The study demonstrates that, compared with the control group, the risk ratio of major bleeding in the abciximab group was increased by 37%. Similar to the result of another meta-analysis, abciximab can increase the likelihood of major bleeding [12]. However, the results were not statistically significant, which may be related to the different definitions of major bleeding in each trial. Ticlopidine resulted in a higher incidence of major bleeding compared with clopidogrel based on subgroup analysis, which was consistent with the results of other studies [33, 34]. In fact, ticlopidine was limited by its serious side effects, such as neutropenia, thrombotic thrombocytopenic purpura, and bone marrow aplasia [35]. Considering moderate heterogeneity was observed in minor bleeding ($I^2 = 57\%$), the

Figure 4: Subgroup analyses in (a) major bleeding and (b) minor bleeding between clopidogrel and ticlopidine groups.
design was only implemented in 3 trials, and the other trials were designed as single-blind or open-label, which affected the quality of the study because of the increased risk of bias. In addition, in half of the trials, part of the data on the clinical outcomes mentioned in the text was incomplete, and the clinical outcomes involved in this study were not available from all trials. Thirdly, according to the results of TSA, the outcomes of all-cause death at 30 days, final TIMI flow <3, major bleeding, minor bleeding, and transfusion did not surpass the TSA boundary, which may lead to false-positive results. Finally, the trials included in this meta-analysis are relatively old, and there is insufficient evidence of the effect of abciximab in a dual antiplatelet context. Therefore, more clinical trials are needed to confirm the efficacy of the drug in this era.

5. Conclusions

This systematic review and meta-analysis demonstrates that abciximab was associated with a lower risk of short-term all-cause death, recurrent MI, repeat revascularization, and better myocardial perfusion in patients with STEMI undergoing PCI but a higher risk of minor bleeding and thrombocytopenia. The risk of major bleeding may be relieved by choosing clopidogrel rather than ticlopidine, and the continued use of abciximab will not be affected if there is no severe thrombocytopenia.

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary Materials

Supplementary Figure 1: assessment of the risk of bias in each randomized controlled trial included. Supplementary Figure 2: The size of the information required for each outcome. (A) All-cause death at 30 days, (B) all-cause death at 6 months, (C) recurrent MI, (D) repeat revascularization, (E) final TIMI flow <3, (F) major bleeding, (G) minor bleeding, (H) thrombocytopenia, and (I) transfusion. Supplementary Figure 3: funnel plot of each outcome. (A) All-cause death at 30 days, (B) all-cause death at 6 months, (C) recurrent MI, (D) repeat revascularization, (E) final TIMI flow <3, (F) major bleeding, (G) minor bleeding, (H) thrombocytopenia, and (I) transfusion. Supplementary Figure 4: Begg’s and Egger’s tests in Stata of each outcome. (A) All-cause death at 30 days, (B) all-cause death at 6 months, (C) recurrent MI, (D) repeat revascularization, (E) final TIMI flow <3, (F) major bleeding, (G) minor bleeding, (H) thrombocytopenia, and (I) transfusion. Supplementary Figure 5: sensitivity analysis of minor bleeding. Supplementary Figure 6: the meta-regression analysis of minor bleeding according to (A) publication year, (B) sample size,
(C) patient classification, and (D) timing of application of abciximab. Supplementary Figure 7: comparison of the endpoints between the abciximab and control groups of the double-blind studies. (A) All-cause death at 30 days, (B) recurrent myocardial infarction, (C) repeat revascularization, (D) final TIMI flow <3, (E) major bleeding, and (F) minor bleeding. Supplementary Table 1: search strategy. Supplementary Table 2: Summary of GRADE evidence quality for outcomes. (Supplementary Materials)

References

