
Hindawi Publishing Corporation
Journal of Mathematics
Volume 2013, Article ID 146836, 8 pages
http://dx.doi.org/10.1155/2013/146836

Research Article
Analytical Study of Some Important Generalized
Nonlinear Partial Differential Equations

Marwan Alquran, Mahmoud Mohammad, and Ahmad Ababneh

Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan

Correspondence should be addressed to Marwan Alquran; marwan04@just.edu.jo

Received 4 January 2013; Accepted 1 March 2013

Academic Editor: Anjan Biswas

Copyright © 2013 Marwan Alquran et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The aim of this paper is to extend the use of homotopy perturbation method (HPM) to study the solutions for some important
generalized nonlinear partial differential equations (PDEs) such as Fisher equation with convection term, Sharma-Tasso-Olver
(STO) equation, and Fitzhugh-Nagumo (FN) equation.

1. Introduction

The main purpose of this paper is to apply the homotopy
perturbation method with the help of symbolic computation
to obtain approximate solution of the following nonlinear
equations.

Fisher equation with convection term serves as a basic
model for population dynamics or chemical kinetics inmath-
ematical biology. The solution shows exponential growth
counteracted by nonlinear damping (where the damping rate
is proportional to 𝑢). Fisher equation has the form

𝜕𝑢

𝜕𝑡

+ 𝛼𝑢

𝜕𝑢

𝜕𝑥

−

𝜕
2
𝑢

𝜕𝑥
2
− 𝑢 (1 − 𝑢) = 0, (1)

subject to

𝑢 (𝑥, 0) =

1

2

(1 − tanh(

𝑥

4

)) . (2)

Fisher equation was studied by many authors using dif-
ferent methods such as the tanh method [1] and variational
iteration method [2].

Sharma-Tasso-Olver (STO) equation is a good example to
show the fusion of soliton solutions. It has the form

𝜕𝑢

𝜕𝑡

+ 𝛼

𝜕

𝜕𝑥

(𝑢
3
) +

3

2

𝛼

𝜕
2

𝜕𝑥
2
(𝑢
2
) + 𝛼

𝜕
3
𝑢

𝜕𝑥
3

= 0, (3)

subject to

𝑢 (𝑥, 0) = √
1

𝛼

tanh(√
1

𝛼

𝑥) . (4)

Hirota’s direct method [3] and extended tanh method [4]
were used to solve the STO equation.

Fitzhugh-Nagumo (FN) equation is an important nonlin-
ear reaction-diffusion equation and is usually used to model
the transmission of nerve impulses; also it is used in circuit
theory, biology, and the area of population genetics. FN
equation has the form

𝜕𝑢

𝜕𝑡

−

𝜕
2
𝑢

𝜕𝑥
2
+ 𝑢 (1 − 𝑢) (𝛼 − 𝑢) = 0, (5)

subject to

𝑢 (𝑥, 0) =

1

2

(1 + tanh(

−√2

4

𝑥)) . (6)

FN equation was studied by means of improved sine-
cosine method [5] and Exp-function method [6].

2. Survey of Homotopy Perturbation Method

To illustrate the basic ideas of this method, we consider the
following nonlinear differential equation:

𝐴 (𝑢) − 𝑓 (𝑟) = 0, 𝑟 ∈ Ω, (7)
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with the boundary conditions

𝐵(𝑢,

𝜕𝑢

𝜕𝜂

) = 0, 𝑟 ∈ Γ, (8)

where 𝐴 is a general differential operator, 𝐵 is a boundary
operator, 𝑓(𝑟) is a known analytical function, and Γ is the
boundary of the domain Ω. The operator 𝐴 can be divided
into two parts, which are 𝐿 and 𝑁, where 𝐿 is the linear, and
𝑁 is the nonlinear operator. Therefore, (7) can be written as
follows:

𝐿 (𝑢) + 𝑁 (𝑢) − 𝑓 (𝑟) = 0. (9)

Liao in [7] constructed a homotopy 𝜐(𝑟, 𝑝) : Ω×[0, 1] →

𝑅, which satisfies

𝐻(𝜐, 𝑝) = (1 − 𝑝) [𝐿 (𝜐) − 𝐿 (𝑢
0
)] + 𝑝 [𝐴 (𝜐) − 𝑓 (𝑟)] = 0,

(10)

which is equivalent to

𝐻(𝜐, 𝑝) = 𝐿 (𝜐) − 𝐿 (𝑢
0
) + 𝑝 [𝐿 (𝑢

0
) + 𝑁 (𝜐) − 𝑓 (𝑟)] = 0,

(11)

where 𝑟 ∈ Ω, 𝑝 ∈ [0, 1], that is, called embedding parameter,
𝑢
0
is an initial approximation solution of (7), which satisfies

the boundary conditions. Obviously, from (10) and (11) we
obtain

𝐻(𝜐, 0) = 𝐿 (𝜐) − 𝐿 (𝑢
0
) = 0,

𝐻 (𝜐, 1) = 𝐴 (𝜐) − 𝑓 (𝑟) = 0,

(12)

and the changing process of 𝑝 from 0 to 1, is just that of
𝐻(𝜐, 𝑝) from 𝐿(𝜐) − 𝐿(𝑢

0
) to 𝐴(𝜐) − 𝑓(𝑟). In topology, this

is called deformation, and 𝐿(𝜐) − 𝐿(𝑢
0
) and 𝐴(𝜐) − 𝑓(𝑟) are

called homotopic. Applying the perturbation technique, we
can first use the embedding parameter 𝑝 as a small parameter
and assume that the solutions of (10) or (11) can be expressed
as a power series in 𝑝 as follows:

𝜐 =

∞

∑

𝑖=0

𝑝
𝑖
𝜐
𝑖
. (13)

Setting 𝑝 = 1 gives the solution of (7)

𝑢 = lim
𝑝→ 1

𝜐 =

∞

∑

𝑖=0

𝜐
𝑖
. (14)

To study the convergence of the method, rewrite (11) in
the following form:

𝐿 (𝜐) = 𝐿 (𝑢
0
) + 𝑝 [𝑓 (𝑟) − 𝐿 (𝑢

0
) − 𝑁 (𝜐)] , (15)

applying the inverse operator 𝐿
−1, to both sides of (15), we

obtain

𝜐 = 𝑢
0
+ 𝑝 [𝐿

−1
𝑓 (𝑟) − 𝐿

−1
𝑁(𝜐) − 𝑢

0
] , (16)

substituting (13) into the right-hand side of (16), we get the
following form:

𝜐 = 𝑢
0
+ 𝑝[𝐿

−1
𝑓 (𝑟) − (𝐿

−1
𝑁)(

∞

∑

𝑖=0

𝑝
𝑖
𝜐
𝑖
) − 𝑢

0
] . (17)

The exact solution may be obtained by using (14)

𝑢 = lim
𝑝→1

𝜐

= 𝐿
−1

𝑓 (𝑟) − (𝐿
−1

𝑁)(

∞

∑

𝑖=0

𝜐
𝑖
)

= 𝐿
−1

𝑓 (𝑟) −

∞

∑

𝑖=0

(𝐿
−1

𝑁) (𝜐
𝑖
) .

(18)

The series (14) is convergent for most cases. However the
following suggestions have been made by He [8], to find the
convergence rate on nonlinear operator.

(1) The second derivative of 𝑁(𝜐) with respect to 𝜐 must
be small because the parameter may be relatively
large, that is, 𝑝 → 1.

(2) The norm of 𝐿−1(𝜕𝑁/𝜕𝜐)must be smaller than one so
that the series converges.

More about this method and illustrative examples, the
reader may refer to the following articles [9–17].

3. Fisher Equation with Convection Term

Consider the Fisher equation with convection term as fol-
lows:

𝜕𝑢

𝜕𝑡

+ 𝛼𝑢

𝜕𝑢

𝜕𝑥

−

𝜕
2
𝑢

𝜕𝑥
2
− 𝑢 (1 − 𝑢) = 0 (19)

subject to

𝑢 (𝑥, 0) =

1

2

(1 − tanh(

𝑥

4

)) . (20)

By means of homotopy perturbation technique, the ho-
motopy construction of (19) is

(1 − 𝑝) (

𝜕𝑢

𝜕𝑡

−

𝜕𝑢
0

𝜕𝑡

)

+ 𝑝(

𝜕𝑢

𝜕𝑡

+ 𝛼𝑢

𝜕𝑢

𝜕𝑥

−

𝜕
2
𝑢

𝜕𝑥
2
− 𝑢 (1 − 𝑢)) = 0,

(21)

or

𝜕𝑢

𝜕𝑡

−

𝜕𝑢
0

𝜕𝑡

+ 𝑝(

𝜕𝑢
0

𝜕𝑡

+ 𝛼𝑢

𝜕𝑢

𝜕𝑥

−

𝜕
2
𝑢

𝜕𝑥
2
− 𝑢 (1 − 𝑢)) = 0,

(22)

where the initial approximation 𝑢
0

= 𝑢(𝑥, 0). Suppose that
the solution of (19) has the form

𝑢 = 𝜐
0
+ 𝑝𝜐
1
+ 𝑝
2
𝜐
2
+ 𝑝
3
𝜐
3
+ ⋅ ⋅ ⋅ . (23)
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Substituting (23) in (22) and comparing the coefficients
of identical degrees of 𝑝, we obtain the following linear
equations:

𝑝
0
:

𝜕𝜐
0

𝜕𝑡

−

𝜕𝑢
0

𝜕𝑡

= 0,

𝑝
1
:

𝜕𝜐
1

𝜕𝑡

+

𝜕𝑢
0

𝜕𝑡

+ 𝜐
0
(−1 + 𝜐

0
+ 𝛼

𝜕𝜐
0

𝜕𝑥

) −

𝜕
2
𝜐
0

𝜕𝑥
2

= 0,

𝑝
2
:

𝜕𝜐
2

𝜕𝑡

+ 𝜐
1
(−1 + 2𝜐

0
+ 𝛼

𝜕𝜐
0

𝜕𝑥

) + 𝛼𝜐
0

𝜕𝜐
1

𝜕𝑥

−

𝜕
2
𝜐
1

𝜕𝑥
2

= 0,

...
(24)

Solving this system, we obtain the following solutions for
𝜐
0
, 𝜐
1
, 𝜐
2
, and so forth:

𝜐
0
= 𝑢 (𝑥, 0) =

1

2

(1 − tanh(

𝑥

4

)) ,

𝜐
1
= −∫

𝑡

0

(

𝜕𝑢
0

𝜕𝑡

+ 𝜐
0
(−1 + 𝜐

0
+ 𝛼

𝜕𝜐
0

𝜕𝑥

) −

𝜕
2
𝜐
0

𝜕𝑥
2
)𝑑𝑡

=

1

16

𝑡 sech2 (𝑥

4

) (4 + 𝛼 − (𝛼 − 1) tanh(

𝑥

4

)) ,

𝜐
2
= − ∫

𝑡

0

(𝜐
1
(−1 + 2𝜐

0
+ 𝛼

𝜕𝜐
0

𝜕𝑥

) + 𝛼𝜐
0

𝜕𝜐
1

𝜕𝑥

−

𝜕
2
𝜐
1

𝜕𝑥
2
)𝑑𝑡

=

1

256

𝑡
2 sech4 (𝑥

4

)((17 + 2𝛼 (3 + 𝛼))

× sinh(

𝑥

2

) − 2 (𝛼 − 1)

× ( − 2 (𝛼 + 3) + (𝛼 + 4)

× cosh (

𝑥

2

) + (−3 + 2𝛼)

× tanh(

𝑥

4

)))

...
(25)

Considering the first 11 terms of (23), then the approxi-
mate solution of (19) by setting 𝑝 = 1 is

𝑢app (𝑥, 𝑡)

=

10

∑

𝑖=0

𝑢
𝑖
=

1

2

(1 − tanh(

𝑥

4

))

+

1

16

𝑡 sech2 (𝑥

4

) (4 + 𝛼 − (𝛼 − 1) tanh(

𝑥

4

))

1

0.5

0

−5

0

5
𝑥

0

0.2

0.4

𝑡

(a)

1

0.5

0

−5

0

5
𝑥

0

0.2

0.4

𝑡

(b)

Figure 1: 𝑢(𝑥, 𝑡) and 𝑢app(𝑥, 𝑡) are shown, respectively, from (b) to
(a), when −5 ≤ 𝑥 ≤ 5 and 0 ≤ 𝑡 ≤ 0.5, for Fisher equation, with
𝑛 = 11, 𝛼 = 1.

+

1

256

𝑡
2 sech4 (𝑥

4

) ( (17 + 2𝛼 (3 + 𝛼))

× sinh(

𝑥

2

) − 2 (𝛼 − 1)

× (− 2 (𝛼 + 3) + (𝛼 + 4)

× cosh (

𝑥

2

) + (−3 + 2𝛼)

× tanh(

𝑥

4

))) + ⋅ ⋅ ⋅ .

(26)

The exact solution of (19) is

𝑢 (𝑥, 𝑡) =

1

2

(1 − tanh(

𝛼

4

(𝑥 − (

𝛼
2
+ 4

2𝛼

) 𝑡))) . (27)

The behaviors of 𝑢(𝑥, 𝑡) and 𝑢app(𝑥, 𝑡) are shown in
Figure 1 and the absolute error is shown in Table 1.

Figures 2 and 3 show that the best choice of 𝛼 is 1.
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Table 1: Absolute error |𝑢(𝑥, 𝑡)−𝑢app(𝑥, 𝑡)| for Fisher equation, with
𝑛 = 11.

𝑥

𝑡

0.05 0.15 0.25 0.35
−6 0 4.4 × 10

−16
1.1 × 10

−13
4.5 × 10

−12

−3 0 3.9 × 10
−15

1.1 × 10
−12

4.5 × 10
−11

0 0 2.2 × 10
−14

5.9 × 10
−12

2.4 × 10
−10

3 2.8 × 10
−17

3.6 × 10
−15

9.5 × 10
−13

3.7 × 10
−11

6 1.4 × 10
−17

4 × 10
−16

1.2 × 10
−13

5 × 10
−12

Error 𝑢
0.6

0.5

0.4

0.3

0.2

0.1

−5 5
𝛼

(a)

Error 𝑢

0.6

0.5

0.4

0.3

0.2

0.1

−5 5
𝛼

(b)

Figure 2: (a) Absolute error |𝑢(1, 0.1) − 𝑢app(1, 0.1)|, (b) absolute
error |𝑢(1, 0.3) − 𝑢app(1, 0.3)| with 𝑛 = 11, when −8 ≤ 𝛼 ≤ 8.

4. Sharma-Tasso-Olver Equation

Consider the Sharma-Tasso-Olver equation as follows:

𝜕𝑢

𝜕𝑡

+ 𝛼

𝜕

𝜕𝑥

(𝑢
3
) +

3

2

𝛼

𝜕
2

𝜕𝑥
2
(𝑢
2
) + 𝛼

𝜕
3
𝑢

𝜕𝑥
3

= 0 (28)

subject to

𝑢 (𝑥, 0) = √
1

𝛼

tanh(√
1

𝛼

𝑥) . (29)

Error 𝑢
0.8

0.6

0.4

0.2

−5 5
𝛼

(a)

Error 𝑢
0.8

0.6

0.4

0.2

−5 5
𝛼

(b)

Figure 3: (a) Absolute error |𝑢(3, 0.1) − 𝑢app(3, 0.1)|, (b) absolute
error |𝑢(3, 0.3) − 𝑢app(3, 0.3)| with 𝑛 = 11, when −8 ≤ 𝛼 ≤ 8.

By means of homotopy perturbation technique, the ho-
motopy construction of (28) is

(1 − 𝑝) (

𝜕𝑢

𝜕𝑡

−

𝜕𝑢
0

𝜕𝑡

)

+ 𝑝(

𝜕𝑢

𝜕𝑡

+ 𝛼

𝜕

𝜕𝑥

(𝑢
3
) +

3

2

𝛼

𝜕
2

𝜕𝑥
2
(𝑢
2
) + 𝛼

𝜕
3
𝑢

𝜕𝑥
3
) = 0,

(30)

or

𝜕𝑢

𝜕𝑡

−

𝜕𝑢
0

𝜕𝑡

+ 𝑝(

𝜕𝑢
0

𝜕𝑡

+ 𝛼

𝜕

𝜕𝑥

(𝑢
3
) +

3

2

𝛼

𝜕
2

𝜕𝑥
2
(𝑢
2
) + 𝛼

𝜕
3
𝑢

𝜕𝑥
3
) = 0,

(31)

where the initial approximation 𝑢
0

= 𝑢(𝑥, 0). Suppose that
the solution of (28) has the form

𝑢 = 𝜐
0
+ 𝑝𝜐
1
+ 𝑝
2
𝜐
2
+ 𝑝
3
𝜐
3
+ ⋅ ⋅ ⋅ . (32)
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Substituting (32) in (31) and comparing the coefficients of
identical degrees of 𝑝, we obtain the following linear equa-
tions:

𝑝
0
:

𝜕𝜐
0

𝜕𝑡

−

𝜕𝑢
0

𝜕𝑡

= 0,

𝑝
1
:

𝜕𝜐
1

𝜕𝑡

+

𝜕𝑢
0

𝜕𝑡

+ 𝛼(3

𝜕𝜐
0

𝜕𝑥

(𝜐
2

0
+

𝜕𝜐
0

𝜕𝑥

) + 3𝜐
0

𝜕
2
𝜐
0

𝜕𝑥
2

+

𝜕
3
𝜐
0

𝜕𝑥
3
) = 0,

𝑝
2
:

𝜕𝜐
2

𝜕𝑡

+ 𝛼(3𝜐
2

0

𝜕𝜐
1

𝜕𝑥

+ 6

𝜕𝜐
0

𝜕𝑥

𝜕𝜐
1

𝜕𝑥

+ 3𝜐
1

𝜕
2
𝜐
0

𝜕𝑥
2

+3𝜐
0
(2𝜐
1

𝜕𝜐
0

𝜕𝑥

+

𝜕
2
𝜐
1

𝜕𝑥
2
) +

𝜕
3
𝜐
1

𝜕𝑥
3
) = 0,

...
(33)

Solving this system, we obtain the following solutions for
𝜐
0
, 𝜐
1
, 𝜐
2
, and so forth:

𝜐
0
= 𝑢 (𝑥, 0) = √

1

𝛼

tanh(√
1

𝛼

𝑥) ,

𝜐
1
= −∫

𝑡

0

(

𝜕𝑢
0

𝜕𝑡

+ 𝛼(3

𝜕𝜐
0

𝜕𝑥

(𝜐
2

0
+

𝜕𝜐
0

𝜕𝑥

)

+3𝜐
0

𝜕
2
𝜐
0

𝜕𝑥
2

+

𝜕
3
𝜐
0

𝜕𝑥
3
))𝑑𝑡

= −

1

𝛼

𝑡 sech2 (√
1

𝛼

𝑥) ,

𝜐
2
= − ∫

𝑡

0

(𝛼(3𝜐
2

0

𝜕𝜐
1

𝜕𝑥

+ 6

𝜕𝜐
0

𝜕𝑥

𝜕𝜐
1

𝜕𝑥

+ 3𝜐
1

𝜕
2
𝜐
0

𝜕𝑥
2

+3𝜐
0
(2𝜐
1

𝜕𝜐
0

𝜕𝑥

+

𝜕
2
𝜐
1

𝜕𝑥
2
) +

𝜕
3
𝜐
1

𝜕𝑥
3
))𝑑𝑡

= − 𝛼
−3/2

𝑡
2 sech2 (√

1

𝛼

𝑥) tanh(√
1

𝛼

𝑥) ,

...
(34)

Considering the first 8 terms of (32), then the approxi-
mate solution of (28) by setting 𝑝 = 1 is

𝑢app (𝑥, 𝑡)

=

7

∑

𝑖=0

𝑢
𝑖
= √

1

𝛼

tanh(√
1

𝛼

𝑥) −

1

𝛼

𝑡 sech2 (√
1

𝛼

𝑥)

1
0.5
0

−0.5

−1

−10

−5

0
5

10

𝑥

0

0.1

0.2

0.3

𝑡

(a)

1
0.5
0

−0.5

−1

−10

−5

0
5

10

𝑥

0

0.1

0.2

0.3

𝑡

(b)

Figure 4: 𝑢(𝑥, 𝑡) and 𝑢app(𝑥, 𝑡) are shown, respectively, from (b) to
(a), when −10 ≤ 𝑥 ≤ 10 and 0 ≤ 𝑡 ≤ 0.3, for STO equation with
𝑛 = 8, 𝛼 = 1.

− 𝛼
−3/2

𝑡
2 sech2 (√

1

𝛼

𝑥) tanh(√
1

𝛼

𝑥) + ⋅ ⋅ ⋅ .

(35)

The exact solution of (28) is

𝑢 (𝑥, 𝑡) = √
1

𝛼

tanh(√
1

𝛼

(𝑥 − 𝑡)) . (36)

4.1. 𝛼=1. The behavior of 𝑢(𝑥, 𝑡) and 𝑢app(𝑥, 𝑡) is shown in
Figure 4 for the regions −10 ≤ 𝑥 ≤ 10 and 0 ≤ 𝑡 ≤ 0.3.
Absolute errors for differences between the exact solution and
the 8th order approximate solution given by HPM for 𝛼 = 1

are given in Table 2.

4.2. 𝛼=5. In this part, we consider 𝛼 = 5 and compare it with
the above case 𝛼 = 1. Figure 5 shows this comparison. One
can see that for the case 𝛼 = 5 the solution converges rapidly
than 𝛼 = 1.
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Table 2: Absolute error |𝑢(𝑥, 𝑡) − 𝑢app(𝑥, 𝑡)| for STO equation with
𝑛 = 8, 𝛼 = 1.

𝑥

𝑡

0.05 0.15 0.25 0.35
−6 1.1 × 10

−16
1.9 × 10

−14
1.1 × 10

−12
1.6 × 10

−11

−3 5.6 × 10
−16

3.3 × 10
−12

2 × 10
−10

2.9 × 10
−9

0 4.3 × 10
−14

8.3 × 10
−10

8.1 × 10
−8

1.6 × 10
−6

3 5.6 × 10
−16

3.2 × 10
−12

1.9 × 10
−10

2.7 × 10
−9

6 0 2.1 × 10
−14

1.3 × 10
−12

1.9 × 10
−11

4

2

0

×10
−7

−5

0

5
𝑥

0.3

0.2

0.1

0

𝑡

(𝛼 = 1)

(a)

4

2

0

×10
−10

−5

0

5
𝑥

0.3

0.2

0.1

0

𝑡

(𝛼 = 5)

(b)

Figure 5: Absolute errors with respect to 𝑢app(𝑥, 𝑡) are shown,
respectively, for 𝛼 = 1 on (a) and for 𝛼 = 5 on (b) when −8 ≤ 𝑥 ≤ 8

and 0 ≤ 𝑡 ≤ 0.3, for STO equation, with 𝑛 = 8.

5. Fitzhugh-Nagumo Equation

Consider the Fitzhugh-Nagumo (FN) equation as follows:

𝜕𝑢

𝜕𝑡

−

𝜕
2
𝑢

𝜕𝑥
2
+ 𝑢 (1 − 𝑢) (𝛼 − 𝑢) = 0, (37)

subject to

𝑢 (𝑥, 0) =

1

2

(1 + tanh(

−√2

4

𝑥)) . (38)

By means of homotopy perturbation technique, the ho-
motopy construction of (37) is

(1 − 𝑝) (

𝜕𝑢

𝜕𝑡

−

𝜕𝑢
0

𝜕𝑡

)

+ 𝑝(

𝜕𝑢

𝜕𝑡

−

𝜕
2
𝑢

𝜕𝑥
2
+ 𝑢 (1 − 𝑢) (𝛼 − 𝑢)) = 0,

(39)

or

𝜕𝑢

𝜕𝑡

−

𝜕𝑢
0

𝜕𝑡

+ 𝑝(

𝜕𝑢
0

𝜕𝑡

−

𝜕
2
𝑢

𝜕𝑥
2
+ 𝑢 (1 − 𝑢) (𝛼 − 𝑢)) = 0, (40)

where the initial approximation 𝑢
0

= 𝑢(𝑥, 0). Suppose that
the solution of (37) has the form

𝑢 = 𝜐
0
+ 𝑝𝜐
1
+ 𝑝
2
𝜐
2
+ 𝑝
3
𝜐
3
+ ⋅ ⋅ ⋅ . (41)

Substituting (41) in (40) and comparing the coefficients
of identical degrees of 𝑝, we obtain the following linear
equations:

𝑝
0
:

𝜕𝜐
0

𝜕𝑡

−

𝜕𝑢
0

𝜕𝑡

= 0,

𝑝
1
:

𝜕𝜐
1

𝜕𝑡

+

𝜕𝑢
0

𝜕𝑡

+ 𝜐
0
(𝛼 − (1 + 𝛼) 𝜐

0
+ 𝜐
2

0
) −

𝜕
2
𝜐
0

𝜕𝑥
2

= 0,

𝑝
2
:

𝜕𝜐
2

𝜕𝑡

+ 𝜐
1
(𝛼 − 2 (1 + 𝛼) 𝜐

0
+ 3𝜐
2

0
) −

𝜕
2
𝜐
1

𝜕𝑥
2

= 0,

...
(42)

Solving this system, we obtain the following solutions for
𝜐
0
, 𝜐
1
, 𝜐
2
, and so forth:

𝜐
0
= 𝑢 (𝑥, 0) =

1

2

(1 + tanh(

−√2

4

𝑥)) ,

𝜐
1
= −∫

𝑡

0

(

𝜕𝑢
0

𝜕𝑡

+ 𝜐
0
(𝛼 − (1 + 𝛼) 𝜐

0
+ 𝜐
2

0
) −

𝜕
2
𝜐
0

𝜕𝑥
2
)𝑑𝑡

=

(1 − 2𝛼) 𝑡

4 (1 + cosh (𝑥/√2)

,

𝜐
2
= −∫

𝑡

0

(𝜐
1
(𝛼 − 2 (1 + 𝛼) 𝜐

0
+ 3𝜐
2

0
) −

𝜕
2
𝜐
1

𝜕𝑥
2
)𝑑𝑡

=

(1 − 2𝛼)
2

4

𝑡
2 csch3 ( 𝑥

√2

) sinh4 ( 𝑥

2√2

) ,

...
(43)
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Figure 6: (a) Absolute error |𝑢(3, 0.1) − 𝑢app(3, 0.1)|, (b) absolute
error |𝑢(7, 0.3) − 𝑢app(7, 0.3)|, for FN equation, with 𝑛 = 11, when
−8 ≤ 𝛼 ≤ 8.

Considering the first 11 terms of (41), then the approxi-
mate solution of (37) by setting 𝑝 = 1 is

𝑢app (𝑥, 𝑡) =

10

∑

𝑖=0

𝑢
𝑖

=

1

2

(1 + tanh(

−√2

4

𝑥))

+

(1 − 2𝛼) 𝑡

4 (1 + cosh (𝑥/√2))

+

(1 − 2𝛼)
2

4

𝑡
2 csch3 ( 𝑥

√2

) sinh4 ( 𝑥

2√2

)

+ ⋅ ⋅ ⋅ .

(44)
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Figure 7: 𝑢(𝑥, 𝑡) and 𝑢app(𝑥, 𝑡) are shown, respectively, from (b) to
(a), when−5 ≤ 𝑥 ≤ 5 and 0 ≤ 𝑡 ≤ 0.5, for NWequation, with 𝑛 = 11.

The exact solution of (37) is

𝑢 (𝑥, 𝑡) =

1

2

(1 + tanh(

−√2

4

𝑥 + (

1

4

−

𝛼

2

) 𝑡)) . (45)

Figure 6 shows that the best choice of 𝛼 is −5 ≤ 𝛼 ≤ 5,
which gives solution that converges rapidly than other choices
for 𝛼. When 𝛼 = −1, the FN equation reduces to the Newell-
Whitehead (NW) equation, which is an important nonlinear
reaction-diffusion equation and is usually used to model the
transmission of nerve impulses, also is used in circuit theory,
biology, and the area of population genetics as mathematical
models.

The behavior of 𝑢(𝑥, 𝑡) and 𝑢app(𝑥, 𝑡) is shown in Figure 7
for the regions −5 ≤ 𝑥 ≤ 5 and 0 ≤ 𝑡 ≤ 0.5, when 𝛼 = −1.

Absolute errors for differences between the exact solution
and the 11th order approximate solution given by HPM for
NW equation are given in Table 3.
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Table 3: Absolute error |𝑢(𝑥, 𝑡) − 𝑢app(𝑥, 𝑡)| for NW equation with
𝑛 = 11.

𝑥

𝑡

0.05 0.15 0.25 0.35
−6 1.1 × 10

−16
0 2 × 10

−14
8.5 × 10

−13

−3 0 1 × 10
−14

2.7 × 10
−12

1 × 10
−10

3 4.2 × 10
−17

1.2 × 10
−14

3.6 × 10
−12

1.5 × 10
−10

6 1.2 × 10
−17

8 × 10
−17

1.5 × 10
−14

5.4 × 10
−13

6. Conclusion

In this paper, the homotopy perturbation method has been
used for finding the approximate solutions of Fisher equation,
Sharma-Tasso-Olver equation, and Fitzhugh-Nagumo equa-
tion. HPM provides highly accurate numerical solutions for
our problems and they also do not require large computer
memory and discretization of variable 𝑡. The approximations
are not valid only for small parameters but also for larger ones
and the initial approximation can be arbitrarily chosen with
unknown constants.

The small size of computations in comparison with the
computational size required in characteristics method and
the rapid convergence show that the homotopy perturbation
method ismore reliable and introduces a significant improve-
ment in solving nonlinear partial differential equations.
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