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We consider Hilbert space representations of a generalization of canonical commutation relations (CCRs) ∶ [𝑋𝑋𝑗𝑗,𝑋𝑋𝑘𝑘] ∶= 𝑋𝑋𝑗𝑗𝑋𝑋𝑘𝑘 −
𝑋𝑋𝑘𝑘𝑋𝑋𝑗𝑗 = 𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼   𝐼𝐼 𝐼𝐼𝐼 𝐼 𝐼𝐼𝐼𝐼, where𝑋𝑋𝑗𝑗’s are the elements of an algebra with identity 𝐼𝐼, 𝑖𝑖 is the imaginary unit, andΘ𝑗𝑗𝑗𝑗 is a real
number with antisymmetryΘ𝑗𝑗𝑗𝑗 = −Θ𝑘𝑘𝑘𝑘 (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘      . Some basic aspects on Hilbert space representations of the generalized
CCR (GCCR) are discussed. We de�ne a Schrödinger-type representation of the GCCR by an analogy with the usual Schrödinger
representation of the CCR with 𝑛𝑛 degrees of freedom. Also, we introduce aWeyl-type representation of the GCCR.emain result
of the present paper is a uniqueness theorem onWeyl representations of the GCCR.

1. Introduction

In this paper, we consider Hilbert space representations of a
generalized canonical commutation relations (GCCRs) with 𝑛𝑛
degrees of freedom (𝑛𝑛 𝑛 𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛  𝑛𝑛𝑛𝑛) of the following
type:

󶁢󶁢𝑋𝑋𝑗𝑗,𝑋𝑋𝑘𝑘󶁲󶁲 = 𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝐼𝐼 󶀡󶀡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗     󶀱󶀱 , (1)

where 𝑋𝑋𝑗𝑗’s are elements of an algebra with identity 𝐼𝐼,
[𝑋𝑋𝑗𝑗,𝑋𝑋𝑘𝑘] ∶= 𝑋𝑋𝑗𝑗𝑋𝑋𝑘𝑘 − 𝑋𝑋𝑘𝑘𝑋𝑋𝑗𝑗, 𝑖𝑖 is the imaginary unit, and
Θ𝑗𝑗𝑗𝑗 ∈ ℝ (the set of real numbers) with antisymmetry Θ𝑗𝑗𝑗𝑗 =
−Θ𝑘𝑘𝑘𝑘 (𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗      such that, for some pair (𝑗𝑗𝑗𝑗𝑗𝑗 ,Θ𝑗𝑗𝑗𝑗 ≠ 0.
For convenience, we call (1) the Θ-GCCR with 𝑛𝑛 degrees of
freedom and the 2𝑛𝑛 𝑛 𝑛𝑛𝑛matrix

Θ ∶= 󶀢󶀢Θ𝑗𝑗𝑗𝑗󶀲󶀲𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 (2)

the noncommutative factor for {𝑋𝑋𝑗𝑗}
2𝑛𝑛
𝑗𝑗𝑗𝑗.

Note that, in the case where Θ is equal to

𝐽𝐽 𝐽𝐽 󶀥󶀥 0 𝐼𝐼𝑛𝑛
−𝐼𝐼𝑛𝑛 0 󶀵󶀵 , (3)

with 𝐼𝐼𝑛𝑛 being the 𝑛𝑛 𝑛 𝑛𝑛 unit matrix, (1) becomes the CCR
with 𝑛𝑛 degrees of freedom. Namely, if we put𝑄𝑄𝑗𝑗 ∶= 𝑋𝑋𝑗𝑗, 𝑃𝑃𝑗𝑗 ∶=
𝑋𝑋𝑛𝑛𝑛𝑛𝑛 (𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗    in the present case, then we have

󶁢󶁢𝑄𝑄𝑗𝑗, 𝑄𝑄𝑘𝑘󶁲󶁲 = 0, 󶁢󶁢𝑃𝑃𝑗𝑗, 𝑃𝑃𝑘𝑘󶁲󶁲 = 0,

󶁢󶁢𝑄𝑄𝑗𝑗, 𝑃𝑃𝑘𝑘󶁲󶁲 = 𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝐼𝐼 󶀡󶀡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗     󶀱󶀱 ,
(4)

where 𝛿𝛿𝑗𝑗𝑗𝑗 is the Kronecker delta. us, (1) is a natural
generalization of the CCR with 𝑛𝑛 degrees of freedom.

eGCCR also includes some of non-commutative space
times (e.g., [1–3]), non-commutative spaces (e.g., [4]), and
non-commutative phase spaces (e.g., [5–11]). In fact, one of
the motivations for the present work is to investigate general
structures underlying those non-commutative objects. In this
paper, however, we present only some fundamental aspects
of Hilbert space representations of the GCCR. e main
result is to establish a uniqueness theorem on Weyl type
representations of the GCCR (for the de�nition, see Section
4).

In Section 2, we de�ne Hilbert space representations
of the GCCR and discuss some basic facts on them. It is
shown that there exists a one-to-one correspondence between
representations of the GCCR and the CCR with the same
degrees of freedom. In Section 3, we introduce a Schrödinger-
type representation of theGCCR, whose representation space
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is 𝐿𝐿2(ℝ𝑛𝑛) as in the case of the Schrödinger representation
of the CCR with 𝑛𝑛 degrees of freedom. In Section 4, Weyl-
type representations of theGCCR are de�ned by analogywith
Weyl representations of CCR. In the last section, we prove
the uniqueness theorem mentioned above. In Appendix,
we present some basic properties of self-adjoint operators
obeying generalized Weyl relations, which are used in the
text.

2. Basic Facts on Hilbert Space Representations
of theΘ-GCCR

Let ℋ be a complex Hilbert space with inner product ⟨⋅, ⋅⟩
(antilinear in the �rst variable and linear in the second one)
and norm ‖ ⋅ ‖. For a linear operator 𝐴𝐴 on ℋ, we denote its
domain by𝐷𝐷𝐷𝐷𝐷𝐷. For linear operators 𝐴𝐴1,… ,𝐴𝐴𝑝𝑝 onℋ,

𝐷𝐷󶀧󶀧
𝑝𝑝

󵠈󵠈
𝑖𝑖𝑖𝑖
𝐴𝐴𝑖𝑖󶀷󶀷 ∶= ∩𝑝𝑝𝑖𝑖𝑖𝑖𝐷𝐷 󶀡󶀡𝐴𝐴𝑖𝑖󶀱󶀱 ,

𝐷𝐷 󶀡󶀡𝐴𝐴1𝐴𝐴2󶀱󶀱 ∶= 󶁁󶁁Ψ ∈ 𝐷𝐷 󶀡󶀡𝐴𝐴2󶀱󶀱 ∣ 𝐴𝐴2Ψ ∈ 𝐷𝐷 󶀡󶀡𝐴𝐴1󶀱󶀱󶁑󶁑 ,

𝐷𝐷 󶀢󶀢𝐴𝐴1⋯𝐴𝐴𝑝𝑝󶀲󶀲 ∶= 𝐷𝐷 󶀢󶀢󶀢󶀢𝐴𝐴1⋯𝐴𝐴𝑝𝑝𝑝𝑝󶀲󶀲𝐴𝐴𝑝𝑝󶀲󶀲 󶀲󶀲𝑝𝑝 𝑝 𝑝󶀱󶀱 .

(5)

�e�nition 1. Let 𝒟𝒟 be a dense subspace of ℋ and 𝑋𝑋𝑗𝑗,
𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗   , be symmetric (not necessarily essentially self-
adjoint) operators onℋ. Set 𝐗𝐗 𝐗𝐗𝐗𝐗𝐗 1,… ,𝑋𝑋2𝑛𝑛). We say that
the triple (ℋ,𝒟𝒟𝒟𝒟𝒟𝒟 is a symmetric representation of the Θ-
GCCR with 𝑛𝑛 degrees of freedom if𝒟𝒟 𝒟 𝒟2𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝐷𝐷𝐷𝐷𝐷𝑗𝑗𝑋𝑋𝑘𝑘) and
(1) holds on𝒟𝒟.

If all the 𝑋𝑋𝑗𝑗’s (𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗   ) are self-adjoint, we say that
(ℋ,𝒟𝒟𝒟𝒟𝒟𝒟 is a self-adjoint representation of the GCCR.

Remark 2. e concept of self-adjoint representation de�ned
above is different from the one used in representation theory
of ∗-algebra (e.g., [12, page 205]).

Remark 3. In each symmetric representation (ℋ,𝒟𝒟𝒟𝒟𝒟𝒟 of
the Θ-GCCR, ℋ is in�nite dimensional (if ℋ were �nite
dimensional, then, for (𝑗𝑗𝑗 𝑗𝑗𝑗 such that Θ𝑗𝑗𝑗𝑗 ≠ 0, 0 = trace
of [𝑋𝑋𝑗𝑗,𝑋𝑋𝑘𝑘] = 𝑖𝑖𝑖𝑗𝑗𝑗𝑗 dimℋ≠0, and hence one is led to a
contradiction).

Remark 4. It follows from awell-known fact on commutation
properties of linear operators (e.g., [13, eorem 1.2.3]) that,
for (𝑗𝑗𝑗 𝑗𝑗𝑗withΘ𝑗𝑗𝑗𝑗 ≠ 0, at least one of𝑋𝑋𝑗𝑗 and𝑋𝑋𝑘𝑘 is unbounded.
Hence, one has to be careful about domains of𝑋𝑋𝑗𝑗’s.

Remark 5. In the case of Hilbert space representations of
CCR, symmetric representations, but nonself-adjoint ones,
also play important roles. For example, such representations
appear in mathematical theories of time operators [14] (see
also [15, 16] for investigations from purely operator-theoretic
points of view). us, it is expected that, in addition to
self-adjoint representations of theΘ-GCCR, non-self-adjoint
symmetric representations of it may have any importance in
applications to quantum physics.

Remark 6. In the context of quantum mechanics, for a
symmetric operator𝐴𝐴 and a unit vector 𝜓𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓 , (Δ𝐴𝐴𝐴𝜓𝜓 ∶=
‖(𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is called the uncertainty of 𝐴𝐴 in the
vector state 𝜓𝜓. Let (ℋ,𝒟𝒟𝒟𝒟𝒟𝒟 be a symmetric representation
of the Θ-GCCR with 𝑛𝑛 degrees of freedom. en, one has
uncertainty relations of Robertson type [17]: for all unit
vectors 𝜓𝜓 𝜓𝜓𝜓  and 𝑗𝑗𝑗 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗   ,

󶀢󶀢Δ𝑋𝑋𝑗𝑗󶀲󶀲𝜓𝜓󶀡󶀡Δ𝑋𝑋𝑘𝑘󶀱󶀱𝜓𝜓 ≥
1
2
󶙢󶙢󶙢󶙢𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗𝜓𝜓󶄒󶄒󶄒󶄒 . (6)

Let (ℋ,𝒟𝒟𝒟𝒟𝒟𝒟 be a symmetric representation of the Θ-
GCCR as in �e�nition 1. We assume for simplicity the
following:

Assumption 1. e noncommutative factor Θ is regular
(invertible).

Under this assumption,Θ is a regular antisymmetric real
matrix. Hence, by a well-known fact in the theory of linear
algebra (e.g., [18, page 173, Problem 9]), the following fact
holds.

Lemma 7. ere exists a regular 2𝑛𝑛 𝑛 𝑛𝑛𝑛 real matrix 𝑇𝑇0 such
that 𝑡𝑡𝑇𝑇0Θ𝑇𝑇0 = 𝐽𝐽, where 𝑡𝑡𝑇𝑇0 is the transposed matrix of 𝑇𝑇0
and 𝐽𝐽 is de�ned by (3).

ematrix 𝑇𝑇0 in Lemma 7 belongs to the set

𝑀𝑀Θ ∶= 󶁂󶁂𝑇𝑇 𝑇 𝑇𝑇 is a 2𝑛𝑛 𝑛 𝑛𝑛𝑛

realmatrix such that t𝑇𝑇𝑇 𝑇𝑇 𝑇𝑇𝑇 󶁒󶁒 .
(7)

It is easy to see that for each 𝑇𝑇 𝑇𝑇𝑇 Θ, there exists a unique
2𝑛𝑛 𝑛 𝑛𝑛𝑛 symplectic matrix 𝑊𝑊 (i.e., t𝑊𝑊𝑊𝑊𝑊𝑊 𝑊𝑊𝑊 ) such that
𝑇𝑇 𝑇 𝑇𝑇0𝑊𝑊. Hence,

𝑀𝑀Θ = 󶁂󶁂𝑇𝑇0𝑊𝑊𝑊t𝑊𝑊𝑊𝑊𝑊𝑊 𝑊𝑊𝑊 󶁒󶁒 . (8)

For a 2𝑛𝑛 𝑛 𝑛𝑛𝑛 real matrix 𝐿𝐿 𝐿𝐿 𝐿𝐿𝑗𝑗𝑗𝑗)𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗, we de�ne

𝑋𝑋𝐿𝐿
𝑗𝑗 ∶=

2𝑛𝑛
󵠈󵠈
𝑘𝑘𝑘𝑘
𝐿𝐿𝑘𝑘𝑘𝑘𝑋𝑋𝑘𝑘, 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗    (9)

We call the correspondence 𝐗𝐗 𝐗 𝐗𝐗𝐿𝐿 ∶= (𝑋𝑋𝐿𝐿
1 ,… ,𝑋𝑋𝐿𝐿

2𝑛𝑛) the
𝐿𝐿-transform of 𝐗𝐗.

Let

Θ𝐿𝐿∶=
t𝐿𝐿𝐿𝐿𝐿𝐿 (10)

Proposition 8. (i) For all 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗   , 𝑋𝑋𝐿𝐿
𝑗𝑗 is a symmetric

operator onℋ.
(ii) For all 𝑗𝑗𝑗 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗   ,

󶁢󶁢𝑋𝑋𝐿𝐿
𝑗𝑗 ,𝑋𝑋

𝐿𝐿
𝑘𝑘󶁲󶁲 = 𝑖𝑖󶀡󶀡Θ𝐿𝐿󶀱󶀱𝑗𝑗𝑗𝑗 (11)

on𝒟𝒟.
(iii) For each 𝑇𝑇 𝑇𝑇𝑇 Θ and 𝑗𝑗𝑗 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗   ,

󶁢󶁢𝑋𝑋𝑇𝑇
𝑗𝑗 ,𝑋𝑋

𝑇𝑇
𝑘𝑘 󶁲󶁲 = 𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 (12)

on𝒟𝒟.
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Proof. An easy exercise.

Proposition 8-(i) and (ii) show that (ℋ,𝒟𝒟𝒟𝒟𝒟𝐿𝐿) is a
symmetric representation of theΘ𝐿𝐿-GCCR with 𝑛𝑛 degrees of
freedom.

Proposition 8 (iii) implies the following.

Corollary 9. Let 𝑇𝑇 𝑇 𝑇𝑇Θ and

𝑄𝑄𝑗𝑗 ∶= 𝑋𝑋
𝑇𝑇
𝑗𝑗 , 𝑃𝑃𝑗𝑗 ∶= 𝑋𝑋

𝑇𝑇
𝑛𝑛𝑛𝑛𝑛 󶀡󶀡𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗𝑗𝑗 󶀱󶀱 . (13)

en, (ℋ,𝒟𝒟𝒟 𝒟𝒟𝒟𝑗𝑗, 𝑃𝑃𝑗𝑗}
𝑛𝑛
𝑗𝑗𝑗𝑗) is a symmetric representation of the

CCR with 𝑛𝑛 degrees of freedom.

Corollary 9means that for each𝑇𝑇 𝑇 𝑇𝑇Θ, the𝑇𝑇-transform
of𝐗𝐗 gives a correspondence from a symmetric representation
of the Θ-GCCR with 𝑛𝑛 degrees of freedom to a symmetric
representation of the CCR with the same degrees of freedom.

One can easily see that (9) with 𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿   Θ implies that

𝑋𝑋𝑗𝑗 =
2𝑛𝑛
󵠈󵠈
𝑘𝑘𝑘𝑘
󶀢󶀢𝑇𝑇−1󶀲󶀲𝑘𝑘𝑘𝑘𝑋𝑋

𝑇𝑇
𝑘𝑘 (14)

on ∩2𝑛𝑛𝑗𝑗𝑗𝑗𝐷𝐷𝐷𝐷𝐷𝑗𝑗). us, every symmetric representation of the
Θ-GCCR with 𝑛𝑛 degrees of freedom is constructed from a
symmetric representation of the CCR with the same degrees
of freedom via (14).

Conversely, if a symmetric representation (ℋ,𝒟𝒟𝒟 𝒟𝒟𝒟𝑗𝑗,
𝑃𝑃𝑗𝑗}

𝑛𝑛
𝑗𝑗𝑗𝑗) of the CCR with 𝑛𝑛 degrees of freedom is given and

let

𝑋𝑋𝑗𝑗 (𝐐𝐐𝐐 𝐐𝐐𝐐 𝐐𝐐) ∶=
𝑛𝑛
󵠈󵠈
𝑘𝑘𝑘𝑘
󶀢󶀢𝑇𝑇−1󶀲󶀲𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘 +

𝑛𝑛
󵠈󵠈
𝑘𝑘𝑘𝑘
󶀢󶀢𝑇𝑇−1󶀲󶀲(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑃𝑃𝑘𝑘 (15)

with 𝐐𝐐 𝐐𝐐𝐐𝐐𝐐 1,… ,𝑄𝑄𝑛𝑛) and 𝐏𝐏𝐏𝐏𝐏𝐏𝐏  1,… , 𝑃𝑃𝑛𝑛), then
(ℋ,𝒟𝒟𝒟𝒟𝒟𝒟𝒟𝒟𝒟𝒟𝒟𝒟𝒟𝒟𝒟𝒟   is a symmetric representation of the Θ-
GCCR and (9) holds with 𝐿𝐿 𝐿𝐿𝐿 , 𝑋𝑋𝑇𝑇

𝑗𝑗 = 𝑄𝑄𝑗𝑗,𝑋𝑋
𝑇𝑇
𝑛𝑛𝑛𝑛𝑛 = 𝑃𝑃𝑗𝑗 (𝑗𝑗 𝑗

1,… , 𝑛𝑛𝑛 and 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑗𝑗(𝐐𝐐𝐐 𝐐𝐐𝐐 𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐     . Hence,
every symmetric representation of the CCR with 𝑛𝑛 degrees
of freedom is constructed from a symmetric representation of
theΘ-GCCRwith the samedegrees of freedom.us, for each
𝑇𝑇 𝑇 𝑇𝑇Θ, there exists a one-to-one correspondence between
a symmetric representation of the Θ-GCCR and a symmetric
representation of the CCR with 𝑛𝑛 degrees of freedom.

3. Representations of Schrödinger Type

Let𝑇𝑇 𝑇 𝑇𝑇Θ. By the fact on𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗   stated in the preceding
section, we can de�ne a class of representations of the Θ-
GCCR. Let (𝐿𝐿2(ℝ𝑛𝑛), 𝐶𝐶∞

0 (ℝ
𝑛𝑛), {𝑞𝑞𝑗𝑗, 𝑝𝑝𝑗𝑗}

𝑛𝑛
𝑗𝑗𝑗𝑗) be the Schrödinger

representation of the CCR with 𝑛𝑛 degrees of freedom, that
is, 𝑞𝑞𝑗𝑗 is the multiplication operator by the 𝑗𝑗th component 𝑥𝑥𝑗𝑗
of 𝐱𝐱 𝐱𝐱𝐱𝐱 1,… , 𝑥𝑥𝑛𝑛) ∈ ℝ𝑛𝑛 and 𝑝𝑝𝑗𝑗 ∶= −𝑖𝑖𝑖𝑖𝑗𝑗 with 𝐷𝐷𝑗𝑗 being
the generalized partial differential operator in 𝑥𝑥𝑗𝑗, acting in
𝐿𝐿2(ℝ𝑛𝑛). Let

𝑋𝑋𝑗𝑗 (𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪 ) =
𝑛𝑛
󵠈󵠈
𝑘𝑘𝑘𝑘
󶀢󶀢𝑇𝑇−1󶀲󶀲𝑘𝑘𝑘𝑘𝑞𝑞𝑘𝑘 +

𝑛𝑛
󵠈󵠈
𝑘𝑘𝑘𝑘
󶀢󶀢𝑇𝑇−1󶀲󶀲(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑘𝑘, (16)

which is (15) with 𝐐𝐐 𝐐𝐐𝐐  and 𝐏𝐏𝐏𝐏𝐏  . We denote the closure
of𝑋𝑋𝑗𝑗(𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪𝐪  by𝑋𝑋𝑗𝑗(𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪𝐪  and set

𝐗𝐗 (𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪 ) ∶= 󶀢󶀢𝑋𝑋1 (𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪 ) ,… ,𝑋𝑋2𝑛𝑛 (𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪 )󶀲󶀲 . (17)

We call the triple 𝜋𝜋𝑇𝑇𝑆𝑆 ∶= (𝐿𝐿2(ℝ𝑛𝑛), 𝐶𝐶∞
0 (ℝ

𝑛𝑛), 𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗   the 𝑇𝑇-
Schrödinger representation of the Θ-GCCR.

It is easy to see that for all 𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗𝑗𝑗𝑗 , 𝑋𝑋𝑗𝑗(𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪𝐪  is
essentially self-adjoint on 𝐶𝐶∞

0 (ℝ
𝑛𝑛) (apply, e.g., the Nelson

commutator theorem [19, eorem X.37] with dominating
operator 𝑁𝑁 𝑁 𝑁𝑛𝑛

𝑗𝑗𝑗𝑗(𝑞𝑞
2
𝑗𝑗 + 𝑝𝑝2𝑗𝑗) + 𝐼𝐼) (is can be proved also

by applying Proposition 16). Hence𝑋𝑋𝑗𝑗(𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪𝐪  is self-adjoint.
us, we obtain the following.

Proposition 10. For each 𝑇𝑇 𝑇 𝑇𝑇Θ, the 𝑇𝑇-Schrödinger
representation 𝜋𝜋𝑇𝑇𝑆𝑆 is a self-adjoint representation of the Θ-
GCCR.

4. Representations ofWeyl Type

Based on an analogy with Weyl representations of CCR, we
introduce a concept of Weyl representation for Θ-GCCR.

�e�nition 11. Let {𝑋𝑋𝑗𝑗}
2𝑛𝑛
𝑗𝑗𝑗𝑗 be a set of self-adjoint operators on

aHilbert spaceℋ.We say that {𝑋𝑋𝑗𝑗}
2𝑛𝑛
𝑗𝑗𝑗𝑗 is aWeyl representation

of theΘ-GCCRwith 𝑛𝑛 degrees of freedom if for all 𝑠𝑠𝑠 𝑠𝑠 𝑠𝑠  and
𝑗𝑗𝑗𝑗𝑗𝑗   𝑗𝑗𝑗 𝑗𝑗𝑗𝑗 ,

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 . (18)

We call these relations the Θ-Weyl relations.

For a linear operator 𝐴𝐴 on a Hilbert space, we denote its
spectrum by 𝜎𝜎𝜎𝜎𝜎𝜎.

Proposition 12. Let {𝑋𝑋𝑗𝑗}
2𝑛𝑛
𝑗𝑗𝑗𝑗 be a Weyl representation of the

Θ-GCCR on ℋ. en, there is a dense subspace 𝒟𝒟0 ⊂ ℋ
le invariant by each 𝑋𝑋𝑗𝑗 (𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗𝑗𝑗𝑗 ) such that (ℋ,𝒟𝒟0, 𝐗𝐗𝐗
is a self-adjoint representation of the Θ-GCCR. Moreover, for
every pair (𝑋𝑋𝑗𝑗,𝑋𝑋𝑘𝑘) such that Θ𝑗𝑗𝑗𝑗 ≠ 0, 𝑋𝑋𝑗𝑗 and 𝑋𝑋𝑘𝑘 are purely
absolutely continuous with

𝜎𝜎 󶀢󶀢𝑋𝑋𝑗𝑗󶀲󶀲 = 𝜎𝜎 󶀡󶀡𝑋𝑋𝑘𝑘󶀱󶀱 = ℝ, 𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗𝑗𝑗𝑗𝑗  (19)

Proof. By (18), we can apply the results described in the
Appendix of the present paper. In the present context, we
need only to take, in the notation in the Appendix, 𝑁𝑁 𝑁
2𝑛𝑛, 𝑎𝑎𝑗𝑗𝑗𝑗 = Θ𝑗𝑗𝑗𝑗 and 𝐴𝐴𝑗𝑗 = 𝑋𝑋𝑗𝑗. By Proposition A.4-(iii) and
Corollary A.5, there exists a dense subspace𝒟𝒟0 le invariant
by 𝑋𝑋𝑗𝑗 (𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗𝑗𝑗𝑗 ) and [𝑋𝑋𝑗𝑗,𝑋𝑋𝑘𝑘] = 𝑖𝑖𝑖𝑗𝑗𝑗𝑗 on 𝒟𝒟0. us, the
�rst half of the proposition is derived.e second half follows
from Proposition A.1.

Remark 13. As in the case of self-adjoint representations of
CCR (e.g., [16, 20, 21]), the converse of Proposition 12 does
not hold (i.e., a self-adjoint representation of the Θ-GCCR is
not necessarily a Weyl one).
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We recall that a set {𝑄𝑄𝑗𝑗, 𝑃𝑃𝑗𝑗}
𝑛𝑛
𝑗𝑗𝑗𝑗 of self-adjoint operators

onℋ is a Weyl representation of the CCR with 𝑛𝑛 degrees of
freedom if for all 𝑠𝑠𝑠 𝑠𝑠 𝑠 𝑠 and 𝑗𝑗𝑗 𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗𝑗𝑗 , the following
Wey relations hold:

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ,

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ,

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 .

(20)

Remark 14. A set {𝑄𝑄𝑗𝑗, 𝑃𝑃𝑗𝑗}
𝑛𝑛
𝑗𝑗𝑗𝑗 of self-adjoint operators onℋ is

a Weyl representation of the CCR with 𝑛𝑛 degrees of freedom
if and only if {𝑋𝑋𝑗𝑗}

2𝑛𝑛
𝑗𝑗𝑗𝑗 with𝑋𝑋𝑗𝑗 ∶= 𝑄𝑄𝑗𝑗,𝑋𝑋𝑛𝑛𝑛𝑛𝑛 = 𝑃𝑃𝑗𝑗 (𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗𝑗𝑗 𝑗

is a Weyl representation of the 𝐽𝐽-GCCR, where 𝐽𝐽 is given by
(3).

Let 𝑇𝑇 𝑇 𝑇𝑇Θ be arbitrarily �xed. e next proposition
shows that the 𝑇𝑇-transform of each Weyl representation of
the Θ-GCCR is a Weyl representation of the CCR with 𝑛𝑛
degrees of freedom.

Proposition 15. Let {𝑋𝑋𝑗𝑗}
2𝑛𝑛
𝑗𝑗𝑗𝑗 be a Weyl representation of the

Θ-GCCR on ℋ, and let 𝐗𝐗𝑇𝑇 be the 𝑇𝑇-transform of 𝐗𝐗. en,
each 𝑋𝑋𝑇𝑇

𝑗𝑗 is essentially self-adjoint, and {𝑋𝑋𝑇𝑇
𝑗𝑗 }

2𝑛𝑛
𝑗𝑗𝑗𝑗 is a Weyl

representation of the 𝐽𝐽-GCCR.

Proof. e essential self-adjointness of 𝑋𝑋𝑇𝑇
𝑗𝑗 follows from a

simple application of eorem A.6 in Appendix. Corollary
A.7 in Appendix and the relation t𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇  imply that
{𝑋𝑋𝑇𝑇

𝑗𝑗 }
2𝑛𝑛
𝑗𝑗𝑗𝑗 satis�es the 𝐽𝐽-Weyl relations.

In the same way as in the proof of Proposition 15, we can
prove the following proposition:

Proposition 16. Let {𝑄𝑄𝑗𝑗, 𝑃𝑃𝑗𝑗}
𝑛𝑛
𝑗𝑗𝑗𝑗 be a Weyl representation of

the CCR with 𝑛𝑛 degrees of freedom on a Hilbert space ℋ. Let
𝑋𝑋𝑗𝑗(𝐐𝐐𝐐 𝐐𝐐𝐐 𝐐𝐐𝐐 (𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗𝑗𝑗𝑗 ) be de�ned by (15). en, each
𝑋𝑋𝑗𝑗(𝐐𝐐𝐐 𝐐𝐐𝐐 𝐐𝐐𝐐 is essentially self-adjoint and {𝑋𝑋𝑗𝑗(𝐐𝐐𝐐 𝐐𝐐𝐐 𝐐𝐐𝐐𝐐

2𝑛𝑛
𝑗𝑗𝑗𝑗 is

a Weyl representation of Θ-GCCR with 𝑛𝑛 degrees of freedom.

is proposition shows that the converse of Proposition
15 holds too.us, for each𝑇𝑇 𝑇 𝑇𝑇Θ, there exists a one-to-one
correspondence between a Weyl representation of the CCR
with 𝑛𝑛 degrees of freedom and that of the Θ-GCCR with the
same degrees of freedom.

It is well known [22] that the Schrödinger representation
{𝑞𝑞𝑗𝑗, 𝑝𝑝𝑗𝑗}

𝑛𝑛
𝑗𝑗𝑗𝑗 is a Weyl representation o the CCR with 𝑛𝑛 degrees

of freedom. Hence, we obtain the following result.

Corollary 17. For each 𝑇𝑇 𝑇 𝑇𝑇Θ, the 𝑇𝑇-Schrödinger repre-
sentation {𝑋𝑋𝑗𝑗(𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪𝐪𝐪

2𝑛𝑛
𝑗𝑗𝑗𝑗 is a Weyl representation of the Θ-

GCCR.

We say that aWeyl representation {𝑋𝑋𝑗𝑗}
2𝑛𝑛
𝑗𝑗𝑗𝑗 of theΘ-GCCR

onℋ is irreducible if every closed subspaceℳ ofℋ which is
invariant under the action of 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡        is {0}
orℋ.

Proposition 18. Let 𝑇𝑇 𝑇 𝑇𝑇Θ. en, the 𝑇𝑇-Schrödinger
representation {𝑋𝑋𝑗𝑗(𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪𝐪𝐪

2𝑛𝑛
𝑗𝑗𝑗𝑗 as a Weyl representation of the

Θ-GCCR is irreducible.

Proof. Let ℳ be an invariant closed subspace of 𝑒𝑒𝑖𝑖𝑖𝑖𝑋𝑋𝑗𝑗(𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡       ). We have

𝑞𝑞𝑗𝑗 =
2𝑛𝑛
󵠈󵠈
𝑘𝑘𝑘𝑘
𝑇𝑇𝑘𝑘𝑘𝑘𝑋𝑋𝑘𝑘 (𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪 ) ,

𝑝𝑝𝑗𝑗 =
2𝑛𝑛
󵠈󵠈
𝑘𝑘𝑘𝑘
𝑇𝑇𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑋𝑋𝑘𝑘 (𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪 )

(21)

on ∩2𝑛𝑛𝑗𝑗𝑗𝑗𝐷𝐷𝐷𝐷𝐷𝑗𝑗(𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪   𝑛𝑛𝑗𝑗𝑗𝑗𝐷𝐷𝐷𝐷𝐷𝑗𝑗) ∩ 𝐷𝐷𝐷𝐷𝐷𝑗𝑗). Hence, by
an application of eorem A.6 in Appendix, 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 and 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗
(𝑡𝑡𝑡𝑡  ) can be written, respectively, as a scalar multiple
of 𝑒𝑒𝑖𝑖𝑖𝑖𝑋𝑋1(𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪 … 𝑒𝑒𝑖𝑖𝑖𝑖𝑋𝑋2𝑛𝑛(𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪. Hence, ℳ is invariant under the
action of 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 and 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡       ). It is well known
that {𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 , 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ∣ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡        is irreducible. us,
ℳ = {0} orℋ.

5. Uniqueness Theorem onWeyl
Representations of theΘ-GCCR

In this section, we prove the main result of the present paper,
that is, a uniqueness theorem on Weyl representations of
the Θ-GCCR, which may be regarded as a GCCR version of
the celebrated von Neumann uniqueness theorem of Weyl
representations of CCR ([13, eorem 4.11.1], [22], [23,
eorem VIII.14]).

eorem 19. Let {𝑋𝑋𝑗𝑗}
2𝑛𝑛
𝑗𝑗𝑗𝑗 be a Weyl representation of the Θ-

GCCR on a separable Hilbert space ℋ. en, for each 𝑇𝑇 𝑇
𝑀𝑀Θ, there exist mutually orthogonal closed subspacesℋℓ (ℓ =
1,… ,𝑁𝑁;𝑁𝑁 𝑁 𝑁 or∞) such that the following (i)–(iii) hold.

(i) ℋ = ⊕𝑁𝑁ℓ=1ℋℓ.
(ii) For each 𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗𝑗𝑗𝑗 , 𝑋𝑋𝑗𝑗 is reduced by eachℋℓ, ℓ =

1,… ,𝑁𝑁. We denote by 𝑋𝑋(ℓ)
𝑗𝑗 the reduced part of 𝑋𝑋𝑗𝑗 to

ℋℓ.
(iii) For each ℓ, there exists a unitary operator 𝑈𝑈ℓ ∶ ℋℓ →

𝐿𝐿2(ℝ𝑛𝑛) such that

𝑈𝑈ℓ𝑋𝑋
(ℓ)
𝑗𝑗 𝑈𝑈−1

ℓ = 𝑋𝑋𝑗𝑗 (𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪 ) , 𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗𝑗𝑗𝑗𝑗  (22)

where {𝑋𝑋𝑗𝑗(𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪𝐪𝐪
2𝑛𝑛
𝑗𝑗𝑗𝑗 is the 𝑇𝑇-Schrödinger represen-

tation of the Θ-GCCR.

Proof. Let 𝑇𝑇 𝑇 𝑇𝑇Θ, 𝐗𝐗
𝑇𝑇 be the 𝑇𝑇-transform of 𝐗𝐗 and 𝑄𝑄𝑗𝑗 ∶=

𝑋𝑋𝑇𝑇
𝑗𝑗 , 𝑃𝑃𝑗𝑗 ∶= 𝑋𝑋𝑇𝑇

𝑛𝑛𝑛𝑛𝑛 (𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗𝑗𝑗 ). en, by Proposition 15
and Remark 14, {𝑄𝑄𝑗𝑗, 𝑃𝑃𝑗𝑗}

𝑛𝑛
𝑗𝑗𝑗𝑗 is a Weyl representation of the

CCRwith 𝑛𝑛 degrees of freedom. Hence, by the von Neumann
uniqueness theorem mentioned above, there exist mutually
orthogonal closed subspacesℋℓ such that (i) given above and
the following (a) and (b) hold.
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(a) For each 𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗 𝑗𝑗 and all 𝑡𝑡 𝑡 𝑡, 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 and 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 leave
eachℋℓ invariant (ℓ =1,…,  𝑁𝑁).

(b) For each ℓ, there exists a unitary operator𝑈𝑈ℓ ∶ ℋℓ →
𝐿𝐿2(ℝ𝑛𝑛) such that

𝑈𝑈ℓ𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑈𝑈−1

ℓ = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ,

𝑈𝑈ℓ𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑈𝑈−1

ℓ = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 , 𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡     𝑡
(23)

By (14), we have 𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑗𝑗(𝐐𝐐𝐐 𝐐𝐐𝐐 𝐐𝐐𝐐 on ∩2𝑛𝑛𝑗𝑗𝑗𝑗𝐷𝐷𝐷𝐷𝐷𝑗𝑗). Hence,
𝑋𝑋𝑗𝑗 ⊂ 𝑋𝑋𝑗𝑗(𝐐𝐐𝐐 𝐐𝐐𝐐 𝐐𝐐𝐐. By Proposition 16, 𝑋𝑋𝑗𝑗(𝐐𝐐𝐐 𝐐𝐐𝐐 𝐐𝐐𝐐 is self-
adjoint. Hence,𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑗𝑗(𝐐𝐐𝐐 𝐐𝐐𝐐 𝐐𝐐𝐐.erefore, byeoremA.6
in Appendix, we obtain

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 = 𝑒𝑒𝑖𝑖𝑖𝑖
2 ∑2𝑛𝑛

𝑘𝑘𝑘𝑘𝑘 𝐽𝐽𝑘𝑘𝑘𝑘(𝑇𝑇
−1)𝑘𝑘𝑘𝑘(𝑇𝑇

−1)𝑚𝑚𝑚𝑚/2𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖1 ⋯ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖1 ⋯ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 ,

𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗 𝑗𝑗𝑗𝑗
(24)

Hence, each 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 leaves ℋℓ invariant (ℓ =1,…,  𝑁𝑁).
erefore,𝑋𝑋𝑗𝑗 is reduced by eachℋℓ. We denote the reduced
part of𝑋𝑋𝑗𝑗 toℋℓ by𝑋𝑋

(ℓ)
𝑗𝑗 . en, we have by (23)

𝑈𝑈ℓ𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖(ℓ)

𝑗𝑗 𝑈𝑈−1
ℓ = 𝑒𝑒𝑖𝑖𝑖𝑖

2 ∑2𝑛𝑛
𝑘𝑘𝑘𝑘𝑘 𝐽𝐽𝑘𝑘𝑘𝑘(𝑇𝑇

−1)𝑘𝑘𝑘𝑘(𝑇𝑇
−1)𝑚𝑚𝑚𝑚/2𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖1 ⋯ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖1 ⋯ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛

= 𝑒𝑒𝑖𝑖𝑖𝑖𝑋𝑋𝑗𝑗(𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪.
(25)

us, (22) follows.

eorem 19 tells us that every Weyl representation of the
Θ-GCCR on a separable Hilbert space is unitarily equivalent
to a direct sum of the𝑇𝑇-Schrödinger representation of theΘ-
GCCR, where 𝑇𝑇𝑇  𝑇𝑇Θ is arbitrary.

e next corollary immediately follows fromeorem 19.

Corollary 20. Let {𝑋𝑋𝑗𝑗}
2𝑛𝑛
𝑗𝑗𝑗𝑗 be an irreducible Weyl representa-

tion of the Θ-GCCR on a separable Hilbert spaceℋ. en, for
each 𝑇𝑇𝑇  𝑇𝑇Θ, there exists a unitary operator 𝑈𝑈 𝑈𝑈𝑈 
𝐿𝐿2(ℝ𝑛𝑛) such that

𝑈𝑈𝑈𝑈𝑗𝑗𝑈𝑈
−1 = 𝑋𝑋𝑗𝑗 (𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪 ) , 𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗 𝑗𝑗𝑗𝑗 (26)

e following result shows that the arbitrariness of the
choice of 𝑇𝑇 in the 𝑇𝑇-Schrödinger representation of the Θ-
GCCR is implemented by unitary operators.

Corollary 21. Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   Θ. en, there exists a unitary
operator 𝑉𝑉 on 𝐿𝐿2(ℝ𝑛𝑛) such that

𝑉𝑉𝑋𝑋𝑗𝑗 (𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪 )𝑉𝑉
−1 = 𝑋𝑋𝑗𝑗 (𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪 ) , 𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗 𝑗𝑗𝑗𝑗 (27)

Proof. We need only to apply Corollary 20 to the case where
𝑋𝑋𝑗𝑗 = 𝑋𝑋𝑗𝑗(𝐪𝐪𝐪 𝐪𝐪𝐪𝐪𝐪𝐪 .

Remark 22. As in the case of non-Weyl representations of
CCR, for non-Weyl representations of the Θ-GCCR, the

conclusion ofeorem 19 does not hold in general. Examples
of such representations of the Θ-GCCR can be constructed
fromnon-Weyl representations of CCR (e.g., [15, 16, 20, 21]).
A detailed description of some examples is given in [5].

Appendix

Some Properties of Self-Adjoint Operators
Satisfying Relations ofWeyl Type

Let 𝑁𝑁 𝑁 𝑁 be an integer, and let 𝐴𝐴𝑗𝑗 (𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗𝑗𝑗) be self-
adjoint operators on a Hilbert spaceℋ satisfying relations of
Weyl type:

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 , 𝑡𝑡𝑡𝑡𝑡  𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡      (A.1)

where 𝑎𝑎𝑗𝑗𝑗𝑗’s are real constants. It follows that 𝑎𝑎𝑗𝑗𝑗𝑗 is antisym-
metric in (𝑗𝑗𝑗 𝑗𝑗𝑗:

𝑎𝑎𝑗𝑗𝑗𝑗 = −𝑎𝑎𝑘𝑘𝑘𝑘, 𝑗𝑗𝑗 𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗𝑗𝑗𝑗 (A.2)

e unitarity of 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 and functional calculus imply that

exp 󶀢󶀢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝐴𝐴𝑘𝑘𝑒𝑒
−𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗󶀲󶀲 = exp 󶀢󶀢𝑖𝑖𝑖𝑖 󶀢󶀢𝐴𝐴𝑘𝑘 − 𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗󶀲󶀲󶀲󶀲 ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   

(A.3)

Hence, we have the operator equality

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝐴𝐴𝑘𝑘𝑒𝑒
−𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 = 𝐴𝐴𝑘𝑘 − 𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗, 𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡     𝑡 (A.4)

For a linear operator 𝐴𝐴 on a Hilbert space, we denote the
spectrum of 𝐴𝐴 by 𝜎𝜎𝜎𝜎𝜎𝜎.

Proposition A.1. Suppose that there exists a pair (𝑗𝑗𝑗 𝑗𝑗𝑗 such
that 𝑎𝑎𝑗𝑗𝑗𝑗 ≠ 0 (hence, 𝑗𝑗 𝑗𝑗𝑗 ). en,

𝜎𝜎 󶀢󶀢𝐴𝐴𝑗𝑗󶀲󶀲 =ℝ,  𝜎𝜎 󶀡󶀡𝐴𝐴𝑘𝑘󶀱󶀱 =ℝ.  (A.5)

Moreover, 𝐴𝐴𝑗𝑗 and 𝐴𝐴𝑘𝑘 are purely absolutely continuous.

Proof. By (A.4) and the unitary invariance of spectrum, we
have 𝜎𝜎𝜎𝜎𝜎𝑘𝑘) = 𝜎𝜎𝜎𝜎𝜎𝑘𝑘 − 𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗) for all 𝑡𝑡 𝑡 𝑡. Since 𝑎𝑎𝑗𝑗𝑗𝑗 ≠ 0,
this implies the second equation of (A.5). By (A.2), we have
𝑎𝑎𝑘𝑘𝑘𝑘 ≠ 0. Hence, by considering the case of (𝑗𝑗𝑗 𝑗𝑗𝑗 replaced by
(𝑘𝑘𝑘𝑘𝑘𝑘 , we obtain the �rst equation of (A.5).

Relation (A.4) means that (𝐴𝐴𝑘𝑘, 𝐴𝐴𝑗𝑗) is a weak Weyl repre-
sentation of the CCRwith one degree of freedom [14, 15, 24].
Hence 𝐴𝐴𝑗𝑗 is purely absolutely continuous [14, 15]. Similarly,
we can show that 𝐴𝐴𝑘𝑘 is purely absolutely continuous.

Proposition A.2. Let 𝑗𝑗 and 𝑘𝑘 be �xed. en, for all 𝜓𝜓 𝜓
𝐷𝐷𝐷𝐷𝐷𝑗𝑗) ∩ 𝐷𝐷𝐷𝐷𝐷𝑗𝑗𝐴𝐴𝑘𝑘), 𝜓𝜓 is in𝐷𝐷𝐷𝐷𝐷𝑘𝑘𝐴𝐴𝑗𝑗) and

󶁢󶁢𝐴𝐴𝑗𝑗, 𝐴𝐴𝑘𝑘󶁲󶁲 𝜓𝜓 𝜓𝜓𝜓𝜓𝜓 𝑗𝑗𝑗𝑗𝜓𝜓𝜓 (A.6)

Proof. An easy exercise (use (A.4)).

For each function 𝑓𝑓 𝑓 𝑓𝑓∞
0 (ℝ

𝑁𝑁) and each vector 𝜓𝜓 𝜓𝜓 ,
we de�ne a vector 𝜓𝜓𝑓𝑓 by

𝜓𝜓𝑓𝑓 ∶= 󵐐󵐐
ℝ𝑁𝑁

𝑓𝑓 (𝐭𝐭) 𝑒𝑒𝑖𝑖𝑖𝑖1𝐴𝐴1 ⋯ 𝑒𝑒𝑖𝑖𝑖𝑖𝑁𝑁𝐴𝐴𝑁𝑁𝜓𝜓𝜓𝜓𝜓𝜓𝜓 (A.7)
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where 𝐭𝐭 𝐭 𝐭𝐭𝐭1,… , 𝑡𝑡𝑁𝑁) ∈ ℝ𝑁𝑁 and the integral on the right-
hand side is taken in the strong sense. We introduce

𝒟𝒟0 ∶= Span 󶁂󶁂𝜓𝜓𝑓𝑓 ∣ 𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓  𝜓𝜓∞
0 󶀢󶀢ℝ𝑁𝑁󶀲󶀲󶀲󶀲 , (A.8)

where Span{⋯} denotes the subspace algebraically spanned
by the vectors in the set {⋯}. It is easy to see that𝒟𝒟0 is dense
inℋ.

For 𝑓𝑓 𝑓𝑓 𝑁𝑁 → ℂ (the set of complex numbers), we set
‖𝑓𝑓𝑓1 ∶= ∫ℝ𝑁𝑁 |𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.

Lemma A.3. Let 𝑓𝑓𝑛𝑛, 𝑓𝑓 𝑓𝑓𝑓 ∞
0 (ℝ

𝑁𝑁) such that ‖𝑓𝑓𝑛𝑛 − 𝑓𝑓𝑓1 →
0 (𝑛𝑛 𝑛𝑛𝑛 . en, ‖𝜓𝜓𝑓𝑓𝑛𝑛 − 𝜓𝜓𝑓𝑓‖ → 0 (𝑛𝑛 𝑛𝑛𝑛 .

Proof. Since 𝑒𝑒𝑖𝑖𝑖𝑖𝑗𝑗𝐴𝐴𝑗𝑗 is unitary, we have ‖𝜓𝜓𝑓𝑓𝑛𝑛 − 𝜓𝜓𝑓𝑓‖ ≤ ‖𝑓𝑓𝑛𝑛 −
𝑓𝑓𝑓1‖𝜓𝜓𝜓. us, the desired result follows.

For each 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗  , we de�ne a function 𝑔𝑔𝑗𝑗 on ℝ
𝑁𝑁 by

𝑔𝑔𝑗𝑗 (𝐭𝐭) ∶=
󶀂󶀂󶀒󶀒
󶀊󶀊󶀒󶀒
󶀚󶀚

0 for 𝑗𝑗 𝑗𝑗
𝑗𝑗𝑗𝑗
∑
𝑘𝑘𝑘𝑘
𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑘𝑘 for 2 ≤ 𝑗𝑗 𝑗𝑗𝑗𝑗

𝐭𝐭 𝐭𝐭 𝑁𝑁. (A.9)

Proposition A.4. (i) For all 𝑡𝑡𝑡𝑡   and 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗  , 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗

leaves𝒟𝒟0 invariant.
(ii) For each 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗  , 𝐴𝐴𝑗𝑗 leaves 𝒟𝒟0 invariant (i.e.,

𝐴𝐴𝑗𝑗𝒟𝒟0 ⊂ 𝒟𝒟0) and for all ℓ ∈ ℕ,

𝐴𝐴ℓ
𝑗𝑗𝜓𝜓𝑓𝑓 = (−𝑖𝑖)

ℓ𝜓𝜓𝐹𝐹ℓ𝑗𝑗(𝑓𝑓𝑓, 𝑓𝑓 𝑓𝑓𝑓 ∞
0 󶀢󶀢ℝ𝑁𝑁󶀲󶀲 , (A.10)

where 𝐹𝐹𝑗𝑗 ∶ 𝐶𝐶
∞
0 (ℝ

𝑁𝑁) → 𝐶𝐶∞
0 (ℝ

𝑁𝑁) is de�ned by

𝐹𝐹𝑗𝑗 󶀡󶀡𝑓𝑓󶀱󶀱 ∶= −𝜕𝜕𝑗𝑗𝑓𝑓 𝑓𝑓𝑓𝑓𝑓 𝑗𝑗𝑓𝑓𝑓 𝑓𝑓 𝑓𝑓𝑓 ∞
0 󶀢󶀢ℝ𝑁𝑁󶀲󶀲 , (A.11)

and 𝐹𝐹ℓ𝑗𝑗 is the ℓ times composition of 𝐹𝐹𝑗𝑗 with 𝐹𝐹
0
𝑗𝑗 ∶= 𝐼𝐼 (identity).

(iii) For all ℓ1,… , ℓ𝑁𝑁 ∈ ℕ ∪ {0},

𝐴𝐴ℓ1
1 𝐴𝐴

ℓ2
2 ⋯𝐴𝐴ℓ𝑁𝑁

𝑁𝑁 𝜓𝜓𝑓𝑓

= (−𝑖𝑖)ℓ1+⋯+ℓ𝑁𝑁𝜓𝜓𝐹𝐹ℓ11 ⋯𝐹𝐹ℓ𝑁𝑁𝑁𝑁 (𝑓𝑓𝑓, 𝑓𝑓 𝑓𝑓𝑓 ∞
0 󶀢󶀢ℝ𝑁𝑁󶀲󶀲 .

(A.12)

Proof. (i) Let 𝜓𝜓𝑓𝑓 be as above. en, we have 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝜓𝜓𝑓𝑓 =
∫ℝ𝑁𝑁 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖1𝐴𝐴1 ⋯ 𝑒𝑒𝑖𝑖𝑖𝑖𝑁𝑁𝐴𝐴𝑁𝑁𝜓𝜓𝜓𝜓𝜓𝜓. By (A.1), we have

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖1𝐴𝐴1 ⋯ 𝑒𝑒𝑖𝑖𝑖𝑖𝑁𝑁𝐴𝐴𝑁𝑁

= 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗(𝐭𝐭𝐭𝑒𝑒𝑖𝑖𝑖𝑖1𝐴𝐴1 ⋯ 𝑒𝑒𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴𝑗𝑗𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑗𝑗+𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝐴𝐴𝑗𝑗𝑗𝑗 ⋯ 𝑒𝑒𝑖𝑖𝑖𝑖𝑁𝑁𝐴𝐴𝑁𝑁.
(A.13)

Hence,

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝜓𝜓𝑓𝑓 = 𝜓𝜓𝑓𝑓(𝑡𝑡𝑡𝑗𝑗 . (A.14)

with

𝑓𝑓(𝑡𝑡𝑡𝑗𝑗 (𝐭𝐭) ∶= 𝑓𝑓 󶀢󶀢𝑡𝑡1,… , 𝑡𝑡𝑗𝑗𝑗𝑗, 𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑡𝑡𝑡 𝑗𝑗𝑗𝑗,… , 𝑡𝑡𝑁𝑁󶀲󶀲 𝑒𝑒
−𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗(𝐭𝐭𝐭. (A.15)

It is easy to see that 𝑓𝑓(𝑡𝑡𝑡𝑗𝑗 is in 𝐶𝐶∞
0 (ℝ

𝑁𝑁). Hence, 𝜓𝜓𝑓𝑓(𝑡𝑡𝑡𝑗𝑗 ∈ 𝒟𝒟0.

us, 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 leaves𝒟𝒟0 invariant.
(ii) By (A.14), we have for all 𝑡𝑡𝑡𝑡  𝑡 𝑡𝑡𝑡, (𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 −1)𝜓𝜓𝑓𝑓/𝑡𝑡𝑡

𝜓𝜓(𝑓𝑓(𝑡𝑡𝑡𝑗𝑗 −𝑓𝑓𝑓𝑓𝑓𝑓. It is easy to see that ‖(𝑓𝑓(𝑡𝑡𝑡𝑗𝑗 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑗𝑗(𝑓𝑓𝑓𝑓1 →
0 (𝑡𝑡𝑡𝑡𝑡  . Hence, by Lemma A.3,

lim
𝑡𝑡𝑡𝑡

󶀢󶀢𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 − 1󶀲󶀲𝜓𝜓𝑓𝑓
𝑡𝑡

= 𝜓𝜓𝐹𝐹𝑗𝑗(𝑓𝑓𝑓.
(A.16)

erefore, 𝜓𝜓𝑓𝑓 is in𝐷𝐷𝐷𝐷𝐷𝑗𝑗) and 𝑖𝑖𝑖𝑖𝑗𝑗𝜓𝜓𝑓𝑓 = 𝜓𝜓𝐹𝐹𝑗𝑗(𝑓𝑓𝑓. Hence, (A.10)
with ℓ = 1 holds. en, one can prove (A.10) by induction.

(iii) is easily follows from (ii).

Propositions A.2 and A.4 immediately yield the following
result.

Corollary A.5. For all 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗    , [𝐴𝐴𝑗𝑗, 𝐴𝐴𝑘𝑘] = 𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 on𝒟𝒟0.

eorem A.6. For all 𝑐𝑐𝑗𝑗 ∈ ℝ, 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗  , ∑𝑁𝑁
𝑗𝑗𝑗𝑗 𝑐𝑐𝑗𝑗𝐴𝐴𝑗𝑗 is

essentially self-adjoint on𝒟𝒟0 and

𝑒𝑒𝑖𝑖𝑖𝑖∑
𝑁𝑁
𝑗𝑗𝑗𝑗 𝑐𝑐𝑗𝑗𝐴𝐴𝑗𝑗 = 𝑒𝑒𝑖𝑖𝑖𝑖

2 ∑𝑁𝑁
𝑗𝑗𝑗𝑗𝑗 𝑎𝑎𝑗𝑗𝑗𝑗𝑐𝑐𝑗𝑗𝑐𝑐𝑘𝑘/2𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖1𝐴𝐴1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖2𝐴𝐴2 ⋯ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝐴𝐴𝑁𝑁, (A.17)

where for a closable operator 𝐶𝐶, 𝐶𝐶 denotes the closure of 𝐶𝐶.

Proof. For each 𝑡𝑡𝑡𝑡  , we de�ne an operator𝑈𝑈𝑈𝑈𝑈𝑈 by

𝑈𝑈 (𝑡𝑡) ∶= 𝑒𝑒𝑖𝑖𝑖𝑖
2 ∑𝑁𝑁

𝑗𝑗𝑗𝑗𝑗 𝑎𝑎𝑗𝑗𝑗𝑗𝑐𝑐𝑗𝑗𝑐𝑐𝑘𝑘/2𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖1𝐴𝐴1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖2𝐴𝐴2 ⋯ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝐴𝐴𝑁𝑁. (A.18)

By using (A.1), one can show that {𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡𝑡𝑡 is a strongly
continuous one-parameter unitary group. Hence, by the
Stone theorem, there exists a unique self-adjoint operator 𝐴𝐴
onℋ such that 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈  𝑖𝑖𝑖𝑖𝑖𝑖, 𝑡𝑡𝑡𝑡  . By Proposition A.4, 𝑈𝑈𝑈𝑈𝑈𝑈
leaves𝒟𝒟0 invariant and strongly differentiable on𝒟𝒟0 with

𝑑𝑑𝑑𝑑 (𝑡𝑡) 𝜓𝜓
𝑑𝑑𝑑𝑑

󶙥󶙥
𝑡𝑡𝑡𝑡

= 𝑖𝑖
𝑁𝑁
󵠈󵠈
𝑗𝑗𝑗𝑗
𝑐𝑐𝑗𝑗𝐴𝐴𝑗𝑗𝜓𝜓𝜓 𝜓𝜓 𝜓𝜓𝜓 0. (A.19)

Hence,𝒟𝒟0 is a core of𝐴𝐴 (e.g., [23,eorem VIII.10]). Hence
𝐴𝐴𝐴𝐴𝐴𝐴  𝑁𝑁

𝑗𝑗𝑗𝑗 𝑐𝑐𝑗𝑗𝐴𝐴𝑗𝑗𝜓𝜓, 𝜓𝜓 𝜓𝜓𝜓 0. us, the desired result follows.

For all 𝑐𝑐𝑗𝑗 ∈ ℝ, 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗  , we set

𝐴𝐴 (𝐜𝐜) ∶=
𝑁𝑁
󵠈󵠈
𝑗𝑗𝑗𝑗
𝑐𝑐𝑗𝑗𝐴𝐴𝑗𝑗, 𝐜𝐜 𝐜 󶀡󶀡𝑐𝑐1,… , 𝑐𝑐𝑁𝑁󶀱󶀱 ∈ ℝ

𝑁𝑁. (A.20)

Corollary A.7. For all 𝐜𝐜𝐜 𝐜𝐜 𝐜𝐜 𝑁𝑁 and 𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡 ,

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁
𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑎𝑎𝑗𝑗𝑗𝑗𝑐𝑐𝑗𝑗𝑑𝑑𝑘𝑘𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. (A.21)

Proof. By direct computations using (A.17) and (A.1).
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