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We consider Hilbert space representations of a generalization of canonical commutation relations (CCRs) : [X »X =X X =
X X; =10yl (j,k =1,2,...,2n), where X ;s are the elements of an algebra with identity I, i is the imaginary unit, and ® , is a real
number with antisymmetry © ;. = -0, (k, j = 1,2, ..., 2n). Some basic aspects on Hilbert space representations of the generalized
CCR (GCCR) are discussed. We define a Schrodinger-type representation of the GCCR by an analogy with the usual Schrodinger

representation of the CCR with 7 degrees of freedom. Also, we introduce a Weyl-type representation of the GCCR. The main result

of the present paper is a uniqueness theorem on Weyl representations of the GCCR.

1. Introduction

In this paper, we consider Hilbert space representations of a
generalized canonical commutation relations (GCCRs) with n
degrees of freedom (n € N := {1,2,3,...}) of the following

type:
(X, X =i04]  (jik=1,...,2n), (1)

where X.’s are elements of an algebra with identity I,
(X Xkl = X;Xj — XX, i is the imaginary unit, and
O € R (the set of real numbers) with antisymmetry © ;. =
=0y (j,k =1,...,2n) such that, for some pair (j, k), © j #0.
For convenience, we call (1) the ®-GCCR with » degrees of
freedom and the 27 X 2n matrix

0 := (®jk)j,k:1,...,2n @)

the noncommutative factor for {Xj}?zl.
Note that, in the case where © is equal to

r=(3 %) )

n

with I,, being the n x n unit matrix, (1) becomes the CCR
with n degrees of freedom. Namely, if we put Q; := X, P; :=
Xpuj (j=1,...,n) in the present case, then we have

[Q]> Qk] =0,

[QPy] =6yl (jk=1,...,n),

P.,P | =0,
[] k] @

where & is the Kronecker delta. Thus, (1) is a natural
generalization of the CCR with 7 degrees of freedom.

The GCCR also includes some of non-commutative space
times (e.g., [1-3]), non-commutative spaces (e.g., [4]), and
non-commutative phase spaces (e.g., [5-11]). In fact, one of
the motivations for the present work is to investigate general
structures underlying those non-commutative objects. In this
paper, however, we present only some fundamental aspects
of Hilbert space representations of the GCCR. The main
result is to establish a uniqueness theorem on Weyl type
representations of the GCCR (for the definition, see Section
4).

In Section 2, we define Hilbert space representations
of the GCCR and discuss some basic facts on them. It is
shown that there exists a one-to-one correspondence between
representations of the GCCR and the CCR with the same
degrees of freedom. In Section 3, we introduce a Schrodinger-
type representation of the GCCR, whose representation space



is L*(R") as in the case of the Schrodinger representation
of the CCR with n degrees of freedom. In Section 4, Weyl-
type representations of the GCCR are defined by analogy with
Weyl representations of CCR. In the last section, we prove
the uniqueness theorem mentioned above. In Appendix,
we present some basic properties of self-adjoint operators
obeying generalized Weyl relations, which are used in the
text.

2. Basic Facts on Hilbert Space Representations
of the ®-GCCR

Let # be a complex Hilbert space with inner product (., -)
(antilinear in the first variable and linear in the second one)
and norm || - ||. For a linear operator A on 7, we denote its
domain by D(A). For linear operators Ay, ..., A, on Z,

D(iAi> =n2 D(4),
D(AA;) :={¥ e D(A;) | A,¥ € D(A))},

A, )A,) (p=3).

)
D(A,+A,)=D((A

Definition 1. Let @ be a dense subspace of # and X,
j = 1,...,2n, be symmetric (not necessarily essentially self-
adjoint) operators on 7. Set X := (X, ..., X;,). We say that
the triple (%, 9,X) is a symmetric representation of the ©-
GCCR with » degrees of freedom if @ ¢ ﬂ?f,‘c:lD(Xij) and
(1) holds on 9.

If all the X ;s (j = 1,...,2n) are self-adjoint, we say that
(#,,X) is a self-adjoint representation of the GCCR.

Remark 2. The concept of self-adjoint representation defined
above is different from the one used in representation theory
of x-algebra (e.g., [12, page 205]).

Remark 3. In each symmetric representation (%, 9,X) of
the ®-GCCR, # is infinite dimensional (if # were finite
dimensional, then, for (j,k) such that ®jk¢0, 0 = trace
of [X;, Xi] = i@, dim# #0, and hence one is led to a
contradiction).

Remark 4. Tt follows from a well-known fact on commutation
properties of linear operators (e.g., [13, Theorem 1.2.3]) that,
for (j, k) with © j; # 0, at least one of X ; and X is unbounded.
Hence, one has to be careful about domains of X j’s.

Remark 5. In the case of Hilbert space representations of
CCR, symmetric representations, but nonself-adjoint ones,
also play important roles. For example, such representations
appear in mathematical theories of time operators [14] (see
also [15, 16] for investigations from purely operator-theoretic
points of view). Thus, it is expected that, in addition to
self-adjoint representations of the ®-GCCR, non-self-adjoint
symmetric representations of it may have any importance in
applications to quantum physics.
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Remark 6. In the context of quantum mechanics, for a
symmetric operator A and a unit vector ¢ € D(A), (AA)W =
(A = (y, Ay))y| is called the uncertainty of A in the
vector state y. Let (%, 2, X) be a symmetric representation
of the ®-GCCR with #n degrees of freedom. Then, one has
uncertainty relations of Robertson type [17]: for all unit
vectors y € D and j,k=1,...,2n,

(ax)), (0%, 2 S [(woun)].  ©

Let (#,9,X) be a symmetric representation of the ®-
GCCR as in Definition 1. We assume for simplicity the
following:

Assumption 1. The noncommutative factor ® is regular
(invertible).

Under this assumption, © is a regular antisymmetric real
matrix. Hence, by a well-known fact in the theory of linear
algebra (e.g., [18, page 173, Problem 9]), the following fact
holds.

Lemma 7. There exists a regular 2n x 2n real matrix T, such
that '"T,OT, = J, where T, is the transposed matrix of T,
and ] is defined by (3).

The matrix T, in Lemma 7 belongs to the set

Mg :={T|Tisa2n>< 2n
(7)
real matrix such that 'T® T = J } .

It is easy to see that for each T € Mg, there exists a unique
2n x 2n symplectic matrix W (i.e., WIW =T ) such that
T = T,W. Hence,

Mg = {ToW|'WJW = J}. (8)

.....

2n
X =Y LXe j=1..,2n )
k=1

We call the correspondence X — Xt .= (Xf, ,Xé,,) the
L-transform of X.
Let

©,:='LOL. (10)
Proposition 8. (i) Forall j = 1,...,2n, X;‘ is a symmetric
operator on 7.
(ii) For all j,k =1, ...,2n,
L L] _
[ X5, Xi] = (L) (11)

on D.
(iii) For each T € Mg and j,k =1, ...,2n,

(5, XK ] = T (12)
on .
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Proof. An easy exercise. O

Proposition 8-(i) and (i) show that (#,2,X") is a
symmetric representation of the ®; -GCCR with n degrees of
freedom.

Proposition 8 (iii) implies the following.

Corollary 9. Let T € Mg and
Qj:=Xj, P;:=X,; (j=L...,n). (13)

Then, (%, 2,{Q;, P} ")) is a symmetric representation of the
CCR with n degrees o / freedom.

Corollary 9 means that foreach T € M, the T-transform
of X gives a correspondence from a symmetric representation
of the ®-GCCR with n degrees of freedom to a symmetric
representation of the CCR with the same degrees of freedom.

One can easily see that (9) with L = T' € M implies that

Xj= 217 Xk (14)

on ﬂ?ZlD(X ;). Thus, every symmetric representation of the
©-GCCR with #n degrees of freedom is constructed from a
symmetric representation of the CCR with the same degrees
of freedom via (14).

Conversely, if a symmetric representation (%,9,{Qj,
P j};-’:l) of the CCR with n degrees of freedom is given and
let

X;(QP;T) := Z(

S0 3

with Q := (Q,...,Q,) and P := (P,...,P,), then
(Z,2,X(Q,P;T)) is a symmetric representation of the -
GCCR and (9) holds with L = T, X = Q;, X,,; = P; (j =
1,...,n) and X; = Xj(Q,P;T) (j = 1,...,2n). Hence,
every symmetric representation of the CCR with n degrees
of freedom is constructed from a symmetric representation of
the ®-GCCR with the same degrees of freedom. Thus, for each
T € Mg, there exists a one-to-one correspondence between
a symmetric representation of the ®-GCCR and a symmetric
representation of the CCR with n degrees of freedom.

)(n+k)ij (15)

3. Representations of Schrodinger Type

LetT € Mg. By the fact on X(Q, P; T) stated in the preceding
section, we can define a class of representations of the ©-
GCCR. Let (L*(R"), C§°(R"), {g, p;}}-,) be the Schrodinger
representation of the CCR with »n degrees of freedom, that
is, q; is the multiplication operator by the jth component x;
ofx = (x,...,x,) € R"and p; = -iD; with D; being
the generalized partial differential operator in x;, actmg in
L (R™). Let

n

Xj@pT =) (1) ac+ ) (T
k=1

)(n+k)jpk’ (16)
k=1

which is (15) with Q = q and P = p. We denote the closure
of X(q, p; T) by X ;(q, p; T) and set

X(@pT) = (X, (@pT),.... X5 (@pT)).  (17)
We call the triple 7o := (L2(R"), C°(R"), X(q, p; T)) the T-
Schrodinger representation of the ®-GCCR.

It is easy to see that for all j = 1,...,2n, X;(q,p;T) is
essentially self-adjoint on C;°(R") (apply, e.g., the Nelson
commutator theorem [19, Theorem X.37] with dominating
operator N = Z?:l@? + p?) + I) (This can be proved also
by applying Proposition 16). Hence Xj(q, p; T) is self-adjoint.
Thus, we obtain the following.

Proposition 10. For each T € Mg, the T-Schrodinger

representation s is a self-adjoint representation of the ©-
GCCR.

4. Representations of Weyl Type

Based on an analogy with Weyl representations of CCR, we
introduce a concept of Weyl representation for ®-GCCR.
Definition 11. Let {Xj}§21 be a set of self-adjoint operators on
a Hilbert space 7. We say that {X ;}>" j=1 isa Weyl representation
of the ®-GCCR with n degrees of f{'eedom ifforalls,t € Rand
jk=1,...,2n,

X isX List®. isX. itX.
ezt ie" %k = ¢ zst@lkezs kelt j. (18)

We call these relations the ®-Weyl relations.

For a linear operator A on a Hilbert space, we denote its
spectrum by o (A).

Proposition 12. Let {X j}§21 be a Weyl representation of the
©-GCCR on . Then, there is a dense subspace D, C I
left invariant by each X; (j =1,...,2n) such that (¥, D, X)
is a self-adjoint representation of the ®-GCCR. Moreover, for
every pair (X, Xy) such that © ;. #0, X; and X, are purely
absolutely continuous with

o(X))=0(X)=R, j=1,.,2n (19)

Proof. By (18), we can apply the results described in the
Appendix of the present paper. In the present context, we
need only to take, in the notation in the Appendix, N =
2n, a5 = O3 and A; = X;. By Proposition A.4-(iii) and
Coroflary A.5, there exists a dense subspace 9, left invariant
by X; (j = 1,...,2n) and [X, X;] = i@ on D Thus, the
first half of the proposition is derived. The second half follows
from Proposition A.1. O

Remark 13. As in the case of self-adjoint representations of
CCR (e.g., [16, 20, 21]), the converse of Proposition 12 does
not hold (i.e., a self-adjoint representation of the ®-GCCR is
not necessarily a Weyl one).



We recall that a set {Q j,Pj};':l of self-adjoint operators
on # is a Weyl representation of the CCR with n degrees of
freedom if for all s,t € Rand j,k = 1,...,n, the following

Wey relations hold:
e QgiPr o stk gisP Q)
Qg Qu _ i5Qu itQ; (20)
ethJelst _ eiSPkeitPj.

Remark 14. A set{Q;, Pj};‘:l of self-adjoint operators on # is
a Weyl representation of the CCR with n degrees of freedom
1fandonly1f{X} 1w1thX =Q; X, j=P;(j=1,...,n)
is a Weyl representatlon of the J-GCCR, where ] is given by
(3).

Let T € Mg be arbitrarily fixed. The next proposition
shows that the T-transform of each Weyl representation of
the ®-GCCR is a Weyl representation of the CCR with n
degrees of freedom.

Proposition 15. Let {X j}izl be a Weyl representation of the
©-GCCR on %, and let X' be the T-transform of X. Then,
each XJT is essentially self-adjoint, and {X?}?Zl is a Weyl
representation of the J-GCCR.

Proof. The essential self-adjointness of X? follows from a
simple application of Theorem A.6 in Appendix. Corollary
A.7 in Appendix and the relation 'TOT = J imply that

{XT} i1 satisfies the J-Weyl relations. O

In the same way as in the proof of Proposition 15, we can
prove the following proposition:

Proposition 16. Let {Q;, P; } j-1 be a Weyl representation of
the CCR with n degrees of freedom on a Hilbert space Z . Let
Xj(Q,P; T) (j = 1,...,2n) be defined by (15). Then, each
Xj(Q, P;T) is essentially self-adjoint and {yj(Q, P; T)}z»:1 is
a Weyl representation of ®-GCCR with n degrees of freedom.

This proposition shows that the converse of Proposition
15 holds too. Thus, for each T' € Mg, there exists a one-to-one
correspondence between a Weyl representation of the CCR
with n degrees of freedom and that of the ®-GCCR with the
same degrees of freedom.

It is well known [22] that the Schrodinger representation
{aj p j}?:l is a Weyl representation o the CCR with n degrees

of freedom. Hence, we obtain the following result.

Corollary 17. For each T € Mg, the T-Schrodinger repre-
sentation {X]-(q, p; T)}?Z1 is a Weyl representation of the ©-
GCCR.

We say that a Weyl representation {X j}§21 of the ®-GCCR
on # is irreducible if every closed subspace . of Z which is

invariant under the action of "% (teR,j=1,...,2n)is {0}
or .
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Proposition 18. Let T € Myg. Then, the T-Schrodinger

representation {Yj(q, p;T )}?Zl as a Weyl representation of the
©-GCCR is irreducible.

Proof. Let / be an invariant closed subspace of Xi@pD
(teR,j=1,...,2n). We have
2n
q] = ZTk]Xk (‘L P; T) >
k=1
(21)
2n
pj= > Tigurj Xi (@B T)
k=1

on ﬂ LD(X(q.pT)) =

an apphcatlon of Theorem A.6 in Appendix, "% and e
(t € R) can be written, respectively, as a scalar multiple
of X1@BD)  itXo@PT) Hence 4/ is invariant under the
action of ¢’ q] and ¢''Pi (teR,j=1,...,n).Itis well known
that {"9,¢"? | t € R,j = 1,...,n} is irreducible. Thus,
M = {0} or . O

Ni1D(q;) N D(p;). Hence, by
itp,

5. Uniqueness Theorem on Weyl
Representations of the ®-GCCR

In this section, we prove the main result of the present paper,
that is, a uniqueness theorem on Weyl representations of
the ®-GCCR, which may be regarded as a GCCR version of
the celebrated von Neumann uniqueness theorem of Weyl
representations of CCR ([13, Theorem 4.11.1], [22], [23,
Theorem VIIL.14]).

Theorem 19. Let {Xj}?zl be a Weyl representation of the ©-

GCCR on a separable Hilbert space 7. Then, for each T €

Mg, there exist mutually orthogonal closed subspaces #, (£ =
.»N; N € N or co) such that the following (i)-(iii) hold.

() # = oh | H,.
(ii) For each j = 1,...,2n, X is reduced by each 7y, £ =
.» N. We denote by X;e) the reduced part of X ; to
%e-
(iii) For each ¢, there exists a unitary operator U, : #, —
L*(R™) such that
Uexﬁ.“ugl =X;(@pT), j=L...2n, (22)
where {Xj(q, P T)}?Z1 is the T-Schrodinger represen-
tation of the ®-GCCR.

Proof. Let T € Mg, X" be the T-transform of X and Qj =
T T (;

XTI, P, = X,W G =1,..,
and Remark 14, ;’ | is a Weyl representation of the
CCRwithn degrees of freedom Hence, by the von Neumann
uniqueness theorem mentioned above, there exist mutually

orthogonal closed subspaces #, such that (i) given above and
the following (a) and (b) hold.

n). Then, by Proposition 15
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(a) Foreach j=1,...,nandallt € R, "2 and " leave

each &, invariant (€ = 1, ..., N).

(b) For each ¢, there exists a unitary operator U, : 7, —
L*(R"™) such that

Uee"UUy = ",

(23)
UpPiu' =", teR,j=1,...,n
By (14), we have Xj = Xj(Q, P;T) on ﬂ?ZID(Xj). Hence,
X; ¢ Xj(Q, P; T). By Proposition 16, X;(Q,P; T) is self-
adjoint. Hence, X ;= X j(Q, P; T). Therefore, by Theorem A.6
in Appendix, we obtain

X eitz py ]km(T’l)kj(T’l)mj/zeitQ1 o ltQugitPr L ity
j=1..,2n

(24)

Hence, each "%/ leaves % , invariant (¢ = 1,...,N).

Therefore, X ; is reduced by each #,. We denote the reduced
part of X ; to %, by X§e). Then, we have by (23)
&t Tkt Tion T (T D2 gitay

X o ,
X001 tq, it t
Upe" 1 Uy = elngPr ... g!thn

_ eitfj(q,p;T).

(25)
Thus, (22) follows. O]

Theorem 19 tells us that every Weyl representation of the
©-GCCR on a separable Hilbert space is unitarily equivalent
to a direct sum of the T-Schrodinger representation of the ®-
GCCR, where T' € Mg, is arbitrary.

The next corollary immediately follows from Theorem 19.

Corollary 20. Let {X ]'},?21 be an irreducible Weyl representa-
tion of the ®-GCCR on a separable Hilbert space #. Then, for
each T € Mg, there exists a unitary operator U : X —

L*(R") such that
UXU ' =X;(qpT), j=1,..,2n (26)
The following result shows that the arbitrariness of the
choice of T in the T-Schrédinger representation of the ©-

GCCR is implemented by unitary operators.

Corollary 21. Let S, T € Myg. Then, there exists a unitary
operator V on L*(R") such that

VX (@pS)V ' =X (@nT), j=1...2n (27)

Proof. We need only to apply Corollary 20 to the case where
X =Yj(‘l>p$s)‘ O

Remark 22. As in the case of non-Weyl representations of
CCR, for non-Weyl representations of the ®-GCCR, the

conclusion of Theorem 19 does not hold in general. Examples
of such representations of the ®-GCCR can be constructed
from non-Weyl representations of CCR (e.g., [15, 16, 20, 21]).
A detailed description of some examples is given in [5].

Appendix

Some Properties of Self-Adjoint Operators
Satisfying Relations of Weyl Type

Let N > 2 be an integer, and let Aj (j = 1,...,N) be self-
adjoint operators on a Hilbert space 7 satisfying relations of
Weyl type:

eitAjeisAk — efitsajkeisAkeitAj)t’S €R, j,k =1,..,N, (A.l)
where a ;s are real constants. It follows that a is antisym-
metric in (j, k):

a]k = _ak]" J)k = 1, e ,N. (A.Z)

The unitarity of ¢"“/ and functional calculus imply that

exp (ise"tAfAkef"tAf) = exp (is (Ak - tajk)), s,t € R
(A.3)

Hence, we have the operator equality
A = A —tay, teRjk=1,..,N. (A4)

For a linear operator A on a Hilbert space, we denote the
spectrum of A by o(A).

Proposition A.1. Suppose that there exists a pair (j, k) such
that a i #0 (hence, j # k). Then,
o(4)) =R

Moreover, A; and Ay are purely absolutely continuous.

Proof. By (A.4) and the unitary invariance of spectrum, we
have 0(A;) = o(A; - tay) for all t € R. Since aj #0,
this implies the second equation of (A.5). By (A.2), we have
aij #0. Hence, by considering the case of (j,k) replaced by
(k, ), we obtain the first equation of (A.5).

Relation (A.4) means that (A, A]-) is a weak Weyl repre-
sentation of the CCR with one degree of freedom [14, 15, 24].
Hence A; is purely absolutely continuous [14, 15]. Similarly,
we can show that Ay is purely absolutely continuous. O

Proposition A.2. Let j and k be fixed. Then, for all ¢ €
D(A;j) N D(A;Ap), v is in D(A A;) and

[A), Ay = iay. (A.6)
Proof. An easy exercise (use (A.4)). O

For each function f € C5°(RY) and each vector y € %,
we define a vector y; by

V= J f@yeht . iviygt, (A7)
IRN



where t = (t,,...,ty) € R" and the integral on the right-
hand side is taken in the strong sense. We introduce

D, := Span {V/f ly e, feCy (IRN)},

where Span{---} denotes the subspace algebraically spanned
by the vectors in the set {---}. It is easy to see that 9 is dense
inZ.

For f : RY - C (the set of complex numbers), we set

Lfll == [ (D).

Lemma A.3. Let f,, f € CO(RY) such that |f, - fll, —
0 (n — ©0). Then, ||1//f —wf|| - 0 (n — o0).

(A.8)

Proof. Since ¢ is unitary, we have Iy, —well < If, -
Sl llyll. Thus, the desired result follows. O

For each j = 1,..., N, we define a function g, on R" by

0 for j=1

9j (t):= 17

teRY. (A9
Yayty for2<j<N, (&.9)
k=1

Proposition A.4. (i)Forallt € Rand j = 1,...,N, "%
leaves 9, invariant.

(ii) For each j = 1,...,N, A; leaves D, invariant (i.e.,
AP, ¢ Do) and forallt € N,

Ay = D'y feCP(RY), (A.10)
where F : CPRN) — CP(RN) is defined by
Fi(f):=-0;f —ig;f, feCy(RY), (A.11)

and Fs is the € times composition of F; with F? := I (identity).
(iii) For all €, ..., &5 € N U {0},
(AN ¢
Al AT - AYY,
o N (A.12)
= DY ey FECY (RY).

Proof. (i) Let y; be as above. Then, we have eitAfl//f =

J]RN f(t)eitAfeitlA1 o INAN ydt. By (A.1), we have
AT GitAY L fitnAy
= G0 gAY it A DA, it Ay it Ay
(A.13)
Hence,
eitAfl//f = l//fy)- (A.14)
with

—itg.(t
FOW = (bt ty =Bt s ty) e 790 (A15)
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It is easy to see that f;t) is in C°(RY). Hence, Yo € Dy.
J

Thus, "%/ leaves 2, invariant. '
(ii) By (A.14), we have for all t € R\ {0}, (e'tAf - 1)1//f/t =

V/(fﬂ.”—f)/t' It is easy to see that ||(f§~t) - Ot - Fj(f)||1 -
0 (t — 0). Hence, by Lemma A.3,
itA
(e -1)y,
: — A.16
T YRy (410

Therefore, v isin D(Aj) and iAjI//f = V/Fj(f)' Hence, (A.10)

with € = 1 holds. Then, one can prove (A.10) by induction.
(iii) This easily follows from (ii). O

Propositions A.2 and A.4 immediately yield the following
result.

Corollary A.5. Forall jk=1,...,N, [A}, A(] = iaj on D,

Theorem A.6. Forallc; € R, j = 1,...,N, Zj\il c;A; is
essentially self-adjoint on 9, and

NN .2 ¢N . . .
it CA; it” Y apcic /2 it Ay itc, A itcy A
e 2in1€j i=¢ X ick AjkCiCk gfadigitads | oitenAn (A.17)

where for a closable operator C, C denotes the closure of C.

Proof. For eacht € R, we define an operator U(t) by

U(t) := eit2 P Acicl2 it Ay jite, Ay ||| itey Ay (A.18)
By using (A.1), one can show that {U(t)},.r is a strongly
continuous one-parameter unitary group. Hence, by the
Stone theorem, there exists a unique self-adjoint operator A
on # such that U(t) = &t e R By Proposition A.4, U(t)
leaves 9, invariant and strongly differentiable on &, with

du (1) y

i (A.19)

N
= ichAjl//,w € D,.
o 4

t=0

Hence, 9, is a core of A (e.g., [23, Theorem VIII.10]). Hence

Ay = Zi\il cjAjy, v € D,. Thus, the desired result follow;i

Forallc; € R, j=1,...,N, we set

N
Alc) := ZCjAj, c=(cp...ocn) €RY. (A20)
j=1

Corollary A.7. Forallc,d € RY andt,s € R,

QAW isAW) _ -its Y et ajcdy ,isAW) it Ale) (A.21)

Proof. By direct computations using (A.17) and (A.1). O
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