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A general system of three autonomous ordinary differential equations with three discrete time delays is considered. With respect
to the delays, we investigate the local stability of equilibria by analyzing the corresponding characteristic equation. Using the
Hopf bifurcation theorem, we predict the occurrence of a limit cycle bifurcation for the time delay parameters. Thus, some new
mathematical results are obtained. Finally, the above mentioned criteria are applied to a system modelling miRNA regulation.

1. Introduction

The future status of many systems arising from engineering,
physics, mechanics, biochemistry, or systems in biology
is determined not only by their current behavior but is
also by their history. Such phenomena are called delay or
genetic effects. Time lags in continuous systems can produce
complex dynamics and instabilities. In the recent years, many
mathematical models that have appeared in the literature
involve either a single discrete delay to investigate the role of
phosphorylation, negative or positive feedback regulation of
transcription factors [1–4], and gene expressionmultistability
[5]. Several papers [6–13] among others consider systems
with two or three discrete delays. When there is more than
one delay in the equations, the local theory for stability is not
fully complete.

A dynamical system which is not finite dimensional is
called an infinite dimensional dynamical system. A class of
infinite dimensional system can be determined by functional
differential equations of the retarded type. To introduce such
equations, we let 𝐶

𝑟
denote the set 𝐶[[−𝑟, 0], 𝑅𝑛] with the

norm defined by ‖𝜙‖ = max{|𝜙(𝑡) : −𝑟 ≤ 𝑡 ≤ 0|} where ‖ ⋅ ‖
denotes a norm (e.g., the Euclidean norm). Given a function
𝑥(⋅) defined on −𝑟 ≤ 𝑡 ≤ 0, let 𝑥

𝑡
be the function determined

by 𝑥
𝑡
(𝑠) = 𝑥(𝑡 + 𝑠) for −𝑟 ≤ 𝑠 ≤ 0. A retarded functional

differential equation (with delay 𝑟) is an equation of the form

𝑥̇ (𝑡) = 𝐹 (𝑡, 𝑥
𝑡
) , (1)

where 𝐹 ∈ 𝐶[Ω, 𝑅
𝑛

] and Ω is an open set in (𝑅 × 𝐶
𝑟
). The

notations of the dynamical system are determined by varying
(𝑡
0
, 𝑥
𝑡0

= 𝜓) over some appropriate subset of Ω. As far as
we know, the first statement similar to the Hopf theorem
(concerning the bifurcation of periodic solutions from a
singular point of an ordinary differential equation) [14] for
retarded functional differential equations was given in [15].

In this paper, we consider stability and bifurcation behav-
ior of a three-dimensional system of autonomous ordinary
differential delay equations of the form

𝑥
󸀠

(𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜁) , 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜉) , 𝑧 (𝑡) , 𝑧 (𝑡 − 𝜂)) ,

𝑦
󸀠

(𝑡) = 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜁) , 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜉) , 𝑧 (𝑡) , 𝑧 (𝑡 − 𝜂)) ,

𝑧
󸀠

(𝑡) = ℎ (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜁) , 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜉) , 𝑧 (𝑡) , 𝑧 (𝑡 − 𝜂)) ,

(2)

where (
󸀠

= 𝑑/𝑑𝑡); 𝑓, 𝑔, ℎ : 𝑅 × 𝑅 × 𝑅 × 𝑅 × 𝑅 × 𝑅 → 𝑅,
are such that solutions to initial value problems exist and are
continuable.

2. Derivation of the Characteristic Equation

We assume that 𝑓, 𝑔, and ℎ have continuous first partial
derivatives with respect to their arguments and that there
exists unique 𝑥 > 0, 𝑦 > 0, and 𝑧 > 0, such that
𝑓(𝑥, 𝑥, 𝑦, 𝑦, 𝑧, 𝑧) = 𝑔(𝑥, 𝑥, 𝑦, 𝑦, 𝑧, 𝑧) = ℎ(𝑥, 𝑥, 𝑦, 𝑦, 𝑧, 𝑧)=0.
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We utilize the following notation: 𝑓
𝑖
, 𝑖 = 1, . . . , 6 that

represents the partial derivative of 𝑓 with respect to its 𝑖th
argument evaluated 𝐸(𝑥, 𝑥, 𝑦, 𝑦, 𝑧, 𝑧). A similar meaning is
given to 𝑔

𝑗
, 𝑗 = 1, . . . , 6, and ℎ

𝑘
, 𝑘 = 1, . . . , 6. Hence, for

example, 𝑓
2

= (𝜕𝑓(𝑥, 𝑥, 𝑦, 𝑦, 𝑧, 𝑧)/𝜕𝑥(𝑡 − 𝜁)) and ℎ
2

=

(𝜕ℎ(𝑥, 𝑥, 𝑦, 𝑦, 𝑧, 𝑧)/𝜕𝑥(𝑡 − 𝜁)). The variational system with
respect to 𝐸 is

(

𝑢 (𝑡)

𝑣 (𝑡)

𝜌 (𝑡)

)

󸀠

= (

𝑓
1

𝑓
3

𝑓
5

𝑔
1
𝑔
3
𝑔
5

ℎ
1

ℎ
3

ℎ
5

)(

𝑢 (𝑡)

𝑣 (𝑡)

𝜌 (𝑡)

)

+ (

𝑓
2

𝑓
4

𝑓
6

𝑔
2
𝑔
4
𝑔
6

ℎ
2

ℎ
4

ℎ
6

)(

𝑢 (𝑡 − 𝜁)

𝑣 (𝑡 − 𝜉)

𝜌 (𝑡 − 𝜂)

) .

(3)

We seek a solution of (3) of the form 𝑢(𝑡) = 𝑐
1
ℓ
𝜒𝑡, 𝑣(𝑡) = 𝑐

2
ℓ
𝜒𝑡

and 𝜌(𝑡) = 𝑐
3
ℓ
𝜒𝑡. For nontrivial solutions, this leads to the

following characteristic equation in 𝜒:

𝜒
3

+ 𝑎
1
𝜒
2

+ 𝑎
2
𝜒 + 𝑎
3
+ ℓ
−𝜒𝜁

(𝑎
4
𝜒
2

+ 𝑎
7
𝜒 + 𝑎
13
)

+ ℓ
−𝜒𝜉

(𝑎
5
𝜒
2

+ 𝑎
8
𝜒 + 𝑎
14
) + ℓ
−𝜒𝜂

(𝑎
6
𝜒
2

+ 𝑎
9
𝜒 + 𝑎
15
)

+ ℓ
−𝜒(𝜁+𝜉)

(𝑎
10
𝜒 + 𝑎
16
) + ℓ
−𝜒(𝜁+𝜂)

(𝑎
11
𝜒 + 𝑎
17
)

+ ℓ
−𝜒(𝜉+𝜂)

(𝑎
12
𝜒 + 𝑎
18
) + 𝑎
19
ℓ
−𝜒(𝜁+𝜉+𝜂)

= 0,

(4)

where

𝑎
1
= − (𝑓

1
+ 𝑔
3
+ ℎ
5
) ,

𝑎
2
= 𝑓
1
(𝑔
3
+ ℎ
5
) − 𝑓
3
𝑔
1
− 𝑓
5
ℎ
1
+ 𝑔
3
ℎ
5
− 𝑔
5
ℎ
3
,

𝑎
3
= 𝑓
1
(𝑔
5
ℎ
3
− 𝑔
3
ℎ
5
) + 𝑓
3
(𝑔
1
ℎ
5
− 𝑔
5
ℎ
1
)

+ 𝑓
5
(𝑔
3
ℎ
1
− 𝑔
1
ℎ
3
) ,

𝑎
4
= − 𝑓

2
, 𝑎

5
= −𝑔
4
, 𝑎

6
= −ℎ
6
,

𝑎
7
= 𝑓
2
(𝑔
3
+ ℎ
5
) − 𝑓
3
𝑔
2
− 𝑓
5
ℎ
2
,

𝑎
8
= 𝑔
4
(𝑓
1
+ ℎ
5
) − 𝑓
4
𝑔
1
− 𝑔
5
ℎ
4
,

𝑎
9
= ℎ
6
(𝑓
1
+ 𝑔
3
) − 𝑓
6
ℎ
1
− 𝑔
6
ℎ
3
,

𝑎
10

= 𝑓
2
𝑔
4
− 𝑓
4
𝑔
2
, 𝑎

11
= 𝑓
2
ℎ
6
− 𝑓
6
ℎ
2
,

𝑎
12

= 𝑔
4
ℎ
6
− 𝑔
6
ℎ
4
,

𝑎
13

= 𝑓
2
(𝑔
5
ℎ
3
− 𝑔
3
ℎ
5
) + 𝑓
3
(𝑔
2
ℎ
5
− 𝑔
5
ℎ
2
)

+ 𝑓
5
(𝑔
3
ℎ
2
− 𝑔
2
ℎ
3
) ,

𝑎
14

= 𝑓
1
(𝑔
5
ℎ
4
− 𝑔
4
ℎ
5
) + 𝑓
4
(𝑔
1
ℎ
5
− 𝑔
5
ℎ
1
)

+ 𝑓
5
(𝑔
4
ℎ
1
− 𝑔
1
ℎ
4
) ,

𝑎
15

= 𝑓
1
(𝑔
6
ℎ
3
− 𝑔
3
ℎ
6
) + 𝑓
3
(𝑔
1
ℎ
6
− 𝑔
6
ℎ
1
)

+ 𝑓
6
(𝑔
3
ℎ
1
− 𝑔
1
ℎ
3
) ,

𝑎
16

= 𝑓
2
(𝑔
5
ℎ
4
− 𝑔
4
ℎ
5
) + 𝑓
4
(𝑔
2
ℎ
5
− 𝑔
5
ℎ
2
)

+ 𝑓
5
(𝑔
4
ℎ
2
− 𝑔
2
ℎ
4
) ,

𝑎
17

= 𝑓
2
(𝑔
6
ℎ
3
− 𝑔
3
ℎ
6
) + 𝑓
3
(𝑔
2
ℎ
6
− 𝑔
6
ℎ
2
)

+ 𝑓
6
(𝑔
3
ℎ
2
− 𝑔
2
ℎ
3
) ,

𝑎
18

= 𝑓
1
(𝑔
6
ℎ
4
− 𝑔
4
ℎ
6
) + 𝑓
4
(𝑔
1
ℎ
6
− 𝑔
6
ℎ
1
)

+ 𝑓
6
(𝑔
4
ℎ
1
− 𝑔
1
ℎ
4
) ,

𝑎
19

= 𝑓
2
(𝑔
6
ℎ
4
− 𝑔
4
ℎ
6
) + 𝑓
4
(𝑔
2
ℎ
6
− 𝑔
6
ℎ
2
)

+ 𝑓
6
(𝑔
4
ℎ
2
− 𝑔
2
ℎ
4
) .

(5)

Remark 1. We note that 𝜒 = 0 is a root of (4) if and only if
𝑎
3
= 𝑎
13

= 𝑎
14
= 𝑎
15

= 𝑎
16
= 𝑎
17

= 𝑎
18
= 𝑎
19

= 0.

It is well known that the stability of the equilibrium state𝐸
depends on the sign of the real parts of the roots of (4). If 𝜒 =

𝑚 + 𝑖𝑛 (𝑚, 𝑛 ∈ 𝑅) satisfies (4), then𝑚 and 𝑛 are real solutions;
that is, we rewrite (4) in terms of its real and imaginary parts
as

𝑚
3

− 3𝑚𝑛
2

+ 𝑎
1
(𝑚
2

− 𝑛
2

) + 𝑎
2
𝑚 + 𝑎

3

+ ℓ
−𝑚𝜁

[𝑎
4
(𝑚
2

− 𝑛
2

) cos 𝑛𝜁 + 2𝑎
4
𝑚𝑛 sin 𝑛𝜁

+𝑎
7
(𝑚 cos 𝑛𝜁 + 𝑛 sin 𝑛𝜁) + 𝑎

13
cos 𝑛𝜁]

+ ℓ
−𝑚𝜉

[𝑎
5
(𝑚
2

− 𝑛
2

) cos 𝑛𝜉 + 2𝑎
5
𝑚𝑛 sin 𝑛𝜉

+𝑎
8
(𝑚 cos 𝑛𝜉 + 𝑛 sin 𝑛𝜉) + 𝑎

14
cos 𝑛𝜉]

+ ℓ
−𝑚𝜂

[𝑎
6
(𝑚
2

− 𝑛
2

) cos 𝑛𝜂 + 2𝑎
6
𝑚𝑛 sin 𝑛𝜂

+𝑎
9
(𝑚 cos 𝑛𝜂 + 𝑛 sin 𝑛𝜂) + 𝑎

15
cos 𝑛𝜂]

+ ℓ
−𝑚(𝜁+𝜉)

[𝑎
10
(𝑚 cos 𝑛 (𝜁 + 𝜉) + 𝑛 sin 𝑛 (𝜁 + 𝜉))

+𝑎
16
cos 𝑛 (𝜁 + 𝜉)]

+ ℓ
−𝑚(𝜁+𝜂)

[𝑎
11
(𝑚 cos 𝑛 (𝜁 + 𝜂) + 𝑛 sin 𝑛 (𝜁 + 𝜂))

+𝑎
17
cos 𝑛 (𝜁 + 𝜂)]

+ ℓ
−𝑚(𝜉+𝜂)

[𝑎
12
(𝑚 cos 𝑛 (𝜉 + 𝜂) + 𝑛 sin 𝑛 (𝜉 + 𝜂))

+ 𝑎
18
cos 𝑛 (𝜉 + 𝜂)]

+ 𝑎
19
ℓ
−𝑚(𝜁+𝜉+𝜂) cos 𝑛 (𝜁 + 𝜉 + 𝜂) = 0,

3𝑚
2

𝑛 − 𝑛
3

+ 2𝑎
1
𝑚𝑛 + 𝑎

2
𝑛

+ ℓ
−𝑚𝜁

[2𝑎
4
𝑚𝑛 cos 𝑛𝜁 − 𝑎

4
(𝑚
2

− 𝑛
2

) sin 𝑛𝜁

+𝑎
7
(𝑛 cos 𝑛𝜁 − 𝑚 sin 𝑛𝜁) − 𝑎

13
sin 𝑛𝜁]
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+ ℓ
−𝑚𝜉

[2𝑎
5
𝑚𝑛 cos 𝑛𝜉 − 𝑎

5
(𝑚
2

− 𝑛
2

) sin 𝑛𝜉

+𝑎
8
(𝑛 cos 𝑛𝜉 − 𝑚 sin 𝑛𝜉) − 𝑎

14
sin 𝑛𝜉]

+ ℓ
−𝑚𝜂

[2𝑎
6
𝑚𝑛 cos 𝑛𝜂 − 𝑎

6
(𝑚
2

− 𝑛
2

) sin 𝑛𝜂

+𝑎
9
(𝑛 cos 𝑛𝜂 − 𝑚 sin 𝑛𝜂) − 𝑎

15
sin 𝑛𝜂]

+ ℓ
−𝑚(𝜁+𝜉)

[𝑎
10
(𝑛 cos 𝑛 (𝜁 + 𝜉) − 𝑚 sin 𝑛 (𝜁 + 𝜉))

− 𝑎
16
sin 𝑛 (𝜁 + 𝜉)]

+ ℓ
−𝑚(𝜁+𝜂)

[𝑎
11
(𝑛 cos 𝑛 (𝜁 + 𝜂) − 𝑚 sin 𝑛 (𝜁 + 𝜂))

−𝑎
17
sin 𝑛 (𝜁 + 𝜂)]

+ ℓ
−𝑚(𝜉+𝜂)

[𝑎
12
(𝑛 cos (𝜉 + 𝜂) − 𝑚 sin 𝑛 (𝜉 + 𝜂))

− 𝑎
18
sin 𝑛 (𝜉 + 𝜂)]

− 𝑎
19
ℓ
−𝑚(𝜁+𝜉+𝜂) sin 𝑛 (𝜁 + 𝜉 + 𝜂) = 0.

(6)

In the absence of delays (𝜁 = 𝜉 = 𝜂 = 0), 𝐸 is locally
asymptotically stable if

𝑝 = 𝑎
1
+ 𝑎
4
+ 𝑎
5
+ 𝑎
6
> 0,

𝑞 = 𝑎
2
+ 𝑎
7
+ 𝑎
8
+ 𝑎
9
+ 𝑎
10
+ 𝑎
11
+ 𝑎
12

> 0,

𝑟 = 𝑎
3
+ 𝑎
13
+ 𝑎
14
+ 𝑎
15
+ 𝑎
16
+ 𝑎
17
+ 𝑎
18
+ 𝑎
19

> 0,

𝑅 = 𝑝𝑞 − 𝑟 > 0.

(7)

Because of the presence of three different discrete delays
in (2), the analysis of the sign of the real parts of the
eigenvalues is very complicated, and a direct approach cannot
be considered. Thus, in our analysis we will use a method
consisting of determining the stability of the steady state
when firstly two delays are equal to zero, and when secondly
one delay is equal to zero. Previously, this approach is used
for system with two delays [9, 12, 13, 16–18].

3. The Case 𝜁 = 𝜉 = 0 and 𝜂>0

Setting 𝜁 = 𝜉 = 0 in (4), the system (6) becomes

𝑚
3

− 3𝑚𝑛
2

+ 𝐾
1
(𝑚
2

− 𝑛
2

) + 𝐾
2
𝑚 + 𝐾

3

+ ℓ
−𝑚𝜂

[𝑇
1
(𝑚 cos 𝑛𝜂 + 𝑛 sin 𝑛𝜂)

+ cos 𝑛𝜂(𝑇
2
+𝑎
6
(𝑚
2

− 𝑛
2

))+2𝑎
6
𝑚𝑛 sin 𝑛𝜂]=0,

3𝑚
2

𝑛 − 𝑛
3

+ 2𝐾
4
𝑚𝑛 + 𝐾

2
𝑛

+ ℓ
−𝑚𝜂

[𝑇
1
(𝑛 cos 𝑛𝜂 − 𝑚 sin 𝑛𝜂)

− sin 𝑛𝜂 (𝑇
2
+ 𝑎
6
(𝑚
2

− 𝑛
2

))] = 0,

(8)

where
𝐾
1
= 𝑎
1
+ 𝑎
4
+ 𝑎
5
, 𝐾

2
= 𝑎
2
+ 𝑎
7
+ 𝑎
8
+ 𝑎
10
,

𝐾
3
= 𝑎
3
+ 𝑎
13
+ 𝑎
14
+ 𝑎
16
, 𝐾

4
= 𝑎
1
+ 𝑎
4
+ 𝑎
5
+ 𝑎
6
,

𝑇
1
= 𝑎
9
+ 𝑎
11
+ 𝑎
12
, 𝑇

2
= 𝑎
15
+ 𝑎
17
+ 𝑎
18
+ 𝑎
19
.

(9)

To find the first bifurcation point, we look for purely
imaginary roots 𝜒 = ±𝑖𝑛, 𝑛 ∈ 𝑅 of (4) (when 𝜁 = 𝜉 = 0); that
is, we set 𝑚 = 0. Then, the above two equations are reduced
to

−𝐾
1
𝑛
2

+ 𝐾
3
= −𝑛𝑇

1
sin 𝑛𝜂 − (𝑇

2
− 𝑎
6
𝑛
2

) cos 𝑛𝜂,

−𝑛
3

+ 𝐾
2
𝑛 = −𝑛𝑇

1
cos 𝑛𝜂 + (𝑇

2
− 𝑎
6
𝑛
2

) sin 𝑛𝜂
(10)

or another one

cos 𝑛𝜂 =

(𝑛
2

− 𝐾
2
) 𝑛
2

𝑇
1
+ (𝑇
2
− 𝑎
6
𝑛
2

) (𝐾
1
𝑛
2

− 𝐾
3
)

𝑛2𝑇
2

1
+ (𝑇
2
− 𝑎
6
𝑛2)
2

,

sin 𝑛𝜂 =

(𝐾
1
𝑛
2

− 𝐾
3
) 𝑛𝑇
1
− 𝑛 (𝑇

2
− 𝑎
6
𝑛
2

) (𝑛
2

− 𝐾
2
)

𝑛2𝑇
2

1
+ (𝑇
2
− 𝑎
6
𝑛2)
2

.

(11)

We note here that it is not possible for (𝑛𝑇
1
)
2 and (𝑇

2
− 𝑎
6
𝑛
2

)
2

to be both zero and 𝑛 = 0 can be a solution of (11) if
𝐾
3
= 𝑇
2
. If the first bifurcation point is (𝑛0

𝑏
, 𝜂
0

𝑏
), then the

other bifurcation points (𝑛
𝑏
, 𝜂
𝑏
) satisfy 𝑛

𝑏
𝜂
𝑏
= 𝑛
0

𝑏
𝜂
0

𝑏
+ 2𝜈𝜋,

𝜈 = 1, 2, . . . ,∞.
One can notice that if 𝑛 is a solution of (10) (or (11)),

then so is −𝑛. Hence, in the following we only investigate for
positive solutions 𝑛 of (10), or (11) respectively. By squaring
the two equations into system (10) and then adding them, it
follows that

𝑛
6

+ (𝐾
2

1
− 2𝐾
2
− 𝑎
2

6
) 𝑛
4

+ (𝐾
2

2
− 2𝐾
1
𝐾
3
− 𝑇
2

1
+ 2𝑎
6
𝑇
2
) 𝑛
2

+ 𝐾
2

3
− 𝑇
2

2
= 0.

(12)

As 𝐸 is locally asymptotically stable at 𝜂 = 0, it satisfies the
Routh-Hurwitz conditions for stability for a cubic polynomial
[19, 20]. Equation (12) is a cubic in 𝑛2 and the left-hand side is
positive for very large values of 𝑛2 and also at 𝑛 = 0. Suppose
that conditions of Lemma 1(I) in [19] are satisfied; that is, (12)
has at least one positive real simple root. Moreover, to apply
theHopf bifurcation theorem, according to [19], the following
theorem in this situation applies.

Theorem 2. Suppose that 𝑛
𝑏
is the least positive simple root

of (12). Then, 𝑖𝑛(𝜂
𝑏
) = 𝑖𝑛

𝑏
is a simple root of (4) (at 𝜁 =

𝜉 = 0) and 𝑚(𝜂) + 𝑖𝑛(𝜂) is differentiable with respect to 𝜂 in
a neighbourhood of 𝜂 = 𝜂

𝑏
.

To establish an Andronov-Hopf bifurcation at 𝜂 = 𝜂
𝑏
,

we need to show that the following transversality condition
𝑑𝑚/𝑑𝜂|

𝜂=𝜂𝑏

̸= 0 is satisfied.
Hence, if we denote

𝐻(𝜒, 𝜂) = 𝜒
3

+ 𝐾
1
𝜒
2

+ 𝐾
2
𝜒 + 𝐾

3
+ ℓ
−𝜒𝜂

(𝑎
6
𝜒
2

+ 𝑇
1
𝜒 + 𝑇
2
)

(13)
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then

𝑑𝜒

𝑑𝜂
= −

𝜕𝐻/𝜕𝜂

𝜕𝐻/𝜕𝜒

= 𝜒ℓ
−𝜒𝜂

(𝑎
6
𝜒
2

+ 𝑇
1
𝜒 + 𝑇
2
)

× (3𝜒
2

+ 2𝐾
1
𝜒 + 𝐾

2
− 𝜂ℓ (𝑎

6
𝜒
2

+ 𝑇
1
𝜒 + 𝑇
2
)

+ ℓ
−𝜒𝜂

(2𝑎
6
𝜒 + 𝑇
1
) )
−1

.

(14)

Evaluating the real part of this equation at 𝜂 = 𝜂
𝑏
and

setting 𝜒 = 𝑖𝑛
𝑏
yield

𝑑𝑚

𝑑𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂=𝜂𝑏

= Re (
𝑑𝜒

𝑑𝜂
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂=𝜂𝑏

= 𝑛
2

𝑏
[3𝑛
2

𝑏
+ 2 (𝐾

2

1
− 2𝐾
2
− 𝑎
2

6
) 𝑛
2

𝑏

+𝐾
2

2
− 2𝐾
1
𝐾
3
+ 2𝑎
6
𝑇
2
− 𝑇
2

1
] × (𝐿

2

+ 𝐼
2

)
−1

,

(15)

where 𝐿 = −3𝑛
2

𝑏
+ 𝐾
2
+ 𝜂
𝑏
(−𝐾
1
𝑛
2

𝑏
+ 𝐾
3
) + 𝑇
1
cos 𝑛
𝑏
𝜂
𝑏
+

2𝑎
6
𝑛
𝑏
sin 𝑛
𝑏
𝜂
𝑏

and 𝐼 = 2𝐾
1
𝑛
𝑏
+ 𝜂
𝑏
(−𝑛
3

𝑏
+ 𝐾
2
𝑛
𝑏
) +

2𝑎
6
𝑛
𝑏
cos 𝑛
𝑏
𝜂
𝑏
− 𝑇
1
sin 𝑛
𝑏
𝜂
𝑏
.

Let 𝜃 = 𝜂
2

𝑏
, then (12) reduces to

𝑔 (𝜃) = 𝜃
3

+ (𝐾
2

1
− 2𝐾
2
− 𝑎
2

6
) 𝜃
2

+ (𝐾
2

2
− 2𝐾
1
𝐾
3
+ 2𝑎
6
𝑇
2
− 𝑇
2

1
) 𝜃 + 𝐾

2

3
− 𝑇
2

2
.

(16)

Then for 𝑔󸀠(𝜃), we have

𝑔
󸀠

(𝜃)
󵄨󵄨󵄨󵄨󵄨𝜂=𝜂𝑏

=
𝑑𝑔

𝑑𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂=𝜂𝑏

= 3𝜃
2

+ 2 (𝐾
2

1
− 2𝐾
2
− 𝑎
2

6
) 𝜃 + 𝐾

2

2

− 2𝐾
1
𝐾
3
+ 2𝑎𝑇

2
− 𝑇
2

1
.

(17)

If 𝜂
𝑏
is the least positive simple root of (12), then

𝑑𝑔

𝑑𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜃=𝑛2
𝑏

> 0. (18)

Hence,

𝑑𝑚

𝑑𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂=𝜂𝑏

= Re (
𝑑𝜒

𝑑𝜂
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂=𝜂𝑏

=

𝑛
2

𝑏
𝑔
󸀠

(𝑛
2

𝑏
)

𝐿2 + 𝐼2
> 0. (19)

According to theHopf bifurcation theorem [21], we define
the following theorem.

Theorem 3. If 𝑛
𝑏
is the least positive root of (12), then an

Andronov-Hopf bifurcation occurs as 𝜂 passes through 𝜂
𝑏
.

Corollary 4. When 𝜂 < 𝜂
𝑏
, then the steady state 𝐸 of system

(2) is locally asymptotically stable.

4. The Case 𝜁 = 0; 𝜉, 𝜂>0

We return to the study of (4) which with 𝜉, 𝜂 > 0 has the form

𝜒
3

+ 𝐾
41
𝜒
2

+ 𝐾
5
𝜒 + 𝐾

6
+ ℓ
−𝜒𝜏1 (𝑎

5
𝜒
2

+ 𝑇
3
𝜒 + 𝑇
4
)

+ ℓ
−𝜒𝜏2 (𝑎

6
𝜒
2

+ 𝑇
5
𝜒 + 𝑇
6
) + ℓ
−𝜒𝜏3 (𝑎

12
𝜒 + 𝑇
7
) = 0,

(20)

where𝐾
41

= 𝑎
1
+𝑎
4
,𝐾
5
= 𝑎
2
+𝑎
7
,𝐾
6
= 𝑎
3
+𝑎
13
, 𝑇
3
= 𝑎
8
+𝑎
10
,

𝑇
4
= 𝑎
14
+ 𝑎
16
, 𝑇
5
= 𝑎
9
+ 𝑎
11
, 𝑇
6
= 𝑎
15
+ 𝑎
17
, 𝑇
7
= 𝑎
18
+ 𝑎
19
,

and 𝜏 = [𝜏
1
= 𝜉, 𝜏
2
= 𝜂, 𝜏
3
= 𝜉 + 𝜂]

𝑇 denotes a point in the
time delay space; that is, 𝜏 ∈ Ω ⊂ 𝑅

3

+
. Ω is the time delay

space and 𝑅3
+
denotes the set of nonnegative real numbers. In

order to assess the stability of (2) with respect to any delay 𝜏,
one should know where all 𝜒 roots of (20) lie on the complex
plane. Equation (20) has infinitelymany roots on the complex
plane due to the transcendental term ℓ

−𝜒𝜏. This makes the
analytical stability assessment intractable.

In Section 2, we obtain that in the absence of delays, 𝐸 is
locally asymptotically stable if the conditions (7) are valid. By
Remark 1, this implies that 𝜒 = 0 is not root of (20). Further,
we introduce the following simple result (which was proved
by [18]) using Rouche’s theorem.

Lemma 5. Consider the exponential polynomial 𝑃(𝜒, ℓ−𝜒𝜏1 ,
. . . , ℓ
−𝜒𝜏𝑚) = 𝜒

𝑛

+𝑝
(0)

1
𝜒
𝑛−1

+⋅ ⋅ ⋅+𝑝
(0)

𝑛−1
𝜒+𝑝
(0)

𝑛
+ [𝑝
(1)

1
𝜒
𝑛−1

+⋅ ⋅ ⋅+

𝑝
(1)

𝑛−1
𝜒+𝑝
(1)

𝑛
]ℓ
−𝜒𝜏1 + ⋅ ⋅ ⋅ + [𝑝

(𝑚)

1
𝜒
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(𝑚)

𝑛−1
𝜒+𝑝
(𝑚)

𝑛
]ℓ
−𝜒𝜏𝑚 ,

where 𝜏
𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑚) and 𝑝

(𝑖)

𝑗
(𝑖 = 0, 1, . . . , 𝑚; 𝑗 =

1, 2, . . . , 𝑛) are constants. As (𝜏
1
, 𝜏
2
, . . . , 𝜏

𝑚
) vary, the sum of

the order of the zeros of 𝑃(𝜒, ℓ−𝜒𝜏1 , . . . , ℓ−𝜒𝜏𝑚) on the open right
half plane can change only if a zero appears there or crosses the
imaginary axis.

Obviously, 𝑖𝑛 (𝑛 > 0) is a root of (20) if and only if 𝑛
satisfies

− 𝑛
3

𝑖 − 𝐾
41
𝑛
2

+ 𝐾
5
𝑛𝑖 + 𝐾

6

+ (cos 𝑛𝜏
1
− 𝑖 sin 𝑛𝜏

1
) (−𝑎
5
𝑛
2

+ 𝑇
3
𝑛𝑖 + 𝑇

4
)

+ (cos 𝑛𝜏
2
− 𝑖 sin 𝑛𝜏

2
) (−𝑎
6
𝑛
2

+ 𝑇
5
𝑛𝑖 + 𝑇

6
)

+ (cos 𝑛𝜏
3
− 𝑖 sin 𝑛𝜏

3
) (𝑎
12
𝑛𝑖 + 𝑇

7
) = 0.

(21)

Separating the real and imaginary parts into (21), we obtain

− 𝐾
41
𝑛
2

+ 𝐾
6
+ 𝑎
12
𝑛 sin 𝑛𝜏

3
+ 𝑇
7
cos 𝑛𝜏

3

= (𝑎
5
𝑛
2

− 𝑇
4
) cos 𝑛𝜏

1
− 𝑇
3
𝑛 sin 𝑛𝜏

1

+ (𝑎
6
𝑛
2

− 𝑇
6
) cos 𝑛𝜏

2
− 𝑇
5
𝑛 sin 𝑛𝜏

2
,

− 𝑛
3

+ 𝐾
5
𝑛 + 𝑎
12
𝑛 cos 𝑛𝜏

3
− 𝑇
7
sin 𝑛𝜏

3

= (𝑇
4
− 𝑎
5
𝑛
2

) sin 𝑛𝜏
1
− 𝑇
3
𝑛 cos 𝑛𝜏

1

+ (𝑇
6
− 𝑎
6
𝑛
2

) sin 𝑛𝜏
2
− 𝑇
5
𝑛 cos 𝑛𝜏

2
.

(22)
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We square and add (22), and after simplifying, we get that 𝜏
and 𝑛must be among the real solutions of

𝑛
6

+ (𝐾
2

41
− 𝑎
2

5
− 𝑎
2

6
− 2𝐾
5
) 𝑛
4

+ [𝐾
2

5
+ 𝑎
2

12
− 𝑇
2

3
− 𝑇
2

5
+ 2 (𝑎

5
𝑇
4
+ 𝑎
6
𝑇
6
− 𝐾
4
𝐾
6
)] 𝑛
2

+ 𝐾
2

6
+ 𝑇
2

7

= 2 [(𝐾
41
𝑛
2

− 𝐾
6
) (𝑇
7
cos 𝑛𝜏

3
+ 𝑎
12
𝑛 sin 𝑛𝜏

3
)

+ 𝑛 (𝑛
2

− 𝐾
5
) (𝑎
12
𝑛 cos 𝑛𝜏

3
− 𝑇
7
sin 𝑛𝜏

3
)

+ (𝑎
5
𝑛
2

− 𝑇
4
) (𝑎
6
𝑛
2

− 𝑇
6
) cos 𝑛 (𝜏

1
− 𝜏
2
)

+ 𝑇
5
𝑛 (𝑎
5
𝑛
2

− 𝑇
4
) sin 𝑛 (𝜏

1
− 𝜏
2
)

+ 𝑇
3
𝑛 (𝑇
6
− 𝑎
6
𝑛
2

) sin 𝑛 (𝜏
1
− 𝜏
2
)

+𝑇
3
𝑇
5
𝑛
2 cos 𝑛 (𝜏

1
− 𝜏
2
)] .

(23)

We note that the right-hand side of (23) is always less than
2[|𝐾
41
𝑛
2

− 𝐾
6
||𝑇
7
+ 𝑎
12
𝑛| + |𝑛

2

− 𝐾
5
||𝑎
12
𝑛 − 𝑇
7
|𝑛 + |𝑎

5
𝑛
2

−

𝑇
4
||𝑎
6
𝑛
2

−𝑇
6
| + |𝑇
5
||𝑎
5
𝑛
2

−𝑇
4
|𝑛 + |𝑇

3
||𝑇
6
−𝑎
6
𝑛
2

|𝑛 + |𝑇
3
𝑇
5
|𝑛
2

].
Hence if the inequality

𝜔
6

+ (𝐾
2

41
− 𝑎
2

5
− 𝑎
2

6
− 2𝐾
5
) 𝜔
4

+ [𝐾
2

5
+ 𝑎
2

12
− 𝑇
2

3
− 𝑇
2

5
+ 2 (𝑎

5
𝑇
4
+ 𝑎
6
𝑇
6
− 𝐾
41
𝐾
6
)] 𝜔
2

+ 𝐾
2

6
+ 𝑇
2

7

> 2 [
󵄨󵄨󵄨󵄨𝑇3𝑇5

󵄨󵄨󵄨󵄨 𝜔
2

+
󵄨󵄨󵄨󵄨󵄨
𝐾
41
𝜔
2

− 𝐾
6

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑇7 + 𝑎
12
𝜔
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝜔
2

− 𝐾
5

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎12𝜔 − 𝑇
7

󵄨󵄨󵄨󵄨 𝜔 +
󵄨󵄨󵄨󵄨󵄨
𝑎
5
𝜔
2

− 𝑇
4

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑎
6
𝜔
2

− 𝑇
6

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑇5

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑎
5
𝜔
2

− 𝑇
4

󵄨󵄨󵄨󵄨󵄨
𝜔 +

󵄨󵄨󵄨󵄨𝑇3
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑇
6
− 𝑎
6
𝜔
2
󵄨󵄨󵄨󵄨󵄨
𝜔]

(24)

has no real solution on 0 < 𝜔 < 𝑛
+
, then (23) cannot be

satisfied. Note that 𝑛
+
is the positive solution of first equation

in (6) (when𝑚 = 0 and 𝜁 = 0), which we write as

(𝑎
1
+ 𝑎
4
) 𝑛
2

= 𝜓 (𝑛)

= [𝑎
3
+ 𝑎
13
− (𝑎
5
cos 𝑛𝜉 + 𝑎

6
cos 𝑛𝜂) 𝑛2

+ (𝑎
8
sin 𝑛𝜉 + 𝑎

9
sin 𝑛𝜂 + 𝑎

10
sin 𝑛𝜉

+𝑎
11
sin 𝑛𝜂 + 𝑎

12
sin 𝑛 (𝜉 + 𝜂)) 𝑛

+ 𝑎
14
cos 𝑛𝜉 + 𝑎

15
cos 𝑛𝜂 + 𝑎

16
cos 𝑛𝜉

+𝑎
17
cos 𝑛𝜂 + 𝑎

18
cos 𝑛 (𝜉 + 𝜂) + 𝑎

19
cos 𝑛 (𝜉 + 𝜂) ]

≤ 𝑎
3
+ 𝑎
13
+
󵄨󵄨󵄨󵄨𝑎14

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎15

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎16

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎17

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑎18

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎19

󵄨󵄨󵄨󵄨 + (
󵄨󵄨󵄨󵄨𝑎8

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎9

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎10

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎12

󵄨󵄨󵄨󵄨) 𝑛

− (
󵄨󵄨󵄨󵄨𝑎5

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎6

󵄨󵄨󵄨󵄨) 𝑛
2

, i.e.,

(𝑎
1
+ 𝑎
4
+
󵄨󵄨󵄨󵄨𝑎5

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎6

󵄨󵄨󵄨󵄨) 𝑛
2

− (
󵄨󵄨󵄨󵄨𝑎8

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎9

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎10

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎12

󵄨󵄨󵄨󵄨) 𝑛

− (𝑎
3
+ 𝑎
13
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨𝑎19
󵄨󵄨󵄨󵄨) = 0.

(25)

Thus, for 𝑛
+
, we have

𝑛
+
=

1

2𝑎
(𝑏 + √𝑏2 + 4𝑎𝑐) , (26)

where 𝑎 = 𝑎
1
+ 𝑎
4
+ |𝑎
5
| + |𝑎
6
| ̸= 0, 𝑏 = |𝑎

8
| + ⋅ ⋅ ⋅ + |𝑎

12
| and

𝑐 = 𝑎
3
+ 𝑎
13
+ |𝑎
14
| + ⋅ ⋅ ⋅ + |𝑎

19
|. It is clear that 𝑛 ≤ 𝑛

+
.

Rearranging terms, we write (24) as

(
󵄨󵄨󵄨󵄨󵄨
𝐾
41
𝜔
2

− 𝐾
6

󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨𝑇7 + 𝑎

12
𝜔
󵄨󵄨󵄨󵄨)
2

+ (𝜔
󵄨󵄨󵄨󵄨󵄨
𝜔
2

− 𝐾
5

󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨𝑎12𝜔 − 𝑇

7

󵄨󵄨󵄨󵄨)
2

+ (
󵄨󵄨󵄨󵄨𝑎5

󵄨󵄨󵄨󵄨 𝜔
2

−
󵄨󵄨󵄨󵄨𝑇4

󵄨󵄨󵄨󵄨)
2

+ (
󵄨󵄨󵄨󵄨𝑎6

󵄨󵄨󵄨󵄨 𝜔
2

−
󵄨󵄨󵄨󵄨𝑇6

󵄨󵄨󵄨󵄨)
2

+ (𝑇
2

3
+ 𝑇
2

5
) 𝜔
2

> (
󵄨󵄨󵄨󵄨󵄨
𝑎
5
𝜔
2

− 𝑇
4

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑎
6
𝜔
2

− 𝑇
6

󵄨󵄨󵄨󵄨󵄨
)
2

+ (
󵄨󵄨󵄨󵄨󵄨
𝑎
5
𝜔
2

− 𝑇
4

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑇5

󵄨󵄨󵄨󵄨 𝜔)
2

+ (
󵄨󵄨󵄨󵄨𝑇3

󵄨󵄨󵄨󵄨 𝜔 +
󵄨󵄨󵄨󵄨󵄨
𝑇
6
− 𝑎
6
𝜔
2
󵄨󵄨󵄨󵄨󵄨
)
2

+ (
󵄨󵄨󵄨󵄨𝑇3

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑇5

󵄨󵄨󵄨󵄨)
2

𝜔
2

+ 𝑎
2

12
𝜔
2

+ 𝑇
2

4
+ 𝑇
2

6
+ 𝑇
2

7
.

(27)

Hence, the following theorem can be formulated.

Theorem 6. Let 𝑎
3
+ 𝑎
13
+ |𝑎
14
| + ⋅ ⋅ ⋅ + |𝑎

19
| ̸= 0 and (27) hold.

Then there is no change in stability of 𝐸.

Remark 7. In the special case that 𝜉 = 𝜂, the characteristic
equation (20) becomes

𝜒
3

+ 𝐾
41
𝜒
2

+ 𝐾
5
𝜒 + 𝐾

6
+ ℓ
−𝜒𝜏1 (𝑇

56
𝜒
2

+ 𝑇
35
𝜒 + 𝑇
46
)

+ ℓ
−2𝜒𝜏1 (𝑎

12
𝜒 + 𝑇
7
) = 0,

(28)

where 𝑇
56

= 𝑎
5
+ 𝑎
6
, 𝑇
35

= 𝑇
3
+ 𝑇
5
and 𝑇

46
= 𝑇
4
+ 𝑇
6
.

Therefore, this case is a private one of Theorem 6.

Corollary 8. If conditions of Theorem 6 are not valid and 𝜏𝑏𝑖𝑓
2

is defined as in Theorem 3, then according to Lemma 5 for any
𝜏
2
∈ [0, 𝜏

𝑏
), there exists a 𝜏

𝑏𝑖𝑓

3
(𝜏
2
) > 0 (𝜏

𝑏𝑖𝑓

1
(𝜏
2
) > 0 resp.)

such that the steady state 𝐸 of system (2) is unstable when 𝜏
3
∈

[0, 𝜏
𝑏𝑖𝑓

3
(𝜏
2
)) (𝜏
1
∈ [0, 𝜏

𝑏𝑖𝑓

1
(𝜏
2
)) resp.), and an Andronov-Hopf

bifurcation takes place.
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5. The General Case 𝜁, 𝜉, 𝜂 > 0

Similar to Section 4, we set that 𝜒 = 𝑖𝑛 (𝑛 > 0) is a root of (4)
if and only if 𝑛 satisfies

− 𝑛
3

𝑖 − 𝑎
1
𝑛
2

+ 𝑎
2
𝑛𝑖 + 𝑎

3

+ (cos 𝑛𝜏
1
− 𝑖 sin 𝑛𝜏

1
) (−𝑎
4
𝑛
2

+ 𝑎
7
𝑛𝑖 + 𝑎

13
)

+ (cos 𝑛𝜏
2
− 𝑖 sin 𝑛𝜏

2
) (−𝑎
5
𝑛
2

+ 𝑎
8
𝑛𝑖 + 𝑎

14
)

+ (cos 𝑛𝜏
3
− 𝑖 sin 𝑛𝜏

3
) (−𝑎
6
𝑛
2

+ 𝑎
9
𝑛𝑖 + 𝑎

15
)

+ (cos 𝑛𝜏
4
− 𝑖 sin 𝑛𝜏

4
) (𝑎
6
𝑛𝑖 + 𝑎

16
)

+ (cos 𝑛𝜏
5
− 𝑖 sin 𝑛𝜏

5
) (𝑎
11
𝑛𝑖 + 𝑎

17
)

+ (cos 𝑛𝜏
6
− 𝑖 sin 𝑛𝜏

6
) (𝑎
12
𝑛𝑖 + 𝑎

18
)

+ 𝑎
19
(cos 𝑛𝜏

7
− 𝑖 sin 𝑛𝜏

7
) = 0,

(29)

where 𝜏 = [𝜏
1
= 𝜁, 𝜏

2
= 𝜉, 𝜏

3
= 𝜂, 𝜏

4
= 𝜁 + 𝜉, 𝜏

5
= 𝜁 + 𝜂,

𝜏
6
= 𝜉 + 𝜂, 𝜏

7
= 𝜁 + 𝜉 + 𝜂]

𝑇 denotes a point in the time delay
space; that is, 𝜏 ∈ Ω ⊂ 𝑅

7

+
. Ω is the time delay space and 𝑅

7

+

denotes the set of nonnegative real numbers.
Separating the real and imaginary parts into (29), we have

−𝑎
1
𝑛
2

+ 𝑎
3
− 𝐴
1
− 𝐵
1
− 𝐶
1
= −𝐷
1
− 𝐸
1
− 𝐹
1
− 𝑎
19
cos 𝑛𝜏

7
,

−𝑛
3

+ 𝑎
2
𝑛 + 𝐴

2
+ 𝐵
2
+ 𝐶
2
= 𝐷
2
+ 𝐸
2
+ 𝐹
2
+ 𝑎
19
sin 𝑛𝜏

7
,

(30)

where

𝐴
1
= (𝑎
4
𝑛
2

− 𝑎
13
) cos 𝑛𝜏

1
− 𝑎
7
𝑛 sin 𝑛𝜏

1
,

𝐵
1
= (𝑎
5
𝑛
2

− 𝑎
14
) cos 𝑛𝜏

2
− 𝑎
8
𝑛 sin 𝑛𝜏

2
,

𝐶
1
= (𝑎
6
𝑛
2

− 𝑎
15
) cos 𝑛𝜏

3
− 𝑎
9
𝑛 sin 𝑛𝜏

3
,

𝐷
1
= 𝑎
10
𝑛 sin 𝑛𝜏

4
+ 𝑎
16
cos 𝑛𝜏

4
,

𝐸
1
= 𝑎
11
𝑛 sin 𝑛𝜏

5
+ 𝑎
17
cos 𝑛𝜏

5
,

𝐹
1
= 𝑎
12
𝑛 sin 𝑛𝜏

6
+ 𝑎
18
cos 𝑛𝜏

6
,

𝐴
2
= (𝑎
4
𝑛
2

− 𝑎
13
) sin 𝑛𝜏

1
+ 𝑎
7
𝑛 cos 𝑛𝜏

1
,

𝐵
2
= (𝑎
5
𝑛
2

− 𝑎
14
) sin 𝑛𝜏

2
+ 𝑎
8
𝑛 cos 𝑛𝜏

2
,

𝐶
2
= (𝑎
6
𝑛
2

− 𝑎
15
) sin 𝑛𝜏

3
+ 𝑎
9
𝑛 cos 𝑛𝜏

3
,

𝐷
2
= 𝑎
10
𝑛 cos 𝑛𝜏

4
− 𝑎
16
sin 𝑛𝜏

4
,

𝐸
2
= 𝑎
11
𝑛 cos 𝑛𝜏

5
− 𝑎
17
sin 𝑛𝜏

5
,

𝐹
2
= 𝑎
12
𝑛 cos 𝑛𝜏

6
− 𝑎
18
sin 𝑛𝜏

6
.

(31)

Adding up the squares of both equations into (30), we have

𝑛
6

+ 𝑆
1
𝑛
4

+ 𝑆
2
𝑛
2

+ 𝑆
3

= 2 {(𝑎
4
𝑛
2

− 𝑎
13
)

× [(𝑎
3
− 𝑎
1
𝑛
2

) cos 𝑛𝜏
1
− (−𝑛

3

+ 𝑎
2
𝑛) sin 𝑛𝜏

1
]

+ 𝑎
7
𝑛 [(𝑎
3
− 𝑎
1
𝑛
2

) sin 𝑛𝜏
1
+ (−𝑛

3

+ 𝑎
2
𝑛) cos 𝑛𝜏

1
]

+ 𝑎
19
(𝑎
12
𝑛 sin 𝑛𝜏

1
+ 𝑎
18
cos 𝑛𝜏

1
)

+ (𝑎
5
𝑛
2

− 𝑎
14
)

× [(𝑎
3
− 𝑎
1
𝑛
2

) cos 𝑛𝜏
2
− (−𝑛

3

+ 𝑎
2
𝑛) sin 𝑛𝜏

2
]

+ 𝑎
19
(𝑎
11
𝑛 sin 𝑛𝜏

2
+ 𝑎
17
cos 𝑛𝜏

2
)

+ 𝑎
8
𝑛 [(𝑎
3
− 𝑎
1
𝑛
2

) sin 𝑛𝜏
2
+ (−𝑛

3

+ 𝑎
2
𝑛) cos 𝑛𝜏

2
]

+ 𝑎
19
(𝑎
10
𝑛 sin 𝑛𝜏

3
+ 𝑎
16
cos 𝑛𝜏

3
)

+ (𝑎
6
𝑛
2

− 𝑎
15
)

× [(𝑎
3
− 𝑎
1
𝑛
2

) cos 𝑛𝜏
3
− (−𝑛

3

+ 𝑎
2
𝑛) sin 𝑛𝜏

3
]

+ 𝑎
9
𝑛 [(𝑎
3
− 𝑎
1
𝑛
2

) sin 𝑛𝜏
3
+ (−𝑛

3

+ 𝑎
2
𝑛) cos 𝑛𝜏

3
]

+ (𝑎
5
𝑛
2

− 𝑎
14
) [𝑎
7
𝑛 sin 𝑛 (𝜏

1
− 𝜏
2
)

− (𝑎
4
𝑛
2

− 𝑎
13
) cos 𝑛 (𝜏

1
− 𝜏
2
)]

+ 𝑎
17
[𝑎
18
cos 𝑛 (𝜏

1
− 𝜏
2
) − 𝑎
12
𝑛 sin 𝑛 (𝜏

1
− 𝜏
2
)]

+ 𝑎
11
𝑛 [𝑎
12
𝑛 cos 𝑛 (𝜏

1
− 𝜏
2
) + 𝑎
18
sin 𝑛 (𝜏

1
− 𝜏
2
)]

+ (𝑎
6
𝑛
2

− 𝑎
15
) [𝑎
7
𝑛 sin 𝑛 (𝜏

1
− 𝜏
3
)

− (𝑎
4
𝑛
2

− 𝑎
13
) cos 𝑛 (𝜏

1
− 𝜏
3
)]

+ 𝑎
10
𝑛 [𝑎
12
𝑛 cos 𝑛 (𝜏

1
− 𝜏
3
) + 𝑎
18
sin 𝑛 (𝜏

1
− 𝜏
3
)]

+ 𝑎
16
[𝑎
18
cos 𝑛 (𝜏

1
− 𝜏
3
) − 𝑎
12
𝑛 sin 𝑛 (𝜏

1
− 𝜏
3
)]

− 𝑎
9
𝑛 [𝑎
7
𝑛 cos 𝑛 (𝜏

1
− 𝜏
3
)

+ (𝑎
4
𝑛
2

− 𝑎
13
) sin 𝑛 (𝜏

1
− 𝜏
3
)]

+ (𝑎
6
𝑛
2

− 𝑎
15
) [𝑎
8
𝑛 sin 𝑛 (𝜏

2
− 𝜏
3
)

− (𝑎
5
𝑛
2

− 𝑎
14
) cos 𝑛 (𝜏

2
− 𝜏
3
)]

+ 𝑎
10
𝑛 [𝑎
11
𝑛 cos 𝑛 (𝜏

2
− 𝜏
3
) + 𝑎
17
sin 𝑛 (𝜏

2
− 𝜏
3
)]

− 𝑎
16
[𝑎
11
𝑛 sin 𝑛 (𝜏

2
− 𝜏
3
) − 𝑎
17
cos 𝑛 (𝜏

2
− 𝜏
3
)]

− 𝑎
9
𝑛 [𝑎
8
𝑛 cos 𝑛 (𝜏

2
− 𝜏
3
)

+ (𝑎
5
𝑛
2

− 𝑎
14
) sin 𝑛 (𝜏

2
− 𝜏
3
)]}

+ 4𝑎
19
{sin 𝑛 (𝜏

1
+ 𝜏
2
) [𝑎
10
𝑛 cos 𝑛 (𝜏

1
+ 𝜏
2
+ 𝜏
3
)

− 𝑎
16
sin 𝑛 (𝜏

1
+ 𝜏
2
+ 𝜏
3
)]

+ sin 𝑛 (𝜏
1
+ 𝜏
3
) [𝑎
11
𝑛 cos 𝑛 (𝜏

1
+ 𝜏
2
+ 𝜏
3
)

− 𝑎
17
sin 𝑛 (𝜏

1
+ 𝜏
2
+ 𝜏
3
)]

+ sin 𝑛 (𝜏
2
+ 𝜏
3
) [𝑎
12
𝑛 cos 𝑛 (𝜏

1
+ 𝜏
2
+ 𝜏
3
)

−𝑎
18
sin 𝑛 (𝜏

1
+ 𝜏
2
+ 𝜏
3
)]} ,

(32)
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where

𝜏
4
+ 𝜏
7
= 2 (𝜏

1
+ 𝜏
2
) + 𝜏
3
,

𝜏
5
+ 𝜏
6
= 𝜏
1
+ 𝜏
2
+ 2𝜏
3
,

𝜏
5
+ 𝜏
7
= 𝜏
2
+ 2 (𝜏

1
+ 𝜏
3
) ,

𝜏
6
+ 𝜏
7
= 𝜏
1
+ 2 (𝜏

2
+ 𝜏
3
) ,

𝜏
4
− 𝜏
5
= 𝜏
2
− 𝜏
3
, 𝜏

4
− 𝜏
6
= 𝜏
1
− 𝜏
3
,

𝜏
5
− 𝜏
6
= 𝜏
1
− 𝜏
2
,

𝑆
1
= 𝑎
2

1
+ 𝑎
2

4
+ 𝑎
2

5
+ 𝑎
2

6
− 2𝑎
2
,

𝑆
2
= 𝑎
2

2
+ 𝑎
2

7
+ 𝑎
2

8
+ 𝑎
2

9
− 𝑎
2

10
− 𝑎
2

11
− 𝑎
2

12
,

𝑆
3
= 𝑎
2

3
+ 𝑎
2

13
+ 𝑎
2

14
+ 𝑎
2

15
− 𝑎
2

16
− 𝑎
2

17
− 𝑎
2

18
− 𝑎
2

19
.

(33)

Clearly, the right-hand side of (32) is always less than

2 {
󵄨󵄨󵄨󵄨󵄨
𝑛
3

− 𝑎
1
𝑛
2

− 𝑎
2
𝑛 + 𝑎
3

󵄨󵄨󵄨󵄨󵄨

× [
󵄨󵄨󵄨󵄨󵄨
𝑎
4
𝑛
2

− 𝑎
13

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑎
5
𝑛
2

− 𝑎
14

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑎
6
𝑛
2

− 𝑎
15

󵄨󵄨󵄨󵄨󵄨
]

+ 𝑎
19
[
󵄨󵄨󵄨󵄨𝑎12𝑛 + 𝑎

18

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎11𝑛 + 𝑎

17

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎10𝑛 + 𝑎

16

󵄨󵄨󵄨󵄨]

+ 𝑛
󵄨󵄨󵄨󵄨󵄨
−𝑛
3

− 𝑎
1
𝑛
2

+ 𝑎
2
𝑛 + 𝑎
3

󵄨󵄨󵄨󵄨󵄨
(𝑎
7
+ 𝑎
8
+ 𝑎
9
)

+ 𝑛 (𝑎
10
+ 𝑎
11
)
󵄨󵄨󵄨󵄨𝑎12𝑛 + 𝑎

18

󵄨󵄨󵄨󵄨 − (𝑎
16
+ 𝑎
17
)
󵄨󵄨󵄨󵄨𝑎12𝑛 − 𝑎

18

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
−𝑎
4
𝑛
2

+ 𝑎
7
𝑛 + 𝑎
13

󵄨󵄨󵄨󵄨󵄨
[
󵄨󵄨󵄨󵄨󵄨
𝑎
5
𝑛
2

− 𝑎
14

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑎
6
𝑛
2

− 𝑎
15

󵄨󵄨󵄨󵄨󵄨
]

− 𝑛 (𝑎
8
+ 𝑎
9
)
󵄨󵄨󵄨󵄨󵄨
𝑎
4
𝑛
2

+ 𝑎
7
𝑛 − 𝑎
13

󵄨󵄨󵄨󵄨󵄨
− 𝑎
9
𝑛
󵄨󵄨󵄨󵄨󵄨
𝑎
5
𝑛
2

+ 𝑎
8
𝑛 − 𝑎
14

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑎
6
𝑛
2

− 𝑎
15

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
−𝑎
5
𝑛
2

+ 𝑎
8
𝑛 + 𝑎
14

󵄨󵄨󵄨󵄨󵄨

+ 𝑎
10
𝑛
󵄨󵄨󵄨󵄨𝑎11𝑛 + 𝑎

17

󵄨󵄨󵄨󵄨 − 𝑎
16

󵄨󵄨󵄨󵄨𝑎11𝑛 − 𝑎
17

󵄨󵄨󵄨󵄨}

+ 4𝑎
19
[
󵄨󵄨󵄨󵄨𝑎10𝑛 − 𝑎

16

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎11𝑛 − 𝑎

17

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎12𝑛 − 𝑎

18

󵄨󵄨󵄨󵄨] .

(34)

Hence, if the inequality

𝜆
6

+ 𝑆
1
𝜆
4

+ 𝑆
2
𝜆
2

+ 𝑆
3

> 2 {
󵄨󵄨󵄨󵄨󵄨
𝜆
3

− 𝑎
1
𝜆
2

− 𝑎
2
𝜆 + 𝑎
3

󵄨󵄨󵄨󵄨󵄨

× [
󵄨󵄨󵄨󵄨󵄨
𝑎
4
𝜆
2

− 𝑎
13

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑎
5
𝜆
2

− 𝑎
14

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑎
6
𝜆
2

− 𝑎
15

󵄨󵄨󵄨󵄨󵄨
]

+ 𝑎
19
[
󵄨󵄨󵄨󵄨𝑎12𝜆 + 𝑎

18

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎11𝜆 + 𝑎

17

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎10𝜆 + 𝑎

16

󵄨󵄨󵄨󵄨]

+ (𝑎
7
+ 𝑎
8
+ 𝑎
9
)
󵄨󵄨󵄨󵄨󵄨
−𝜆
3

− 𝑎
1
𝜆
2

+ 𝑎
2
𝜆 + 𝑎
3

󵄨󵄨󵄨󵄨󵄨
𝜆

+ (𝑎
10
+ 𝑎
11
)
󵄨󵄨󵄨󵄨𝑎12𝜆 + 𝑎

18

󵄨󵄨󵄨󵄨 𝜆 − (𝑎
16
+ 𝑎
17
)
󵄨󵄨󵄨󵄨𝑎12𝜆 − 𝑎

18

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
−𝑎
4
𝜆
2

+ 𝑎
7
𝜆 + 𝑎
13

󵄨󵄨󵄨󵄨󵄨
[
󵄨󵄨󵄨󵄨󵄨
𝑎
5
𝜆
2

− 𝑎
14

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑎
6
𝜆
2

− 𝑎
15

󵄨󵄨󵄨󵄨󵄨
]

− (𝑎
8
+ 𝑎
9
)
󵄨󵄨󵄨󵄨󵄨
𝑎
4
𝜆
2

+ 𝑎
7
𝜆 − 𝑎
13

󵄨󵄨󵄨󵄨󵄨
𝜆

− 𝑎
9
𝜆
󵄨󵄨󵄨󵄨󵄨
𝑎
5
𝜆
2

+ 𝑎
8
𝜆 − 𝑎
14

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑎
6
𝜆
2

− 𝑎
15

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
−𝑎
5
𝜆
2

+ 𝑎
8
𝜆 + 𝑎
14

󵄨󵄨󵄨󵄨󵄨

+ 𝑎
10
𝜆
󵄨󵄨󵄨󵄨𝑎11𝜆 + 𝑎

17

󵄨󵄨󵄨󵄨 − 𝑎
16

󵄨󵄨󵄨󵄨𝑎11𝜆 − 𝑎
17

󵄨󵄨󵄨󵄨}

+ 4𝑎
19
[
󵄨󵄨󵄨󵄨𝑎10𝜆 − 𝑎

16

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎11𝜆 − 𝑎

17

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎12𝜆 − 𝑎

18

󵄨󵄨󵄨󵄨]

(35)

has no real solution on 0 < 𝜆 < 𝑛
+
, then (32) cannot be

satisfied. Similar to Section 4, we note that 𝑛
+
is the positive

solution of first equation in (6) (when 𝑚 = 0), which is
written as
𝑎
1
𝑛
2

= Ψ (𝑛)

= [𝑎
3
− (𝑎
4
cos 𝑛𝜁 + 𝑎

5
cos 𝑛𝜉 + 𝑎

6
cos 𝑛𝜂) 𝑛2

+ (𝑎
7
sin 𝑛𝜁+ 𝑎

8
sin 𝑛𝜉 + 𝑎

9
sin 𝑛𝜂 + 𝑎

10
sin 𝑛 (𝜁 + 𝜉)

+𝑎
11
sin 𝑛 (𝜁 + 𝜂) + 𝑎

12
sin 𝑛 (𝜉 + 𝜂)) 𝑛 + 𝑎

13
cos 𝑛𝜁

+ 𝑎
14
cos 𝑛𝜉 + 𝑎

15
cos 𝑛𝜂 + 𝑎

16
cos 𝑛 (𝜁 + 𝜉)

+ 𝑎
17
cos 𝑛 (𝜁 + 𝜂) + 𝑎

18
cos 𝑛 (𝜉 + 𝜂)

+ 𝑎
19
cos 𝑛 (𝜁 + 𝜉 + 𝜂)]

≤ 𝑎
3
+
󵄨󵄨󵄨󵄨𝑎13

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎14

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎15

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎16

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎17

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎18

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑎19

󵄨󵄨󵄨󵄨 + (
󵄨󵄨󵄨󵄨𝑎7

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎8

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎9

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎10

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎12

󵄨󵄨󵄨󵄨) 𝑛

− (
󵄨󵄨󵄨󵄨𝑎4

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎5

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎6

󵄨󵄨󵄨󵄨) 𝑛
2

, i.e.,

(𝑎
1
+
󵄨󵄨󵄨󵄨𝑎4

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎5

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎6

󵄨󵄨󵄨󵄨) 𝑛
2

− (
󵄨󵄨󵄨󵄨𝑎7

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎8

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎9

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎10

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎12

󵄨󵄨󵄨󵄨) 𝑛

− (𝑎
3
+
󵄨󵄨󵄨󵄨𝑎13

󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑎19

󵄨󵄨󵄨󵄨) = 0.

(36)

Thus, for 𝑛
+
, we have

𝑛
+
=

1

2𝐴
(𝐵 + √𝐵2 + 4𝐴𝐶) , (37)

where 𝐴 = 𝑎
1
+ |𝑎
4
| + |𝑎
5
| + |𝑎
6
| ̸= 0, 𝐵 = |𝑎

7
| + ⋅ ⋅ ⋅ + |𝑎

12
| and

𝐶 = 𝑎
3
+ |𝑎
13
| + ⋅ ⋅ ⋅ + |𝑎

19
|. It is clear that 𝑛 ≤ 𝑛

+
.

Rearranging terms, we write (35) as

(
󵄨󵄨󵄨󵄨󵄨
𝜆
3

− 𝑎
1
𝜆
2

− 𝑎
2
𝜆 + 𝑎
3

󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨
𝑎
4
𝜆
2

− 𝑎
13

󵄨󵄨󵄨󵄨󵄨
)
2

+ (
󵄨󵄨󵄨󵄨󵄨
𝜆
3

− 𝑎
1
𝜆
2

− 𝑎
2
𝜆 + 𝑎
3

󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨
𝑎
5
𝜆
2

− 𝑎
14

󵄨󵄨󵄨󵄨󵄨
)
2

+ (𝑎
11
𝜆 −

󵄨󵄨󵄨󵄨𝑎12𝜆 + 𝑎
18

󵄨󵄨󵄨󵄨)
2

+ (
󵄨󵄨󵄨󵄨󵄨
𝜆
3

− 𝑎
1
𝜆
2

− 𝑎
2
𝜆 + 𝑎
3

󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨
𝑎
6
𝜆
2

− 𝑎
15

󵄨󵄨󵄨󵄨󵄨
)
2

+ (
󵄨󵄨󵄨󵄨󵄨
−𝜆
3

− 𝑎
1
𝜆
2

+ 𝑎
2
𝜆 + 𝑎
3

󵄨󵄨󵄨󵄨󵄨
− 𝜆

󵄨󵄨󵄨󵄨𝑎7 + 𝑎
8
+ 𝑎
9

󵄨󵄨󵄨󵄨)
2

+ (𝑎
17
+
󵄨󵄨󵄨󵄨𝑎12𝜆 − 𝑎

18

󵄨󵄨󵄨󵄨)
2
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+ (
󵄨󵄨󵄨󵄨󵄨
𝑎
6
𝜆
2

− 𝑎
15

󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨
−𝑎
5
𝜆
2

+ 𝑎
8
𝜆 + 𝑎
14

󵄨󵄨󵄨󵄨󵄨
)
2

+ (𝑎
9
𝜆 +

󵄨󵄨󵄨󵄨󵄨
𝑎
5
𝜆
2

+ 𝑎
8
𝜆 − 𝑎
14

󵄨󵄨󵄨󵄨󵄨
)
2

+ 𝜆(1 +
󵄨󵄨󵄨󵄨󵄨
𝑎
1
𝜆
4

+ 𝑎
2
𝑎
3

󵄨󵄨󵄨󵄨󵄨
)
2

+ (𝑎
16
−
󵄨󵄨󵄨󵄨𝑎12𝜆 − 𝑎

18

󵄨󵄨󵄨󵄨)
2

+ (
󵄨󵄨󵄨󵄨󵄨
−𝑎
4
𝜆
2

+ 𝑎
7
𝜆 + 𝑎
13

󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨
𝑎
5
𝜆
2

− 𝑎
14

󵄨󵄨󵄨󵄨󵄨
)
2

+ (
󵄨󵄨󵄨󵄨󵄨
−𝑎
4
𝜆
2

+ 𝑎
7
𝜆 + 𝑎
13

󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨
𝑎
6
𝜆
2

− 𝑎
15

󵄨󵄨󵄨󵄨󵄨
)
2

+ (𝑎
10
𝜆 −

󵄨󵄨󵄨󵄨𝑎12𝜆 + 𝑎
18

󵄨󵄨󵄨󵄨)
2

+ (
󵄨󵄨󵄨󵄨󵄨
𝑎
4
𝜆
2

+ 𝑎
7
𝜆 − 𝑎
13

󵄨󵄨󵄨󵄨󵄨
+ 𝜆

󵄨󵄨󵄨󵄨𝑎8 + 𝑎
9

󵄨󵄨󵄨󵄨)
2

+ 𝜆(
󵄨󵄨󵄨󵄨𝑎3 + 𝑎

1
𝑎
2

󵄨󵄨󵄨󵄨 − 𝜆
2

)
2

+ 𝜆(
󵄨󵄨󵄨󵄨𝑎1𝑎3 + 𝑎

4
𝑎
13

󵄨󵄨󵄨󵄨 + 𝜆)
2

+ (𝑎
10
𝜆 −

󵄨󵄨󵄨󵄨𝑎11𝜆 + 𝑎
17

󵄨󵄨󵄨󵄨)
2

+ (𝑎
16
+
󵄨󵄨󵄨󵄨𝑎11𝜆 − 𝑎

17

󵄨󵄨󵄨󵄨)
2

+ (2𝑎
19
−
󵄨󵄨󵄨󵄨𝑎10𝜆 − 𝑎

16

󵄨󵄨󵄨󵄨)
2

+ (2𝑎
19
−
󵄨󵄨󵄨󵄨𝑎11𝜆 − 𝑎

17

󵄨󵄨󵄨󵄨)
2

+ (𝑎
5
+ 𝑎
14
𝜆
2

)
2

+ (𝑎
6
+ 𝑎
15
𝜆
2

)
2

+ (𝑎
8
− 𝑎
9
𝜆
2

)
2

+ 𝑎
2

7
𝜆
2

> 2(𝜆
3

− 𝑎
1
𝜆
2

− 𝑎
2
𝜆 + 𝑎
3
)
2

+ (𝑎
5
𝜆
2

− 𝑎
14
)
2

+ 2(𝑎
6
𝜆
2

− 𝑎
15
)
2

+ (−𝜆
3

− 𝑎
1
𝜆
2

+ 𝑎
2
𝜆 + 𝑎
3
)
2

+ 𝜆(𝑎
7
+ 𝑎
8
+ 𝑎
9
)
2

+ (−𝑎
5
𝜆
2

+ 𝑎
8
𝜆 + 𝑎
14
)
2

+ (𝑎
5
𝜆
2

+ 𝑎
8
𝜆 − 𝑎
14
)
2

+ 𝜆 [(𝑎
1
𝜆
4

+ 𝑎
2
𝑎
3
)
2

+ (𝑎
1
𝑎
2
+ 𝑎
3
)
2

+𝜆
4

+ (𝑎
1
𝑎
3
+ 𝑎
4
𝑎
13
)
2

+ 𝜆
2

]

+ 2(−𝑎
4
𝜆
2

+ 𝑎
7
𝜆 + 𝑎
13
)
2

+ (𝑎
4
𝜆
2

+ 𝑎
7
𝜆 − 𝑎
13
)
2

+ 2(𝑎
10
𝜆 − 𝑎
16
)
2

+ 2(𝑎
11
𝜆 − 𝑎
17
)
2

+ (𝑎
19
+
󵄨󵄨󵄨󵄨𝑎12𝜆 + 𝑎

18

󵄨󵄨󵄨󵄨)
2

+ (𝑎
19
+
󵄨󵄨󵄨󵄨𝑎11𝜆 + 𝑎

17

󵄨󵄨󵄨󵄨)
2

+ (𝑎
19
+
󵄨󵄨󵄨󵄨𝑎10𝜆 + 𝑎

16

󵄨󵄨󵄨󵄨)
2

+ (2𝑎
19
+
󵄨󵄨󵄨󵄨𝑎12𝜆 − 𝑎

18

󵄨󵄨󵄨󵄨)
2

+ (𝑎
2

9
+ 𝑎
2

14
+ 𝑎
2

15
) 𝜆
4

+ (𝑎
2

9
+ 3𝑎
2

12
) 𝜆
2

+ 𝑎
2

5
+ 𝑎
2

6
+ 𝑎
2

8
+ 𝑎
2

10
+ 𝑎
2

16
+ 2𝑎
2

17
+ 3𝑎
2

18
+ 2𝑎
2

19
.

(38)

Therefore, the following theorem can be formulated.

Theorem 9. Let 𝑎
3
+ |𝑎
13
| + |𝑎
14
| + ⋅ ⋅ ⋅ + |𝑎

19
| ̸= 0 and (38) hold.

Then there is no change in stability of 𝐸.

Remark 10. In the special case that 𝜁 = 𝜉 = 𝜂, the characteris-
tic equation (4) becomes

𝜒
3

+ 𝑎
1
𝜒
2

+ 𝑎
2
𝜒 + 𝑎
3

+ ℓ
−𝜒𝜂

[(𝑎
4
+ 𝑎
5
+ 𝑎
6
) 𝜒
2

+ (𝑎
7
+ 𝑎
8
+ 𝑎
9
) 𝜒 + 𝑎

13
+ 𝑎
14
+ 𝑎
15
]

+ ℓ
−2𝜒𝜂

[(𝑎
10
+ 𝑎
11
+ 𝑎
12
) 𝜒 + 𝑎

16
+ 𝑎
17
+ 𝑎
18
]

+ 𝑎
19
ℓ
−3𝜒𝜂

= 0.

(39)

Hence, this case is a private one of Theorem 9.

Corollary 11. If conditions of Theorem 9 are not valid and
𝜏
𝑏𝑖𝑓

3
is defined as in Theorem 3, then according to Lemma 5 for

any 𝜏
3
∈ [0, 𝜏

𝑏
), there exists a 𝜏

𝑏𝑖𝑓

1
(𝜏
3
) > 0 (𝜏

𝑏𝑖𝑓

2
(𝜏
3
) > 0;

𝜏
𝑏𝑖𝑓

4
(𝜏
3
) > 0; 𝜏𝑏𝑖𝑓

5
(𝜏
3
) > 0; 𝜏𝑏𝑖𝑓

6
(𝜏
3
) > 0; 𝜏𝑏𝑖𝑓

7
(𝜏
3
) > 0

resp.) such that the steady state 𝐸 of system (2) is unstable
when 𝜏

1
∈ [0, 𝜏

𝑏𝑖𝑓

1
(𝜏
3
))(𝜏
2
∈ [0, 𝜏

𝑏𝑖𝑓

2
(𝜏
3
)); 𝜏
4
∈ [0, 𝜏

𝑏𝑖𝑓

4
(𝜏
3
));

𝜏
5
∈ [0, 𝜏

𝑏𝑖𝑓

5
(𝜏
3
)); 𝜏
6
∈ [0, 𝜏

𝑏𝑖𝑓

6
(𝜏
3
))𝜏
7
∈ [0, 𝜏

𝑏𝑖𝑓

7
(𝜏
3
)) resp.), and

an Andronov-Hopf bifurcation take place.

6. Application: Numerical Analysis

In this section, we apply the material and results of the pre-
vious sections to a nonlinear mathematical model with three
discrete time delays, which investigate the dynamics of the
gene expression regulated by the miRNA. For a general dis-
cussion of the model, we refer the reader to [22, 23]. Hence,
we consider the following system:

𝑑𝑦
1

𝑑𝑡
=

𝑘
1

𝑘
2
+ 𝑘
3
𝑦
𝑛1

2
(𝑡 − 𝜏
1
)
− 𝛾
1
𝑦
1
− 𝑘
4
𝑦
1
𝑦
3
,

𝑑𝑦
2

𝑑𝑡
= 𝑘
5
𝑦
1
(𝑡 − 𝜏
2
) − 𝛾
2
𝑦
2
,

𝑑𝑦
3

𝑑𝑡
= 𝑙 − 𝑘

6
𝑦
3
(𝑡 − 𝜏
3
) − 𝑘
4
𝑦
1
𝑦
3
,

(40)

where the protein, 𝑦
2
, controls its own synthesis through the

repression of mRNA, 𝑦
1
, 𝑦
3
is the concentration of miRNA,

𝜏
1
is the time delay for translation, 𝜏

2
is the time delay for

transcription, 𝜏
3
is the average time delay for degradation of

miRNA, 𝑛
1
is often referred as a Hill coefficient or a coop-

erativity coefficient, 𝑘
𝑖
(𝑖 = 1, . . . , 6), and 𝛾

1
and 𝛾

2
are the

kinetic rate constants. According to [2, 24], we consider one
representative value for Hill coefficient, 𝑛

1
= 2. Model (40) is

a modified version of a model considered in [22]; that is, in
the present paper our model contains three time delays.

The fixed points of the system, 𝐸 = (𝑦
1
, 𝑦
2
, 𝑦
3
), repre-

sented by (40) can be analytically estimated and are defined
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Figure 1: (a) Stable regime of system (40) for 𝜏
1
= 𝜏
2
= 𝜏
3
= 0 and (b) unstable regime (sustained oscillations) for 𝜏

1
= 1, 𝜏

2
= 13, 𝜏

3
= 60.

by the following set of algebraic equations, including the rate
constants of the model:

𝑦
4

2
+
𝑘
5
(𝑘
4
𝑙 + 𝑘
6
𝛾
1
)

𝑘
4
𝛾
1
𝛾
2

𝑦
3

2
+
𝑘
2

𝑘
3

𝑦
2

2

+
𝑘
5

𝑘
3
𝑘
4
𝛾
1
𝛾
2

[𝑘
2
(𝑘
4
𝑙 + 𝑘
6
𝛾
1
) − 𝑘
1
𝑘
4
] 𝑦
2
−

𝑘
1
𝑘
2

5
𝑘
6

𝑘
3
𝑘
4
𝛾
1
𝛾
2

2

= 0,

𝑦
1
=

𝛾
2

𝑘
5

𝑦
2
, 𝑦

3
=

𝑘
5
𝑙

𝑘
5
𝑘
6
+ 𝛾
2
𝑘
4
𝑦
2

.

(41)

According to Descarte’s rule [19, 25], the first equation in
(41) has only one real positive root, which ensures that the
system has only one physiologically feasible fixed point.

Let us consider a small perturbation around the fixed
point 𝐸 of the system (40) defined as

𝑦
𝑘
= 𝑦
𝑘
+ 𝑥
𝑘

(𝑘 = 1, 2, 3) . (42)

In the case when 𝑛
1
= 2, the function 𝑘

1
/(𝑘
2
+ 𝑘
3
𝑦
2

2
(𝑡 − 𝜏
1
))

can be written as a MacLaurin series

𝑘
1

𝑘
2
+ 𝑘
3
𝑦
2

2
(𝑡 − 𝜏
1
)

=
𝑘
1

𝛿 + 𝑘
3
𝜑
=

𝑘
1

𝛿 ((𝑘
3
/𝛿𝜑) + 1)

=
𝑘
1

𝛿
(1 −

𝑘
3

𝛿
𝜑 + (

𝑘
3

𝛿
)

2

𝜑
2

− (
𝑘
3

𝛿
)

3

𝜑
3

+ ⋅ ⋅ ⋅) ,

(43)

where 𝛿 = 𝑘
2
+ 𝑘
3
𝑦
2

2
and 𝜑 = 2𝑦

2
𝑥
2
(𝑡 − 𝜏
1
) + 𝑥
2

2
(𝑡 − 𝜏
1
). If we

take only linear term from (43) and after substitution of (42)
into differential equation (40), we have,

𝑑𝑥
1

𝑑𝑡
= −𝑐
1
𝑥
1
− 𝑐
2
ℓ
−𝜒𝜏1𝑥
2
− 𝑐
3
𝑥
3
− 𝑐
4
ℓ
−2𝜒𝜏1𝑥

2

2
− 𝑘
4
𝑥
1
𝑥
3
,

𝑑𝑥
2

𝑑𝑡
= 𝑘
5
ℓ
−𝜒𝜏2𝑥
1
− 𝛾
2
𝑥
2
,

𝑑𝑥
3

𝑑𝑡
= −𝑐
5
𝑥
1
− (𝑘
6
ℓ
−𝜒𝜏3 + 𝑐

3
) 𝑥
3
− 𝑘
4
𝑥
1
𝑥
3
,

(44)

where

𝑐
1
= 𝛾
1
+ 𝑘
4
𝑦
3
, 𝑐

2
=
2𝑘
1
𝑘
3
𝑦
2

𝛿2
,

𝑐
3
= 𝑘
4
𝑦
1
, 𝑐

4
=
𝑘
1
𝑘
3

𝛿2
, 𝑐

5
= 𝑘
4
𝑦
3
.

(45)

It is seen that notations in Section 2 here are

𝑓
2
= 𝑓
3
= 𝑓
6
= 𝑔
1
= 𝑔
4
= 𝑔
5
= 𝑔
6
= ℎ
2
= ℎ
3
= ℎ
4
= 0,

𝑓
1
= −𝑐
1
, 𝑓

4
= −𝑐
2
, 𝑓

5
= −𝑐
3
,

𝑔
2
= 𝑘
5
, 𝑔

3
= −𝛾
2
,

ℎ
1
= −𝑐
5
, ℎ
5
= −𝑐
6
, ℎ
6
= −𝑘
6
.

(46)

In the next few figures we illustrate numerically the validity
of the criteria proved Section 5, that is, when the three time
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delays are different from zero. For our simulations according
to [22], the numerical values of the model parameters are

𝑘
1
= 0.3 [min−1] , 𝑘

2
= 𝑘
3
= 1 [min−1] ,

𝑘
4
= 0.3 [min−1] , 𝑘

5
= 0.5 [min−1] ,

𝑘
6
∈ [0.05, 0.3] ,

𝛾
1
= 0.1 [min−1] , 𝛾

2
= 0.2 [min−1] ,

𝜏
1
∈ [1, 8] , 𝜏

2
∈ [12, 35] ,

𝜏
3
∈ [10, 300] , 𝑙 = 0.1.

(47)

In order to compare the predictions with numerical results,
the governing equations of the model (40) were solved
numerically using MATLAB [26]. In Figure 1(a), the stable
solutions for the concentration of mRNA (𝑦

1
), the concen-

tration of protein (𝑦
2
), and the concentration of miRNA (𝑦

3
)

are shown for absence of time delay (i.e., 𝜏
1
= 𝜏
2
= 𝜏
3
=

0). It is evident that after several physiological acceptance
fluctuations, the solution of system (2) approaches a constant
value (stable equilibrium state). In other words, the system
possesses a stable equilibrium state which corresponds to
a normal miRNA regulation process. This conclusion is in
accordance with the criteria written in (7). In Figure 1(b), the
unstable solutions of system (40) are shown. It is seen that for
larger values of 𝜏

3
, than bifurcation one, afterAndronov-Hopf

bifurcation the stable limit cycle (self oscillations) occurs and
sustained oscillations take place. In other words, in this case
the conditions of Theorem 9 are not satisfied and the steady
state of system (40) is unstable.

7. Conclusions

In this paper we have considered a system of three equations
with three discrete time delays. Under the assumption that
an equilibrium exists, we have estimated the length of delays
for which local asymptotic stability will be preserved. We
have also derived criteria for which no change in stability will
occur.

If system (2) starts with a stable equilibrium, which for
some delay(s) becomes unstable, it will likely destabilize by
means of an Andronov-Hopf bifurcation leading to small
amplitude periodic solutions. Our investigation of such a
behavior is devoted to the use of the bifurcation analysis.
Particularly, a Hopf bifurcation theorem was employed. The
basic view that the time delays 𝜁, 𝜉, and 𝜂 are a key factor in
the dynamical behavior of system (2) has been confirmed by
analytical and numerical calculations.
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