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�e introduce two higher-order iterative methods for �nding multiple �eros of nonlinear equations. Per iteration the new methods
require three evaluations of function and one of its �rst derivatives. It is proved that the two methods have a convergence of order
�ve or six.

1. Introduction

Solving nonlinear equations is one of the most important
problems in numerical analysis. In this paper, we consider
iterative methods to �nd a multiple root 𝛼𝛼 of multiplicity 𝑚𝑚,
that is, 𝑓𝑓(𝑗𝑗𝑗(𝛼𝛼𝑗 𝛼 𝛼𝛼 𝑗𝑗 𝛼 𝛼𝛼 𝛼𝛼𝛼 𝛼𝑚𝑚 𝛼 𝛼, and 𝑓𝑓(𝑚𝑚𝑗(𝛼𝛼𝑗 𝛼 𝛼, of a
nonlinear equation

𝑓𝑓 (𝑥𝑥𝑗 𝛼 𝛼𝛼 (1)

where 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓 𝑓 𝑓 is a scalar function on an open
interval 𝑓𝑓 and it is sufficiently smooth in a neighbourhood of
𝛼𝛼. In recent years, somemodi�cations of the Newtonmethod
for multiple roots have been proposed and analysed [1–8].
However, there are not many methods known to handle the
case of multiple roots. Hence we present two higher-order
methods for �nding multiple �eros of a nonlinear equation
and only use four evaluations of the function per iteration.
In addition, the new methods have a better efficiency index
than the third- and fourth-order methods given in [1–3, 7];
in view of this fact, the new methods are signi�cantly better
when compared with the established methods.

e well-known Newton�s method for �nding multiple
roots is given by

𝑥𝑥𝑛𝑛𝑛𝛼 𝛼 𝑥𝑥𝑛𝑛 𝛼 𝑚𝑚
𝑓𝑓 𝑥𝑥𝑛𝑛

𝑓𝑓′ 𝑥𝑥𝑛𝑛
𝛼 (2)

which converges quadratically [4]. For the purpose of this
paper, we use (2) to construct new higher-order methods.

2. Development of theMethods and
Convergence Analysis

In this section, we de�ne new higher-ordermethods. In order
to establish the order of convergence of the new methods we
state the three essential de�nitions.

De�nition 1� Let 𝑓𝑓(𝑥𝑥𝑗 be a real function with a simple root
𝛼𝛼, and let {𝑥𝑥𝑛𝑛} be a sequence of real numbers that converge
towards 𝛼𝛼. e order of convergence 𝑝𝑝 is given by

lim
𝑛𝑛𝑓𝑛

𝑥𝑥𝑛𝑛𝑛𝛼 𝛼 𝛼𝛼
𝑥𝑥𝑛𝑛 𝛼 𝛼𝛼𝑝𝑝

𝛼 𝜁𝜁 𝛼 𝛼𝛼 (3)

where 𝜁𝜁 is the asymptotic error constant and 𝑝𝑝 𝑝 𝑓𝑛.

De�nition �� Let 𝑘𝑘 be the number of function evaluations
of the new method. e efficiency of the new method is
measured by the concept of efficiency index [9, 10] and
de�ned as

𝑝𝑝𝛼/𝑘𝑘𝛼 (4)

where 𝑝𝑝 is the order of convergence of the method.

De�nition 3� Kung-Traub conjectured that the multipoint
iterative methods without memory, requiring 𝑘𝑘 𝑛 𝛼 function
evaluations per iteration, have the order of convergence of at
most

𝑝𝑝 𝛼 𝑝𝑘𝑘. (5)
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Multipoint methods that satisfy the Kung-Traub conjecture
are usually called optimal methods [11].

Recently, ukral [8] presented a fourth-order iterative
method, given by

𝑦𝑦𝑛𝑛 = 𝑥𝑥𝑛𝑛 − 𝑚𝑚
𝑓𝑓 𝑥𝑥𝑛𝑛

𝑓𝑓′ 𝑥𝑥𝑛𝑛
, (6)

𝑥𝑥𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑛𝑛 − 𝑚𝑚
3

𝑖𝑖=𝑛
𝑖𝑖

𝑓𝑓 𝑦𝑦𝑛𝑛
𝑓𝑓 𝑥𝑥𝑛𝑛


𝑖𝑖𝑖𝑚𝑚


𝑓𝑓 𝑥𝑥𝑛𝑛

𝑓𝑓′ 𝑥𝑥𝑛𝑛
 . (7)

In fact, the new methods presented in this paper are the
extension of the above scheme. To develop the higher-order
methods, we use the above two steps and introduce the third
step with a new parameter. First we de�ne the sixth-order
method and then followed by the ��h-order method.

2.1. New Sixth-Order Method. e new sixth-order method
for �nding multiple root of a nonlinear equation is expressed
as

𝑦𝑦𝑛𝑛 = 𝑥𝑥𝑛𝑛 − 𝑚𝑚
𝑓𝑓 𝑥𝑥𝑛𝑛

𝑓𝑓′ 𝑥𝑥𝑛𝑛
, (8)

𝑧𝑧𝑛𝑛 = 𝑥𝑥𝑛𝑛 − 𝑚𝑚
3

𝑖𝑖=𝑛
𝑖𝑖

𝑓𝑓 𝑦𝑦𝑛𝑛
𝑓𝑓 𝑥𝑥𝑛𝑛


𝑖𝑖𝑖𝑚𝑚


𝑓𝑓 𝑥𝑥𝑛𝑛

𝑓𝑓′ 𝑥𝑥𝑛𝑛
 , (9)

𝑥𝑥𝑛𝑛𝑛𝑛 = 𝑧𝑧𝑛𝑛 − 𝑚𝑚
3

𝑖𝑖=𝑛
𝑖𝑖

𝑓𝑓 𝑦𝑦𝑛𝑛
𝑓𝑓 𝑥𝑥𝑛𝑛


𝑖𝑖𝑖𝑚𝑚


2


𝑓𝑓 𝑧𝑧𝑛𝑛
𝑓𝑓 𝑥𝑥𝑛𝑛


𝑚𝑚−𝑛

× 
𝑓𝑓 𝑥𝑥𝑛𝑛

𝑓𝑓′ 𝑥𝑥𝑛𝑛
 ,

(10)

where 𝑛𝑛 𝑛 𝑛, 𝑥𝑥0 is the initial value provided that the
denominators of (6) and (7) are not equal to zero.

eorem 4. Let 𝛼𝛼 𝑛 𝛼𝛼 be a multiple root of multiplicity 𝑚𝑚 of
a sufficiently differentiable function 𝑓𝑓 𝑓 𝛼𝛼 𝑓 𝑓 𝑓 𝑓 for an
open interval 𝛼𝛼. If 𝑥𝑥0 is sufficiently close to 𝛼𝛼, then the order of
conver�ence of the new method de�ned by (10) is six.

Proof. Let 𝛼𝛼 be a multiple root of multicity𝑚𝑚 of a sufficiently
smooth function𝑓𝑓𝑓𝑥𝑥𝑓, 𝑒𝑒 = 𝑥𝑥 − 𝛼𝛼 and ̂𝑒𝑒 = 𝑦𝑦 − 𝛼𝛼, where 𝑦𝑦 is
de�ned in (6).

Using the Taylor expansion of 𝑓𝑓𝑓𝑥𝑥𝑓 and𝑓𝑓′𝑓𝑥𝑥𝑓 about 𝛼𝛼, we
have

𝑓𝑓 𝑥𝑥𝑛𝑛 = 
𝑓𝑓𝑓𝑚𝑚𝑓 𝑓𝛼𝛼𝑓
𝑚𝑚𝑚

 𝑒𝑒𝑚𝑚𝑛𝑛 𝑛 𝑛 𝑐𝑐𝑛𝑒𝑒𝑛𝑛 𝑛 𝑐𝑐2𝑒𝑒
2
𝑛𝑛 𝑛 𝑐𝑐3𝑒𝑒

3
𝑛𝑛 𝑛 ⋯ ,

(11)

𝑓𝑓′ 𝑥𝑥𝑛𝑛 = 
𝑓𝑓𝑓𝑚𝑚𝑓 𝑓𝛼𝛼𝑓
𝑓𝑚𝑚 − 𝑛𝑓 𝑚

 𝑒𝑒𝑚𝑚−𝑛𝑛𝑛

× 𝑛 𝑛 
𝑚𝑚 𝑛 𝑛
𝑚𝑚

 𝑐𝑐𝑛𝑒𝑒𝑛𝑛 𝑛 
𝑚𝑚 𝑛 2
𝑚𝑚

 𝑐𝑐2𝑒𝑒
2
𝑛𝑛 𝑛 ⋯ ,

(12)

where 𝑛𝑛 𝑛 𝑛 and

𝑐𝑐𝑘𝑘 =
𝑚𝑚𝑚 𝑓𝑓𝑓𝑚𝑚𝑛𝑘𝑘𝑓 𝑓𝛼𝛼𝑓

𝑓𝑚𝑚 𝑛 𝑘𝑘𝑓 𝑚 𝑓𝑓𝑓𝑚𝑚𝑓 𝑓𝛼𝛼𝑓
. (13)

From (6), we have

𝑦𝑦𝑛𝑛 = 𝑒𝑒𝑛𝑛 − 𝑚𝑚
𝑓𝑓 𝑥𝑥𝑛𝑛

𝑓𝑓′ 𝑥𝑥𝑛𝑛

= 𝑒𝑒𝑛𝑛 − 𝑒𝑒𝑛𝑛 𝑛 −
𝑐𝑐𝑛
𝑚𝑚
𝑒𝑒𝑛𝑛 𝑛

𝑓𝑚𝑚 𝑛 𝑛𝑓 𝑐𝑐2𝑛 − 2𝑚𝑚𝑐𝑐2
𝑚𝑚2 𝑒𝑒2𝑛𝑛 𝑛 ⋯ .

(14)

e expansion of 𝑓𝑓𝑓𝑦𝑦𝑛𝑛𝑓 and about 𝛼𝛼 is given by

𝑓𝑓 𝑦𝑦𝑛𝑛 = 
𝑓𝑓𝑓𝑚𝑚𝑓 𝑓𝛼𝛼𝑓

𝑚𝑚𝑚
𝑒𝑒𝑚𝑚𝑛𝑛 𝑛 𝑛 𝑐𝑐𝑛𝑒𝑒𝑛𝑛 𝑛 𝑐𝑐2𝑒𝑒

2
𝑛𝑛 𝑛 𝑐𝑐3𝑒𝑒

3
𝑛𝑛 𝑛 ⋯ .

(15)

By using (11) and (15), we have


𝑓𝑓 𝑦𝑦𝑛𝑛
𝑓𝑓 𝑥𝑥𝑛𝑛


𝑚𝑚−𝑛

= 𝑒𝑒𝑛𝑛 
𝑐𝑐𝑛
𝑚𝑚


× 𝑛 𝑛 2𝑚𝑚𝑐𝑐2 − 𝑓𝑚𝑚 𝑛 2𝑓 𝑐𝑐2𝑛𝑚𝑚
−𝑛𝑒𝑒2𝑛𝑛

𝑛 2−𝑛 2𝑚𝑚2 𝑛 7𝑚𝑚 𝑛 7 𝑐𝑐3𝑛 − 2𝑚𝑚 𝑓3𝑚𝑚 𝑛 7𝑓

×𝑐𝑐𝑛𝑐𝑐2 𝑛 6𝑚𝑚2𝑐𝑐3𝑚𝑚
−3𝑒𝑒3𝑛𝑛 𝑛 ⋯ .

(16)

Since from (7) we have

𝑧𝑧𝑛𝑛 = 𝑒𝑒𝑛𝑛 − 𝑚𝑚
3

𝑖𝑖=𝑛
𝑖𝑖

𝑓𝑓 𝑦𝑦𝑛𝑛
𝑓𝑓 𝑥𝑥𝑛𝑛


𝑖𝑖𝑖𝑚𝑚


𝑓𝑓 𝑥𝑥𝑛𝑛

𝑓𝑓′ 𝑥𝑥𝑛𝑛
 ,

𝑓𝑓 𝑧𝑧𝑛𝑛 = 
𝑓𝑓𝑓𝑚𝑚𝑓 𝑓𝛼𝛼𝑓
𝑚𝑚𝑚

 𝑧𝑧𝑚𝑚𝑛𝑛 𝑛 𝑛 𝑐𝑐𝑛𝑧𝑧𝑛𝑛 𝑛 ⋯ .

(17)

As before we expand 𝑓𝑓𝑓𝑧𝑧𝑛𝑛𝑓, 𝑓𝑓𝑓𝑓𝑧𝑧𝑛𝑛𝑓𝑓𝑓𝑓𝑥𝑥𝑛𝑛𝑓
−𝑛𝑓

𝑚𝑚−𝑛

and substitute
the appropriate expressions in (10). A�er simpli�cation we
obtain the error equation

𝑒𝑒𝑛𝑛𝑛𝑛 = 2−2𝑚𝑚−5𝑐𝑐𝑛 𝑚𝑚𝑐𝑐
2
𝑛 𝑛 3𝑐𝑐2𝑛 − 2𝑚𝑚𝑐𝑐2

× 𝑚𝑚𝑐𝑐2𝑛 𝑛 𝑐𝑐2𝑛 − 2𝑚𝑚𝑐𝑐2 𝑒𝑒
6
𝑛𝑛 𝑛 ⋯ .

(18)

e error equation (18) establishes the sixth-order conver-
gence of the new method de�ned by (10).
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2.2.NewFih-OrderMethod. enew�h-ordermethod for
�nding multiple root of a nonlinear equation is expressed as

𝑦𝑦𝑛𝑛 = 𝑥𝑥𝑛𝑛 − 𝑚𝑚
𝑓𝑓 𝑥𝑥𝑛𝑛

𝑓𝑓′ 𝑥𝑥𝑛𝑛
, (19)

𝑧𝑧𝑛𝑛 = 𝑥𝑥𝑛𝑛 − 𝑚𝑚
3

𝑖𝑖=𝑖
𝑖𝑖
𝑓𝑓 𝑦𝑦𝑛𝑛
𝑓𝑓 𝑥𝑥𝑛𝑛


𝑖𝑖𝑖𝑚𝑚


𝑓𝑓 𝑥𝑥𝑛𝑛

𝑓𝑓′ 𝑥𝑥𝑛𝑛
 , (20)

𝑥𝑥𝑛𝑛𝑛𝑖 = 𝑧𝑧𝑛𝑛 − 𝑚𝑚
𝑓𝑓 𝑧𝑧𝑛𝑛
𝑓𝑓 𝑥𝑥𝑛𝑛


𝑚𝑚−𝑖


𝑓𝑓 𝑥𝑥𝑛𝑛

𝑓𝑓′ 𝑥𝑥𝑛𝑛
 , (21)

where 𝑛𝑛 𝑛 𝑛, 𝑥𝑥0 is the initial value provided that the
denominators of (19)–(21) are not equal to zero.

eorem 5. Let 𝛼𝛼 𝑛 𝛼𝛼 be a multiple root of multiplicity 𝑚𝑚 of
a sufficiently differentiable function 𝑓𝑓 𝑓 𝛼𝛼 𝑓 𝑓 𝑓 𝑓 for an
open interval 𝛼𝛼. If 𝑥𝑥0 is sufficiently close to 𝛼𝛼, then the order of
convergence of the new method de�ned by (21) is �ve.

Proof. Substituting appropriate expressions in (21) and aer
simpli�cation, we obtain the error equation

𝑒𝑒𝑛𝑛𝑛𝑖 = 𝑚𝑚−4𝑐𝑐2𝑖 𝑚𝑚𝑐𝑐
2
𝑖 𝑛 3𝑐𝑐

2
𝑖 − 2𝑚𝑚𝑐𝑐2 𝑒𝑒

5
𝑛𝑛 𝑛 ⋯ . (22)

e error equation (22) establishes the �h-order conver-
gence of the new method de�ned by (21).

3. Conclusion

In this paper, we have introduced two new higher-order
methods for solving nonlinear equations with multiple roots.
Convergence analysis proves that the new methods preserve
their order of convergence.e �h-order method presented
in this paper was actually the �rst improvement of the
fourth-order method recently introduced in [8], and further
improvement was made to achieve the sixth-order method.
Simply by introducing new parameters we have achieved
higher order of convergence. e purpose of this paper is
to introduce higher order of convergence methods. Since we
have veri�ed the order of convergence of the new methods,
we have not illustrated the numerical performance of these
methods. Finally, we conjecture that these new higher-order
iterative methods may be extended to an optimal eighth-
order of convergence and may be considered a very good
alternative to the classical methods given in [1–8].
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