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We have examined the spectra of the operator𝐷(𝑟, 0, 𝑠, 0, 𝑡) on the sequence spaces 𝑐
0
and 𝑐.

1. Introduction

Spectral theory is an important branch of mathematics
due to its application in other branches of science. It has
been proved to be a standard tool of mathematical sciences
because of its usefulness and application-oriented scope in
different fields. In numerical analysis, the spectral values may
determine whether a discretization of a differential equation
will get the right answer or how fast a conjugate gradient
iteration will converge. In aeronautics, the spectral values
may determine whether the flow over a wing is laminar or
turbulent. In electrical engineering, it may determine the
frequency response of an amplifier or the reliability of a power
system. In quantum mechanics, it may determine atomic
energy levels and thus the frequency of a laser or the spectral
signature of a star. In structural mechanics, it may determine
whether an automobile is too noisy or whether a building
will collapse in an earthquake. In ecology, the spectral values
may determine whether a food web will settle into a steady
equilibrium. In probability theory, they may determine the
rate of convergence of a Markov process.

In summability theory, different classes of matrices have
been investigated. Characterization of matrix classes is found
in Rath and Tripathy [1], Tripathy [2], Tripathy and Sen [3],
and many others. There are particular types of summability
methods like Nörlund, Riesz, Euler, and Abel. Matrix meth-
ods have been studied fromdifferent aspects recently by Altin

et al. [4], Tripathy and Baruah [5], and others. Still there
is a lot to be explored on spectra of some matrix operators
transforming one class of sequences into another class of
sequences. The spectra of the difference operator have also
been investigated on some classes of sequences. Altay and
Başar [6–8] studied the spectra of difference operator Δ and
generalized difference operator on 𝑐

0
, 𝑐, and ℓ

𝑝
. Recently, the

fine spectrum of 𝐵(𝑟, 𝑠, 𝑡) over the sequence spaces 𝑐
0
, 𝑐, ℓ
𝑝
,

and 𝑏V
𝑝
has been studied by Furkan et al. [9, 10]. A detailed

account of the development and initial works on spectra of
somematrix classes are found in themonograph of Başar [11].

Throughout the paper𝑤, ℓ
∞
, 𝑐, and 𝑐

0
denote the space of

all bounded, convergent, and null sequences 𝑥 = (𝑥
𝑘
) with

complex terms, respectively, normed by ‖𝑥‖
∞
= sup

𝑘
|𝑥
𝑘
|.

The zero sequence is denoted by 𝜃 = (0, 0, 0, . . .). Kızmaz [12]
defined the difference sequence spaces ℓ

∞
(Δ), 𝑐(Δ) and 𝑐

0
(Δ)

as follows:

𝑍 (Δ) = {𝑥 = (𝑥
𝑘
) : (Δ𝑥

𝑘
) ∈ 𝑍} , for 𝑍 ∈ {𝑙

∞
, 𝑐, 𝑐
0
} , (1)

where

Δ𝑥 = (Δ𝑥
𝑘
) = (𝑥

𝑘
− 𝑥
𝑘
+ 1) , ∀𝑘 ∈ N = {0, 1, 2, . . .} . (2)

The previous spaces are Banach spaces, normed by ‖𝑥‖
Δ
=

‖𝑥
1
‖ + sup

𝑘
‖Δ𝑥
𝑘
‖.

Different classes of sequence spaces using the difference
operator have been introduced and investigated in the recent
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past by Tripathy et al. [13, 14], Tripathy and Mahanta [15],
Tripathy and Sarma [16], and many others. The idea of Kiz-
maz [12] was applied to introduce a new type of generalized
difference operator on sequence spaces by Tripathy and Esi
[17].

Let 𝑚 ∈ N be fixed; then Tripathy and Esi [17] have
introduced the following type of difference sequence spaces:

𝑍 (Δ
𝑚
) = {𝑥 = (𝑥

𝑘
) : (Δ

𝑚
𝑥
𝑘
) ∈ 𝑍} ,

for 𝑍 ∈ {ℓ
∞
, 𝑐, 𝑐
0
} ,

(3)

where

Δ
𝑚
𝑥 = (Δ

𝑚
𝑥
𝑘
) = (𝑥

𝑘
− 𝑥
𝑘+𝑚
) . (4)

Let 𝑚, 𝑛 ≥ 0 be fixed integers; then Esi et al. [18] have
introduced the following type of difference sequence spaces:

𝑍 (Δ
𝑛

𝑚
) = {𝑥 = (𝑥

𝑘
) ∈ 𝑤 : Δ

𝑛

𝑚
𝑥 = (Δ

𝑛

𝑚
𝑥
𝑘
) ∈ 𝑍} ,

for 𝑍 ∈ {ℓ
∞
, 𝑐, 𝑐
0
} ,

(5)

where

Δ
𝑛

𝑚
𝑥 = (Δ

𝑛

𝑚
𝑥
𝑘
) = (Δ

𝑛−1

𝑚
𝑥
𝑘
− Δ
𝑛−1

𝑚
𝑥
𝑘+𝑚
) ,

Δ
0

𝑚
𝑥
𝑘
= 𝑥
𝑘
∀𝑘 ∈ N.

(6)

Taking 𝑛 = 1, we have the sequence spaces ℓ
∞
(Δ
𝑚
),

𝑐(Δ
𝑚
), and 𝑐

0
(Δ
𝑚
) studied by Tripathy and Esi [17]. Taking

𝑚 = 1, we have the sequence spaces ℓ
∞
(Δ
𝑛
), 𝑐(Δ𝑛), and 𝑐

0
(Δ
𝑛
)

studied by Et and Çolak [19]. Taking𝑚 = 1 and 𝑛 = 1, we have
the sequence spaces ℓ

∞
(Δ), 𝑐(Δ), and 𝑐

0
(Δ) studied byKızmaz

[12].

2. Preliminaries and Definition

Let 𝑋 be a linear space. By 𝐵(𝑋), we denote the set of all
bounded linear operators on𝑋 into itself. If 𝑇 ∈ 𝐵(𝑋), where
𝑋 is a Banach space, then the adjoint operator 𝑇∗ of 𝑇 is
a bounded linear operator on the dual 𝑋∗ of 𝑋 defined by
(𝑇
∗
𝜑)(𝑥) = 𝜑(𝑇𝑥) for all 𝜑 ∈ 𝑋∗ and 𝑥 ∈ 𝑋.
Let 𝑇 : 𝐷(𝑇) → 𝑋 be a linear operator, defined on

𝐷(𝑇) ⊂ 𝑋, where 𝐷(𝑇) denote the domain of 𝑇 and 𝑋 is
a complex normed linear space. For 𝑇 ∈ 𝐵(𝑋) we associate
a complex number 𝛼 with the operator (𝑇 − 𝛼𝐼) denoted by
𝑇
𝛼
defined on the same domain𝐷(𝑇), where 𝐼 is the identity

operator.The inverse (𝑇 − 𝛼𝐼)−1, denoted by𝑇−1
𝛼
, is known as

the resolvent operator of 𝑇
𝛼
.

A regular value of 𝛼 is a complex number 𝛼 of𝑇 such that

(R1) 𝑇−1
𝛼

exists,
(R2) 𝑇−1

𝛼
is bounde,

(R3) 𝑇−1
𝛼

is defined on a set which is dense in 𝑋.

The resolvent set of 𝑇 is the set of all such regular values
𝛼 of 𝑇, denoted by 𝜌(𝑇). Its complement is given by C \ 𝜌(𝑇)
in the complex plane C which is called the spectrum of 𝑇,
denoted by 𝜎(𝑇). Thus the spectrum 𝜎(𝑇) consists of those
values of 𝛼 ∈ C, for which 𝑇

𝛼
is not invertible.

2.1. Classification of Spectrum. The spectrum 𝜎(𝑇) is parti-
tioned into three disjoint sets as follows.

(i) The point (discrete) spectrum 𝜎
𝑝
(𝑇) is the set such

that 𝑇−1
𝛼

does not exist. Further 𝛼 ∈ 𝜎
𝑝
(𝑇) is called

the eigenvalue of 𝑇.
(ii) The continuous spectrum 𝜎

𝑐
(𝑇) is the set such that

𝑇
−1

𝛼
exists and satisfies (R3) but not (R2); that is, 𝑇−1

𝛼

is unbounded.
(iii) The residual spectrum 𝜎

𝑟
(𝑇) is the set such that 𝑇−1

𝛼

exists (and may be bounded or not) but does not
satisfy (R3); that is, the domain of 𝑇−1

𝛼
is not dense

in𝑋.

This is to note that in finite dimensional case, continuous
spectrum coincides with the residual spectrum and are equal
to the empty set and the spectrum consists of only the point
spectrum.

Let 𝐸 and 𝐹 be two sequence spaces and let 𝐴 = (𝑎
𝑛𝑘
)

be an infinite matrix of real or complex numbers 𝑎
𝑛𝑘
, where

𝑛, 𝑘 ∈ N. Then, we say that 𝐴 defines a matrix mapping from
𝐸 into 𝐹, denoted by 𝐴 : 𝐸 → 𝐹, if for every sequence 𝑥 =
(𝑥
𝑛
) ∈ 𝐸 the sequence 𝐴𝑥 = {(𝐴𝑥)

𝑛
} is in 𝐹 where (𝐴𝑥)

𝑛
=

∑
∞

𝑘=0
𝑎
𝑛𝑘
𝑥
𝑘
(𝑛 ∈ N and 𝑥 ∈ 𝐸), provided the right hand side

converges for every 𝑛 ∈ N and 𝑥 ∈ 𝐸.
Our main focus in this paper is on the matrix 𝐴 =

𝐷(𝑟, 0, 𝑠, 0, 𝑡), where

𝐷 (𝑟, 0, 𝑠, 0, 𝑡) =

[
[
[
[
[
[
[
[
[
[

[

𝑟 0 0 0 0 0 ⋅ ⋅ ⋅

0 𝑟 0 0 0 0 ⋅ ⋅ ⋅

𝑠 0 𝑟 0 0 0 ⋅ ⋅ ⋅

0 𝑠 0 𝑟 0 0 ⋅ ⋅ ⋅

𝑡 0 𝑠 0 𝑟 0 ⋅ ⋅ ⋅

0 𝑡 0 𝑠 0 𝑟 ⋅ ⋅ ⋅

...
...

...
...

...
... d

]
]
]
]
]
]
]
]
]
]

]

. (7)

We assume here and hereafter that 𝑠 and 𝑡 are complex
parameters which do not simultaneously vanish.

Lemma 1. Thematrix𝐴 = (𝑎
𝑛𝑘
) gives rise to a bounded linear

operator 𝑇 ∈ 𝐵(𝑐) from c to itself if and only if

(1) the rows of A in ℓ
1
and their ℓ

1
norms are bounded,

(2) the columns of 𝐴 are in 𝑐,
(3) the sequence of row sums of 𝐴 is in 𝑐.

The operator norm of T is the supremum of the ℓ
1
norms of the

rows.

Lemma 2. Thematrix𝐴 = (𝑎
𝑛𝑘
) gives rise to a bounded linear

operator T ∈ B(c
0
) from c

0
to itself if and only if

(1) the rows of A in ℓ
1
and their ℓ

1
norms are bounded,

(2) the columns of 𝐴 are in 𝑐
0
.

The operator norm of T is the supremum of the ℓ
1
norms of the

rows.

From the previous two lemmas we have the following
results.
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Lemma 3. 𝐷(𝑟, 0, 𝑠, 0, 𝑡) : 𝑐 → 𝑐 is a bounded linear operator
with

‖𝐷 (𝑟, 0, 𝑠, 0, 𝑡)‖(𝑐,, 𝑐) = |𝑟| + |𝑠| + |𝑡| . (8)

Lemma 4. 𝐷(𝑟, 0, 𝑠, 0, 𝑡) : 𝑐
0
→ 𝑐
0
is a bounded linear

operator with

‖𝐷 (𝑟, 0, 𝑠, 0, 𝑡)‖(𝑐,𝑐) = ‖𝐷 (𝑟, 0, 𝑠, 0, 𝑡)‖(𝑐0 ,𝑐0)
. (9)

In this paper, our purpose is to determine the fine
spectrum of the operator 𝐷(𝑟, 0, 𝑠, 0, 𝑡) over the sequence
spaces 𝑐

0
and 𝑐.

3. The Fine Spectrum of the Operator
𝐷(𝑟, 0, 𝑠, 0, 𝑡) over the Sequence Space 𝑐

0

Theorem 5. Let s be a complex number such that √𝑠2 = −𝑠
and define the set by

𝑆 = {𝛼 ∈ 𝐶 :



2 (𝑟 − 𝛼)

−𝑠 + √𝑠2 − 4𝑡 (𝑟 − 𝛼)



≤ 1} . (10)

Then

𝜎 (𝐷 (𝑟, 0, 𝑠, 0, 𝑡) , 𝑐
0
) = 𝑆. (11)

Proof. At first we have to prove that (𝐷(𝑟, 0, 𝑠, 0, 𝑡) − 𝛼𝐼)−1
exists and is in 𝐵(𝑐

0
) for 𝛼 ∉ 𝑆 and secondly we have to show

that (𝐷(𝑟, 0, 𝑠, 0, 𝑡) − 𝛼𝐼) is not invertible for 𝛼 ∈ 𝑆.
Without loss of generality we may assume that √𝑠2 =

−𝑠. Let 𝛼 ∉ 𝑆; then it is easy to see that 𝛼 ̸= 𝑟 and so
(𝐷(𝑟, 0, 𝑠, 0, 𝑡) − 𝛼𝐼) is triangle and has an inverse.

Let

(𝐷 (𝑟, 0, 𝑠, 0, 𝑡)−𝛼𝐼)
−1
=

[
[
[
[
[
[
[
[

[

𝑎
1
0 0 0 0 ⋅ ⋅ ⋅

𝑎
2
𝑎
1
0 0 0 ⋅ ⋅ ⋅

𝑎
3
𝑎
2
𝑎
1
0 0 ⋅ ⋅ ⋅

𝑎
4
𝑎
3
𝑎
2
𝑎
1
0 ⋅ ⋅ ⋅

𝑎
5
𝑎
4
𝑎
3
𝑎
2
𝑎
1
⋅ ⋅ ⋅

...
...

...
...

... d

]
]
]
]
]
]
]
]

]

. (12)

We have

[
[
[
[
[
[
[
[

[

𝑟 − 𝛼 0 0 0 0 ⋅ ⋅ ⋅

0 𝑟 − 𝛼 0 0 0 ⋅ ⋅ ⋅

𝑠 0 𝑟 − 𝛼 0 0 ⋅ ⋅ ⋅

0 𝑠 0 𝑟 − 𝛼 0 ⋅ ⋅ ⋅

𝑡 0 𝑠 0 𝑟 − 𝛼 ⋅ ⋅ ⋅

...
...

...
...

... d

]
]
]
]
]
]
]
]

]

×

[
[
[
[
[
[
[
[

[

𝑎
1
0 0 0 0 ⋅ ⋅ ⋅

𝑎
2
𝑎
1
0 0 0 ⋅ ⋅ ⋅

𝑎
3
𝑎
2
𝑎
1
0 0 ⋅ ⋅ ⋅

𝑎
4
𝑎
3
𝑎
2
𝑎
1
0 ⋅ ⋅ ⋅

𝑎
5
𝑎
4
𝑎
3
𝑎
2
𝑎
1
⋅ ⋅ ⋅

...
...

...
...

... d

]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[

[

1 0 0 0 0 ⋅ ⋅ ⋅

0 1 0 0 0 ⋅ ⋅ ⋅

0 0 1 0 0 ⋅ ⋅ ⋅

0 0 0 1 0 ⋅ ⋅ ⋅

0 0 0 0 1 ⋅ ⋅ ⋅

...
...

...
...

... d

]
]
]
]
]
]
]
]

]

.

(13)

On solving the previous system of equations we get

𝑎
1
=
1

𝑟 − 𝛼
,

𝑎
2
= 0,

𝑎
3
= −

𝑠

(𝑟 − 𝛼)
2
,

𝑎
4
= 0,

𝑎
5
=
𝑠
2
− (𝑟 − 𝛼) 𝑡

(𝑟 − 𝛼)
3
,

...

(14)

In general this sequence is obtained recursively by

𝑎
𝑛
= −
𝑠𝑎
𝑛−2
+ 𝑡𝑎
𝑛−4

𝑟 − 𝛼
, for 𝑛 ≥ 5. (15)

It is easy to verify that

𝑎
2𝑛+1
=

1

√𝑠2 − 4𝑡 (𝑟 − 𝛼)

× {[
−𝑠 + √𝑠2 − 4𝑡 (𝑟 − 𝛼)

2 (𝑟 − 𝛼)
]

𝑛+1

−[
−𝑠 − √𝑠2 − 4𝑡 (𝑟 − 𝛼)

2 (𝑟 − 𝛼)
]

𝑛+1

}

for 𝑛 ∈ 𝑍+,

𝑎
2𝑛
= 0, for 𝑛 ∈ N.

(16)

On taking

𝑢
1
= [
−𝑠 + √𝑠2 − 4𝑡 (𝑟 − 𝛼)

2 (𝑟 − 𝛼)
] ,

𝑢
2
= [
−𝑠 − √𝑠2 − 4𝑡 (𝑟 − 𝛼)

2 (𝑟 − 𝛼)
] ,

(17)
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we have

𝑎
2𝑛+1
=

1

√𝑠2 − 4𝑡 (𝑟 − 𝛼)

(𝑢
𝑛+1

1
− 𝑢
𝑛+1

2
) , for 𝑛 ∈ N. (18)

If one assumes √𝑠2 = 𝑠, then we will get the same
sequence as in the case of√𝑠2 = −𝑠.

If 𝑦 = √𝑠2 − 4𝑡(𝑟 − 𝛼), then

𝑎
2𝑛+1
=

1

𝑦{2 (𝑟 − 𝛼)}
𝑛+1
{(−𝑠 + 𝑦)

𝑛+1
− (−𝑠 − 𝑦)

𝑛+1
}

=
1

{2 (𝑟 − 𝛼)}
𝑛+1

×[2 (𝑛 + 1) (−𝑠)
𝑛
+
(𝑛 + 1) 𝑛 (𝑛 − 1)

6
(−𝑠)
𝑛−2
𝑦
2
+⋅ ⋅ ⋅ ] .

(19)

If we put 𝑠2 = 4𝑡(𝑟 − 𝛼), then 𝑎
2𝑛+1

= (2(𝑛 + 1)/ − 𝑠)

[−𝑠/2(𝑟 − 𝛼)]
𝑛+1, for 𝑛 ∈ N and 𝑎

2𝑛
= 0, for 𝑛 ∈ N.

Thus, on simple calculation we get (𝑎
𝑛
) ∈ ℓ
1
if and only

if | − 𝑠/2(𝑟 − 𝛼)| < 1. Therefore 𝛼 ∉ 𝑆 implies 𝑎
𝑛
→ 0, as

𝑛 → ∞.
Next, we assume that 𝑠2 ̸= 4𝑡(𝑟 −𝛼). Since 𝛼 ∉ 𝑆, therefore

|𝑢
1
| < 1. Now we have to show that |𝑢

2
| < 1.

We have that |𝑢
1
| < 1 implies |1 + √1 − (4𝑡(𝑟 − 𝛼))/𝑠2| <

|2(𝑟 − 𝛼)/ − 𝑠|.
Since |1 − √𝑧| ≤ |1 + √𝑧| for any 𝑧 ∈ C, we must have

|1 − √1 + (4𝑡(𝑟 − 𝛼))/𝑠2| < |2(𝑟 − 𝛼)/ − 𝑠| which leads us
to conclude that |𝑢

2
| < 1 and hence in this case also 𝛼 ∉ 𝑆

implies that 𝑎
𝑛
→ 0 as 𝑛 → ∞.

Now,

(𝐷(𝑟, 0, 𝑠, 0, 𝑡 − 𝛼𝐼)

−1(𝑐0 ,𝑐0)

= sup
𝑛

𝑛

∑

𝑘=1

𝑎𝑘
 =

∞

∑

𝑘=1

𝑎𝑘


≤
1


√𝑠2 − 4𝑡 (𝑟 − 𝛼)



(

∞

∑

𝑛=0

𝑢1


𝑛+1
+

∞

∑

𝑛=0

𝑢2


𝑛+1
) < ∞.

(20)

Since |𝑢
1
| < 1 and |𝑢

2
| < 1, we have 𝛼 ∉ 𝜎(𝐷(𝑟, 0, 𝑠, 0, 𝑡), 𝑐

0
).

Thus, 𝛼 ∉ 𝑆 ⇒ 𝛼 ∉ 𝜎 (𝐷(𝑟, 0, 𝑠, 0, 𝑡), 𝑐
0
) and hence

𝜎 (𝐷(𝑟, 0, 𝑠, 0, 𝑡), 𝑐
0
) ⊆ 𝑆.

Next we have to show that 𝑆 ⊆ 𝜎 (𝐷(𝑟, 0, 𝑠, 0, 𝑡), 𝑐
0
).

Let 𝛼 ∈ 𝑆. If 𝛼 = 𝑟, then (𝐷(𝑟, 0, 𝑠, 0, 𝑡)−𝛼𝐼) is represented
by the matrix

𝐷 (0, 0, 𝑠, 0, 𝑡) =

[
[
[
[
[
[
[
[
[
[

[

0 0 0 0 0 0 ⋅ ⋅ ⋅

0 0 0 0 0 0 ⋅ ⋅ ⋅

𝑠 0 0 0 0 0 ⋅ ⋅ ⋅

0 𝑠 0 0 0 0 ⋅ ⋅ ⋅

𝑡 0 𝑠 0 0 0 ⋅ ⋅ ⋅

0 𝑡 0 𝑠 0 0 ⋅ ⋅ ⋅

...
...

...
...

...
... d

]
]
]
]
]
]
]
]
]
]

]

. (21)

Since𝐷(𝑟, 0, 𝑠, 0, 𝑡)−𝑟𝐼 = 𝐷(0, 0, 𝑠, 0, 𝑡) does not have a dense
range, so it is not invertible.

Again if 𝑠2 = 4𝑡(𝑟 − 𝛼), then 𝑎
2𝑛+1

= (2(𝑛 + 1)/ − 𝑠)

[−𝑠/2(𝑟 − 𝛼)]
𝑛+1 for 𝑛 ∈ 𝑍+ and 𝑎

2𝑛
= 0, for 𝑛 ∈ N.

Now 𝛼 ∈ 𝑆 ⇒ | − 𝑠/2(𝑟 − 𝛼)| ≥ 1 and hence (𝑎
𝑛
) ∉ 𝑐
0
;

therefore, we have (𝐷(𝑟, 0, 𝑠, 0, 𝑡) − 𝛼𝐼)−1 ∉ 𝐵(𝑐
0
).

Next we assume that 𝛼 ̸= 𝑟 and 𝑠2 ̸= 4𝑡(𝑟 − 𝛼).
Since 𝛼 ̸= 𝑟, we have that (𝐷(𝑟, 0, 𝑠, 0, 𝑡) − 𝛼𝐼) is a triangle.

Further 𝑠2 ̸= 4𝑡(𝑟−𝛼), sowemust have |𝑢
1
| > |𝑢
2
|.This implies

(𝑎
𝑛
) ∉ 𝑐
0
andhence (𝐷(𝑟, 0, 𝑠, 0, 𝑡) − 𝛼𝐼)−1 ∉ 𝐵(𝑐

0
).This shows

that 𝑆 ⊆ 𝜎 (𝐷(𝑟, 0, 𝑠, 0, 𝑡), 𝑐
0
).

This completes the proof.

Theorem 6. One has 𝜎
𝑝
(𝐷(𝑟, 0, 𝑠, 0, 𝑡), 𝑐

0
) = 0.

Proof. Suppose 𝐷(𝑟, 0, 𝑠, 0, 𝑡)𝑥 = 𝛼𝑥 for 𝑥 ̸= 𝜃 = (0, 0, 0, . . .)
in 𝑐
0
. Then by solving the system of linear equations we have

𝑟𝑥
0
= 𝛼𝑥
0
,

𝑠𝑥
0
+ 𝑟𝑥
2
= 𝛼𝑥
2
,

𝑡𝑥
0
+ 𝑠𝑥
2
+ 𝑟𝑥
4
= 𝛼𝑥
4
,

...

and

(22)

𝑟𝑥
1
= 𝛼𝑥
1
,

𝑠𝑥
1
+ 𝑟𝑥
3
= 𝛼𝑥
3
,

𝑡𝑥
1
+ 𝑠𝑥
3
+ 𝑟𝑥
5
= 𝛼𝑥
5
,

...

(23)

If 𝑥
𝑛0

is the first nonzero entry of the sequence 𝑥 = (𝑥
𝑛
),

then from the previous system of linear (22) and (23) we have
𝑡𝑥
𝑛0−4
+ 𝑠𝑥
𝑛0−2
+ 𝑟𝑥
𝑛0
= 𝛼𝑥
𝑛0
and we obtain that 𝛼 = 𝑟 and

from the next of either (22) or (23) we get 𝑥
𝑛0
=0 which is a

contradiction. This completes the proof.

If 𝑇 : 𝑐
0
→ 𝑐
0
is a bounded linear operator with the

matrix 𝐴, then it is known that the adjoint operator 𝑇∗ :
𝑐
∗

0
→ 𝑐
∗

0
is defined by the transpose 𝐴𝑡 of the matrix 𝐴. It

should be noted that the dual space 𝑐∗
0
of 𝑐
0
is isometrically

isomorphic to the Banach space ℓ
1
of absolutely summable

sequences normed by ‖𝑥‖ = ∑ |𝑥
𝑛
|.

Theorem 7. One has 𝜎
𝑝
(𝐷(𝑟, 0, 𝑠, 0, 𝑡)

∗
, 𝑐
∗

0
)=𝑆
1
, where

𝑆
1
= {𝛼 ∈ 𝐶 :



2 (𝑟 − 𝛼)

−𝑠 + √𝑠2 − 4𝑡 (𝑟 − 𝛼)



< 1} . (24)

Proof. Suppose 𝐷(𝑟, 0, 𝑠, 0, 𝑡)∗𝑥 = 𝛼𝑥 for 𝑥 ̸= 𝜃 = (0, 0, 0, . . .)
in 𝑐∗
0
≅ ℓ
1
; that is, considering the following system of linear

equations we have

𝑟𝑥
0
+ 𝑠𝑥
2
+ 𝑡𝑥
4
= 𝛼𝑥
0
,

𝑟𝑥
1
+ 𝑠𝑥
3
+ 𝑡𝑥
5
= 𝛼𝑥
1
,

𝑟𝑥
2
+ 𝑠𝑥
4
+ 𝑡𝑥
6
= 𝛼𝑥
2
,

𝑟𝑥
3
+ 𝑠𝑥
5
+ 𝑡𝑥
7
= 𝛼𝑥
3
,

...

(25)
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If 𝛼 = 𝑟, then we may choose 𝑥
0
̸= 0 and so 𝑥 =

(𝑥
0
, 0, 0, . . .) is an eigenvector corresponding to 𝛼 = 𝑟 and

hence 𝛼 ∈ 𝜎
𝑝
(𝐷(𝑟, 0, 𝑠, 0, 𝑡)

∗
, 𝑐
∗

0
).

Next we assume that 𝛼 ̸= 𝑟; then from the previous system
of equations we have

𝑥
2𝑛+4
=
𝑎
2𝑛+1(𝑟 − 𝛼)

𝑛+1

𝑡𝑛+1
(𝛼 − 𝑟) 𝑥

0
+
𝑎
2𝑛+3(𝑟 − 𝛼)

𝑛+2

𝑡𝑛+1
𝑥
2
,

for 𝑛 ∈ N,
(26)

𝑥
2𝑛+5
=
𝑎
2𝑛+1(𝑟 − 𝛼)

𝑛+1

𝑡𝑛+1
(𝛼 − 𝑟) 𝑥1 +

𝑎
2𝑛+3(𝑟 − 𝛼)

𝑛+2

𝑡𝑛+1
𝑥
3

for 𝑛 ∈ N.
(27)

If 𝛼 is a number such that |2(𝑟−𝛼)/−𝑠+√𝑠2 − 4𝑡(𝑟 − 𝛼)| <
1, then we may choose 𝑥

0
= 𝑥
1
= 1 and 𝑥

2
= 𝑥
3
= 2(𝑟 −𝛼)/ −

𝑠 + √𝑠2 − 4𝑡(𝑟 − 𝛼).
We can easily verify that𝑢

1
−𝑢
2
= √(𝑠2 − 4𝑡(𝑟 − 𝛼))/(𝑟−𝛼)

and 𝑢
1
𝑢
2
= 𝑡/(𝑟 − 𝛼); using these results and combining the

fact 𝑥
2
= 𝑥
3
= 1/𝑢

1
with relation (26) we observe that

𝑥
2𝑛+4
=
𝑎
2𝑛+1
(𝑟 − 𝛼)

𝑛+1

𝑡𝑛+1
(𝛼 − 𝑟) 𝑥0 +

𝑎
2𝑛+3
(𝑟 − 𝛼)

𝑛+2

𝑡𝑛+1
𝑥
2

=

(𝑢
𝑛+1

1
− 𝑢
𝑛+1

2
)

√𝑠2 − 4𝑡 (𝑟 − 𝛼)

×
(𝑟 − 𝛼)

𝑛+1

𝑡𝑛+1
(𝛼 − 𝑟)

+

(𝑢
𝑛+2

1
− 𝑢
𝑛+2

2
)

√𝑠2 − 4𝑡 (𝑟 − 𝛼)

×
(𝑟 − 𝛼)

𝑛+2

𝑡𝑛+1
×
1

𝑢
1

=
(𝑟 − 𝛼)

√𝑠2 − 4𝑡 (𝑟 − 𝛼)

× (
𝑟 − 𝛼

𝑡
)

𝑛+1

× (𝑢
𝑛+1

2
− 𝑢
𝑛+1

1
+
𝑢
𝑛+2

1
− 𝑢
𝑛+2

2

𝑢
1

)

=
1

(𝑢
1
− 𝑢
2
)
×

1

𝑢
𝑛+1

1
𝑢
𝑛+1

2

×
1

𝑢
1

(𝑢
1
𝑢
𝑛+1

2
− 𝑢
𝑛+1

2
)

=
𝑢
𝑛+1

2
(𝑢
1
− 𝑢
2
)

(𝑢
1
− 𝑢
2
) 𝑢
𝑛+2

1
𝑢
𝑛+1

2

=
1

𝑢
𝑛+2

1

= (𝑥
2
)
𝑛+2
, for 𝑛 ∈ N.

(28)

Similarly we can show that 𝑥
2𝑛+5
= (𝑥
3
)
𝑛+2, for 𝑛 ∈ N.

The same result may be obtained in the case 𝑢
1
= 𝑢
2
, that

is, for the case 𝑠2 = 4𝑡(𝑟 − 𝛼).
Now 𝑥 = (𝑥

𝑘
) ∈ ℓ

1
since |𝑥

2
| = |𝑥

3
| < 1; this

implies that 𝛼 ∈ 𝜎
𝑝
(𝐷(𝑟, 0, 𝑠, 0, 𝑡), 𝑐

∗

0
) and hence 𝑆

1
⊆

𝜎
𝑝
(𝐷(𝑟, 0, 𝑠, 0, 𝑡)

∗
, 𝑐
0

∗
).

Conversely, let 𝛼 ∉ 𝑆
1
; therefore |2(𝑟 − 𝛼)/(−𝑠 +

√𝑠2 − 4𝑡(𝑟 − 𝛼))| ≥ 1; that is, |𝑢
1
| ≤ 1. We have to show that

𝛼 ∉ 𝜎
𝑝
(𝐷(𝑟, 0, 𝑠, 0, 𝑡)

∗
, 𝑐
∗

0
); that is, to show (𝑥

𝑘
) ∉ ℓ
1
for this it

is sufficient to show that∑∞
𝑛=0
|𝑥
𝑛
| = ∑
∞

𝑛=0
|𝑥
2𝑛
| + ∑
∞

𝑛=0
|𝑥
2𝑛+1
|

is divergent.
Now consider ∑∞

𝑛=0
|𝑥
2𝑛
|.

Here,

𝑥
2𝑛+6

𝑥
2𝑛+4

=
1

𝑡
×
𝑎
2𝑛+3
(𝑟 − 𝛼)

𝑛+2
(𝛼 − 𝑟) 𝑥

0
+ 𝑎
2𝑛+5
(𝑟 − 𝛼)

𝑛+3
𝑥
2

𝑎
2𝑛+1
(𝑟 − 𝛼)

𝑛+1
(𝛼 − 𝑟) 𝑥

0
+ 𝑎
2𝑛+3
(𝑟 − 𝛼)

𝑛+2
𝑥
2

= (
𝑟 − 𝛼

𝑡
) × (

𝑎
2𝑛+3

𝑎
2𝑛+1

) × (
−𝑥
0
+ (𝑎
2𝑛+5
/𝑎
2𝑛+3
) 𝑥
2

−𝑥
0
+ (𝑎
2𝑛+3
/𝑎
2𝑛+1
) 𝑥
2

) .

(29)

Thus we have ((𝑟 − 𝛼)/𝑡) = 1/𝑢
1
𝑢
2
.

Now we examine three cases.
Case 1 (|𝑢

2
| < |𝑢
1
| ≤ 1). In this case 𝑠2 ̸= 4𝑡(𝑟 − 𝛼) and

lim
𝑛→∞

𝑎
2𝑛+3

𝑎
2𝑛+1

= lim
𝑛→∞

𝑢
𝑛+2

1
− 𝑢
𝑛+2

2

𝑢
𝑛+1

1
− 𝑢
𝑛+1

2

= lim
𝑛→∞

𝑢
𝑛+2

1
(1 − (𝑢

2
/𝑢
1
)
𝑛+2
)

𝑢
𝑛+1

1
(1 − (𝑢

2
/𝑢
1
)
𝑛+1
)

= 𝑢
1
.

(30)

Now, if −𝑥
0
+ 𝑢
1
𝑥
2
= 0, then we get 𝑥

2𝑛
= (1/𝑢

𝑛

1
)𝑥
0
which is

not in ℓ
1
since |𝑢

1
| ≤ 1. Otherwise

lim
𝑛→∞



𝑥
2𝑛+6

𝑥
2𝑛+4



=
1

𝑢1


𝑢2


𝑢1
 =

1

𝑢2


> 1. (31)

Case 2 (|𝑢
2
| = |𝑢
1
| < 1). In this case 𝑠2 = 4𝑡(𝑟 − 𝛼) and using

the formula

𝑎
2𝑛+1
= (
2 (𝑛 + 1)

−𝑠
) [

−𝑠

2 (𝑟 − 𝛼)
]

𝑛+1

, for 𝑛 ∈ 𝑍+,

𝑎
2𝑛
= 0, for 𝑛 ∈ N.

(32)

We have

lim
𝑛→∞

𝑎
2𝑛+3

𝑎
2𝑛+1

=
−𝑠

2 (𝑟 − 𝛼)
= 𝑢
2
= 𝑢
1
, (33)

and so

lim
𝑛→∞



𝑥
2𝑛+6

𝑥
2𝑛+4



=
1

𝑢1


𝑢2


𝑢1
 =

1

𝑢2


> 1. (34)

Case 3 (|𝑢
2
| = |𝑢

1
| = 1). In this case 𝑠2 = 4𝑡(𝑟 − 𝛼) and

so we have |(𝑟 − 𝛼)/𝑡| = 1/(|𝑢
1
||𝑢
2
|) = 1 and |𝑢

2
| = |𝑢

1
| =

| − 𝑠/2(𝑟 − 𝛼)| = 1 and so | − 𝑠/2𝑡| = 1. Our aim is to show
𝛼 ∉ 𝜎

𝑝
(𝐷(𝑟, 0, 𝑠, 0, 𝑡)

∗
, 𝑐
∗

0
). On the contrary we assume that

𝛼 ∈ 𝜎
𝑝
(𝐷(𝑟, 0, 𝑠, 0, 𝑡)

∗
, 𝑐
∗

0
). This implies that 𝜃 ̸= 𝑥 ∈ ℓ

1
.
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From (26)

𝑥
2𝑛+4
=
𝑎
2𝑛+1
(𝑟 − 𝛼)

𝑛+1

𝑡𝑛+1
(𝛼 − 𝑟) 𝑥

0

+
𝑎
2𝑛+3
(𝑟 − 𝛼)

𝑛+2

𝑡𝑛+1
𝑥
2
, for 𝑛 ∈ 𝑍+

= (
2 (𝑛 + 1)

−𝑠
) [

−𝑠

2 (𝑟 − 𝛼)
]

𝑛+1

×
1

𝑡𝑛+1

× (𝑟 − 𝛼)

𝑛+1

× (𝛼 − 𝑟) 𝑥
0

+ (
2 (𝑛 + 2)

−𝑠
) [

−𝑠

2 (𝑟 − 𝛼)
]

𝑛+2

×
1

𝑡𝑛+1
× (𝑟 − 𝛼)

𝑛+2
𝑥
2

= (
−𝑠

2𝑡
)

𝑛+1

[
2 (𝑛 + 1)

−𝑠
(𝛼 − 𝑟) 𝑥0 + (𝑛 + 2) 𝑥2]

= (
−𝑠

2𝑡
)

𝑛+1

[(
𝑠

2𝑡
) (𝑛 + 1) 𝑥0 + (𝑛 + 2) 𝑥2] .

(35)

Now, if we consider the series ∑∞
𝑛=0
|𝑥
2𝑛+1
| in place of

∑
∞

𝑛=0
|𝑥
2𝑛
|, one will get results parallel to all the results

obtained previous just by replacing 𝑥
1
in place of 𝑥

0
and 𝑥

3

in place of 𝑥
2
.

Since lim
𝑛→∞

|𝑥
𝑛
| = 0, we must have from (35) 𝑥

0
= 𝑥
2
=

0 and similarly we get 𝑥
1
= 𝑥
3
= 0. This implies 𝑥 = 𝜃, a

contradiction and sowemust have𝛼 ∉ 𝜎
𝑝
(𝐷(𝑟, 0, 𝑠, 0, 𝑡)

∗
, 𝑐
∗

0
).

In Cases 1 and 2, by the d’Alembert ratio test we
get that ∑∞

𝑛=0
|𝑥
2𝑛
| is divergent and similarly we get that

∑
∞

𝑛=0
|𝑥
2𝑛+1
| is also divergent and hence ∑∞

𝑛=0
|𝑥
𝑛
| =

∑
∞

𝑛=0
|𝑥
2𝑛
| + ∑

∞

𝑛=0
|𝑥
2𝑛+1
| is divergent, since the sum of two

absolutely divergent series is divergent. In Case 3 𝛼 ∈

𝜎
𝑝
(𝐷(𝑟, 0, 𝑠, 0, 𝑡)

∗
, 𝑐
∗

0
) leads to contradiction. Thus in all

the previous cases 𝛼 ∉ 𝜎
𝑝
(𝐷(𝑟, 0, 𝑠, 0, 𝑡)

∗
, 𝑐
∗

0
) and hence

𝜎
𝑝
(𝐷(𝑟, 0, 𝑠, 0, 𝑡)

∗
, 𝑐
∗

0
) ⊆ 𝑆

1
. This completes the proof of

theorem.

Lemma 8. T has a dense range if and only if 𝑇∗ is one to one,
where 𝑇∗ denotes the adjoint operator of T.

Theorem 9. 𝜎
𝑟
(𝐷(𝑟, 0, 𝑠, 0, 𝑡), 𝑐

0
) = 𝑆
1
, where 𝑆

1
is defined as

in Theorem 7.

Proof. One has 𝜎
𝑝
(𝐷(𝑟, 0, 𝑠, 0, 𝑡)

∗
, 𝑐
∗

0
) = 𝑆

1
; then 𝐷(𝑟, 0, 𝑠,

0, 𝑡)
∗
− 𝛼𝐼 is not one-to-one for all 𝛼 ∈ 𝑆

1
. Therefore by

Lemma 8, 𝐷(𝑟, 0, 𝑠, 0, 𝑡)−𝛼𝐼 have a dense range for all 𝛼 ∈ 𝑆
1

and hence 𝜎
𝑟
(𝐷(𝑟, 0, 𝑠, 0, 𝑡), 𝑐

0
) = 𝑆
1
.

Theorem 10. Consider 𝜎
𝑐
(𝐷(𝑟, 0, 𝑠, 0, 𝑡), 𝑐

0
) = 𝑆
2
, where

𝑆
2
= {𝛼 ∈ 𝐶 :



2 (𝑟 − 𝛼)

−𝑠 + √𝑠2 − 4𝑡 (𝑟 − 𝛼)



= 1} . (36)

Proof. The proof immediately follows from the fact that the
set of spectra is the disjoint union of the point spectrum,
residual spectrum, and continuous spectrum; that is,

𝜎 (𝐷 (𝑟, 0, 𝑠, 0, 𝑡) , 𝑐
0
) = 𝜎
𝑝
(𝐷 (𝑟, 0, 𝑠, 0, 𝑡) , 𝑐

0
)

∪ 𝜎
𝑟
(𝐷 (𝑟, 0, 𝑠, 0, 𝑡) , 𝑐

0
)

∪ 𝜎
𝑐
(𝐷 (𝑟, 0, 𝑠, 0, 𝑡) , 𝑐

0
) .

(37)

4. The Fine Spectrum of the More
Generalized Operator 𝐷(𝑟, 0, 𝑠, 0, 𝑡) on
the Sequence Space 𝑐

Theorem 11. Consider 𝜎(𝐷(𝑟, 0, 𝑠, 0, 𝑡), 𝑐) = 𝑆, where 𝑆 is
defined as in Theorem 5.

Proof. This is obtained in a similar way used in the proof of
Theorem 5.

Theorem 12. One has 𝜎
𝑝
(𝐷(𝑟, 0, 𝑠, 0, 𝑡), 𝑐) = 0.

Proof. This is obtained in a similar way that is used in the
proof of Theorem 6.

If 𝑇 : 𝑐 → 𝑐 is a bounded matrix operator with the
matrix 𝐴, then 𝑇∗ : 𝑐∗ → 𝑐

∗ acting on 𝑐 ⊕ ℓ
1
has a matrix

representation of the form [ 𝜒 0
𝑏 𝐴
𝑡 ], where 𝜒 is the limit of the

sequence of row sums of 𝐴 minus the sum of the columns
of 𝐴 and 𝑏 is the column vector whose 𝑘th entry is the limit
of the 𝑘th column of 𝐴 for each 𝑘 ∈ N. For 𝐷(𝑟, 0, 𝑠, 0, 𝑡) :
𝑐 → 𝑐, the matrix 𝐷(𝑟, 0, 𝑠, 0, 𝑡)∗ ∈ 𝐵(ℓ

1
) is of the form

𝐷(𝑟, 0, 𝑠, 0, 𝑡)
∗
= [
𝑟+𝑠+𝑡 0

0 𝐷(𝑟,0,𝑠,0,𝑡)
𝑡 ].

Theorem 13. Consider 𝜎
𝑝
(𝐷(𝑟, 0, 𝑠, 0, 𝑡)

∗
, 𝑐
∗
) = 𝑆
1
∪{𝑟+𝑠+𝑡}.

Proof. Suppose 𝐷(𝑟, 0, 𝑠, 0, 𝑡)∗𝑥 = 𝛼𝑥 for 𝑥 ̸= 𝜃 = (0, 0, 0, . . .)
in 𝑐∗
0
≅ ℓ
1
; that is, consider the following system of linear

equations:

(𝑟 + 𝑠 + 𝑡) 𝑥0 = 𝛼𝑥0,

𝑟𝑥
1
+ 𝑠𝑥
3
+ 𝑡𝑥
5
= 𝛼𝑥
1
,

𝑟𝑥
2
+ 𝑠𝑥
4
+ 𝑡𝑥
6
= 𝛼𝑥
2
,

𝑟𝑥
3
+ 𝑠𝑥
5
+ 𝑡𝑥
7
= 𝛼𝑥
3
,

𝑟𝑥
4
+ 𝑠𝑥
6
+ 𝑡𝑥
8
= 𝛼𝑥
4
,

...

(38)

Then, we obtain that

𝑥
2𝑛+4
=
𝑎
2𝑛+1
(𝑟 − 𝛼)

𝑛+1

𝑡𝑛+1
(𝛼 − 𝑟) 𝑥

1

+
𝑎
2𝑛+3(𝑟 − 𝛼)

𝑛+2

𝑡𝑛+1
𝑥
3
, for 𝑛 ∈ Z+,
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𝑥
2𝑛+5
=
𝑎
2𝑛+1
(𝑟 − 𝛼)

𝑛+1

𝑡𝑛+1
(𝛼 − 𝑟) 𝑥2

+
𝑎
2𝑛+3
(𝑟 − 𝛼)

𝑛+2

𝑡𝑛+1
𝑥
4
, for 𝑛 ∈ Z+.

(39)

If 𝑥
0
̸= 0, then (𝑟+𝑠+𝑡) = 𝛼. So, 𝛼 = (𝑟+𝑠+𝑡) is an eigenvalue

with the corresponding eigenvector 𝑥 = (𝑥
0
, 0, 0, . . .).

If 𝛼 ̸= (𝑟 + 𝑠 + 𝑡), then 𝑥
0
= 0 and so using arguments

similar to those in the proof ofTheorem 7 one can see by (39)
that 𝑥 ∉ ℓ

1
. This completes the proof.

Theorem 14. Consider 𝜎
𝑟
(𝐷(𝑟, 0, 𝑠, 0, 𝑡), 𝑐) = 𝜎

𝑝
(𝐷(𝑟, 0, 𝑠,

0, 𝑡)
∗
, 𝑐
∗
).

Theorem 15. Consider 𝜎
𝑐
(𝐷(𝑟, 0, 𝑠, 0, 𝑡), 𝑐) = 𝑆

2
\ {𝑟 + 𝑠 + 𝑡},

where 𝑆
2
is defined as in Theorem 10.

5. Particular Case

The spectrum of the operator Δ2
2
over the sequence space 𝑐

0

and 𝑐 may be derived as the set {𝛼 ∈ 𝐶 : |1 − √𝛼| ≤ 1}; one
can directly produce the same result from the present paper
since Δ2

2
= 𝐷(1, 0, −2, 0, 1).
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[6] B. Altay and F. Başar, “On the fine spectrum of the difference
operator Δ on 𝑐

0
and 𝑐,” Information Sciences, vol. 168, no. 1–4,

pp. 217–224, 2004.
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