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Abstract. 
The main purpose of this paper is to derive some results associated with the quasi-Hadamard  product of certain 
	
		
			

				𝜔
			

		
	
-starlike and 
	
		
			

				𝜔
			

		
	
-convex univalent analytic functions with respect to symmetric points.
 

1. Introduction and Definitions
Let 
	
		
			
				𝐴
				(
				𝜔
				)
			

		
	
 denote the class of functions of the form
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑧
				)
				=
				(
				𝑧
				−
				𝜔
				)
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			

				𝑎
			

			

				𝑛
			

			
				(
				𝑧
				−
				𝜔
				)
			

			

				𝑛
			

			

				,
			

		
	

					which are analytic and univalent in the open unit disk 
	
		
			
				𝑈
				=
				{
				𝑧
				∶
				|
				𝑧
				|
				<
				1
				}
			

		
	
 and normalized with 
	
		
			
				𝐹
				(
				𝜔
				)
				=
				𝐹
			

			

				
			

			
				(
				𝜔
				)
				−
				1
				=
				0
			

		
	
, where 
	
		
			

				𝜔
			

		
	
 is a fixed point in 
	
		
			

				𝑈
			

		
	
.
Throughout this paper, let the functions of the forms
						
	
 		
 			
				(
				2
				)
			
 			
				(
				3
				)
			
 			
				(
				4
				)
			
 			
				(
				5
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑧
				)
				=
				𝑎
			

			

				1
			

			
				(
				𝑧
				−
				𝜔
				)
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			

				𝑎
			

			

				𝑛
			

			
				(
				𝑧
				−
				𝜔
				)
			

			

				𝑛
			

			
				
				𝑎
			

			

				1
			

			
				>
				0
				,
				𝑎
			

			

				𝑛
			

			
				
				,
				𝑓
				≥
				0
			

			

				𝑖
			

			
				(
				𝑧
				)
				=
				𝑎
			

			
				1
				,
				𝑖
			

			
				(
				𝑧
				−
				𝜔
				)
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			

				𝑎
			

			
				𝑛
				,
				𝑖
			

			
				(
				𝑧
				−
				𝜔
				)
			

			

				𝑛
			

			
				
				𝑎
			

			
				1
				,
				𝑖
			

			
				>
				0
				,
				𝑎
			

			
				𝑛
				,
				𝑖
			

			
				
				,
				≥
				0
				𝑔
				(
				𝑧
				)
				=
				𝑏
			

			

				1
			

			
				(
				𝑧
				−
				𝜔
				)
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			

				𝑏
			

			

				𝑛
			

			
				(
				𝑧
				−
				𝜔
				)
			

			

				𝑛
			

			
				
				𝑏
			

			

				1
			

			
				>
				0
				,
				𝑏
			

			

				𝑛
			

			
				
				,
				𝑔
				≥
				0
			

			

				𝑗
			

			
				(
				𝑧
				)
				=
				𝑏
			

			
				1
				,
				𝑗
			

			
				(
				𝑧
				−
				𝜔
				)
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			

				𝑏
			

			
				𝑛
				,
				𝑗
			

			
				(
				𝑧
				−
				𝜔
				)
			

			

				𝑛
			

			
				
				𝑏
			

			
				1
				,
				𝑗
			

			
				>
				0
				,
				𝑏
			

			
				𝑛
				,
				𝑗
			

			
				
				≥
				0
			

		
	

					be regular and univalent in the unit disk 
	
		
			

				𝑈
			

		
	
.
Let 
	
		
			

				𝜔
			

		
	
 be a fixed point in 
	
		
			

				𝑈
			

		
	
, and 
	
		
			
				𝑆
				(
				𝜔
				)
				=
				{
				𝐹
				∈
				𝐴
				(
				𝜔
				)
				∶
				𝐹
				i
				s
				u
				n
				i
				v
				a
				l
				e
				n
				t
				i
				n
				𝑈
				}
			

		
	
.
In [1], Kanas and Ronning defined the following classes of functions of 
	
		
			

				𝜔
			

		
	
-starlike and 
	
		
			

				𝜔
			

		
	
-convex, respectively,
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				S
				T
			

			

				𝜔
			

			
				=
				𝑆
			

			
				∗
				𝜔
			

			
				=
				
				
				𝐹
				∈
				𝑆
				(
				𝜔
				)
				∶
				R
				e
				(
				𝑧
				−
				𝜔
				)
				𝐹
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				
				
				,
				𝐹
				(
				𝑧
				)
				>
				0
				,
				𝑧
				∈
				𝑈
				C
				V
			

			

				𝜔
			

			
				=
				𝑆
			

			
				𝑐
				𝜔
			

			
				=
				
				
				𝐹
				∈
				𝑆
				(
				𝜔
				)
				∶
				1
				+
				R
				e
				(
				𝑧
				−
				𝜔
				)
				𝐹
			

			
				
				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝐹
			

			

				
			

			
				
				
				.
				(
				𝑧
				)
				>
				0
				,
				𝑧
				∈
				𝑈
			

		
	

					Recently, Acu and Owa [2], Oladipo [3], and Oladipo and Breaz [4] have studied the previous classes extensively.
Let 
	
		
			

				𝑆
			

			
				∗
				𝑠
			

		
	
 be the subclass of 
	
		
			
				𝑆
				(
				𝜔
				)
			

		
	
 consisting of functions given by (1) with 
	
		
			
				𝜔
				=
				0
			

		
	
 and satisfying the condition
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				
				R
				e
				𝑧
				𝐹
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				
				𝐹
				(
				𝑧
				)
				−
				𝐹
				(
				−
				𝑧
				)
				>
				0
				(
				𝑧
				∈
				𝑈
				)
				.
			

		
	

					These functions are called starlike with respect to symmetric points and were introduced by Sakaguchi [5].
Motivated by the previous classes 
	
		
			

				𝑆
			

			
				∗
				𝑠
			

		
	
, Oladipo [6] (see also [7]) defined the following classes of functions with respect to symmetric points.
Definition 1. (i) Let 
	
		
			

				𝑆
			

			
				∗
				𝑠
			

			
				(
				𝜔
				)
			

		
	
 be the subclass of 
	
		
			
				𝑆
				(
				𝜔
				)
			

		
	
 consisting of functions given by (1) satisfying the condition
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				
				R
				e
				(
				𝑧
				−
				𝜔
				)
				𝐹
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				
				𝐹
				(
				𝑧
				)
				−
				𝐹
				(
				−
				𝑧
				)
				>
				0
				(
				𝑧
				∈
				𝑈
				)
				,
			

		
	

						and 
	
		
			

				𝜔
			

		
	
 is a fixed point in 
	
		
			

				𝑈
			

		
	
. These functions are called 
	
		
			

				𝜔
			

		
	
-starlike with respect to symmetric points.(ii) Let 
	
		
			

				𝑆
			

			
				𝑐
				𝑠
			

			
				(
				𝜔
				)
			

		
	
 be the subclass of 
	
		
			
				𝑆
				(
				𝜔
				)
			

		
	
 consisting of functions given by (1) satisfying the condition
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				
				
				R
				e
				(
				𝑧
				−
				𝜔
				)
				𝐹
			

			

				
			

			
				
				(
				𝑧
				)
			

			

				
			

			
				
			
			
				(
				𝐹
				(
				𝑧
				)
				−
				𝐹
				(
				−
				𝑧
				)
				)
			

			

				
			

			
				
				>
				0
				(
				𝑧
				∈
				𝑈
				)
				,
			

		
	

						and 
	
		
			

				𝜔
			

		
	
 is a fixed point in 
	
		
			

				𝑈
			

		
	
. These functions are called 
	
		
			

				𝜔
			

		
	
-convex with respect to symmetric points.Suppose that 
	
		
			

				𝑓
			

		
	
 and 
	
		
			

				𝑔
			

		
	
 are two analytic functions in 
	
		
			

				𝑈
			

		
	
. Then, we say that the function 
	
		
			

				𝑔
			

		
	
 is subordinate to the function 
	
		
			

				𝑓
			

		
	
, and we write
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				𝑔
				(
				𝑧
				)
				≺
				𝑓
				(
				𝑧
				)
				(
				𝑧
				∈
				𝑈
				)
				,
			

		
	

						if there exists a Schwarz function 
	
		
			
				𝜛
				(
				𝑧
				)
			

		
	
 with 
	
		
			
				𝜛
				(
				0
				)
				=
				0
			

		
	
 and 
	
		
			
				|
				𝜛
				(
				𝑧
				)
				|
				<
				1
			

		
	
 such that
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				𝑔
				(
				𝑧
				)
				=
				𝑓
				(
				𝜛
				(
				𝑧
				)
				)
				(
				𝑧
				∈
				𝑈
				)
				.
			

		
	
By applying the previous subordination definition, we define the following subclasses of 
	
		
			

				𝑆
			

			
				∗
				𝑠
			

			
				(
				𝜔
				)
			

		
	
 and 
	
		
			

				𝑆
			

			
				𝑐
				𝑠
			

			
				(
				𝜔
				)
			

		
	
.
Definition 2. (i) Let 
	
		
			

				𝑆
			

			
				∗
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
 be the subclass of 
	
		
			
				𝑆
				(
				𝜔
				)
			

		
	
 consisting of functions given by (1) satisfying the condition
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				2
				(
				𝑧
				−
				𝜔
				)
				𝐹
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				≺
				𝐹
				(
				𝑧
				)
				−
				𝐹
				(
				−
				𝑧
				)
				1
				+
				𝐴
				(
				𝑧
				−
				𝜔
				)
			

			
				
			
			
				,
				1
				+
				𝐵
				(
				𝑧
				−
				𝜔
				)
			

		
	

						where 
	
		
			
				−
				1
				≤
				𝐵
				<
				𝐴
				≤
				1
			

		
	
, 
	
		
			
				𝑧
				∈
				𝑈
			

		
	
, and 
	
		
			

				𝜔
			

		
	
 is a fixed point in 
	
		
			

				𝑈
			

		
	
.(ii) Let 
	
		
			

				𝑆
			

			
				𝑐
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
 be the subclass of 
	
		
			
				𝑆
				(
				𝜔
				)
			

		
	
 consisting of functions given by (1) satisfying the condition
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				2
				
				(
				𝑧
				−
				𝜔
				)
				𝐹
			

			

				
			

			
				
				(
				𝑧
				)
			

			

				
			

			
				
			
			
				(
				𝐹
				(
				𝑧
				)
				−
				𝐹
				(
				−
				𝑧
				)
				)
			

			

				
			

			
				≺
				1
				+
				𝐴
				(
				𝑧
				−
				𝜔
				)
			

			
				
			
			
				,
				1
				+
				𝐵
				(
				𝑧
				−
				𝜔
				)
			

		
	

						where 
	
		
			
				−
				1
				≤
				𝐵
				<
				𝐴
				≤
				1
			

		
	
, 
	
		
			
				𝑧
				∈
				𝑈
			

		
	
, and 
	
		
			

				𝜔
			

		
	
 is a fixed point in 
	
		
			

				𝑈
			

		
	
.For 
	
		
			
				𝜔
				=
				0
			

		
	
, we have
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				𝑆
			

			
				∗
				𝑠
			

			
				(
				0
				,
				𝐴
				,
				𝐵
				)
				=
				𝑆
			

			
				∗
				𝑠
			

			
				(
				𝐴
				,
				𝐵
				)
				,
				𝑆
			

			
				𝑐
				𝑠
			

			
				(
				0
				,
				𝐴
				,
				𝐵
				)
				=
				𝑆
			

			
				𝑐
				𝑠
			

			
				(
				𝐴
				,
				𝐵
				)
			

		
	

						which were introduced by Goel and Mehrok [8] and Selvaraj and Vasanthi [9], respectively.Using (12) and (13), we can easily obtain the characterization properties for the classes 
	
		
			

				𝑆
			

			
				∗
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
 and 
	
		
			

				𝑆
			

			
				𝑐
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
 as follows.
Lemma 3.  A function 
	
		
			

				𝑓
			

		
	
 defined by (2) belongs to the class 
	
		
			

				𝑆
			

			
				∗
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
, if it satisfies the condition
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				
				
				2
				𝑛
				−
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				
				+
				|
				|
				2
				𝐵
				𝑛
				+
				𝐴
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				|
				|
				
				𝑎
			

			

				𝑛
			

			
				≤
				2
				(
				𝐴
				−
				𝐵
				)
				𝑎
			

			

				1
			

			

				.
			

		
	

Lemma 4.  A function 
	
		
			

				𝑓
			

		
	
 defined by (2) belongs to the class 
	
		
			

				𝑆
			

			
				𝑐
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
, if it satisfies the condition
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				𝑛
				
				
				2
				𝑛
				−
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				
				+
				|
				|
				2
				𝐵
				𝑛
				+
				𝐴
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				|
				|
				
				𝑎
			

			

				𝑛
			

			
				≤
				2
				(
				𝐴
				−
				𝐵
				)
				𝑎
			

			

				1
			

			

				.
			

		
	

Now, we introduce the following class of analytic functions in 
	
		
			

				𝑈
			

		
	
.
Definition 5. A function 
	
		
			

				𝑓
			

		
	
 of the form (2), which is analytic in 
	
		
			

				𝑈
			

		
	
, belongs to the class 
	
		
			

				𝑆
			

			
				∗
				𝑠
				,
				𝑘
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
, if it satisfies the condition
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			

				𝑛
			

			

				𝑘
			

			
				
				
				2
				𝑛
				−
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				
				+
				|
				|
				2
				𝐵
				𝑛
				+
				𝐴
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				|
				|
				
				𝑎
			

			

				𝑛
			

			
				≤
				2
				(
				𝐴
				−
				𝐵
				)
				𝑎
			

			

				1
			

			

				,
			

		
	

						where 
	
		
			
				−
				1
				≤
				𝐵
				<
				𝐴
				≤
				1
			

		
	
 and 
	
		
			

				𝑘
			

		
	
 is any fixed nonnegative real number.We note that, for any nonnegative real number 
	
		
			

				𝑘
			

		
	
, the class 
	
		
			

				𝑆
			

			
				∗
				𝑠
				,
				𝑘
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
 is nonempty as the functions of the form
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑧
				)
				=
				𝑎
			

			

				1
			

			
				+
				(
				𝑧
				−
				𝜔
				)
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				2
				(
				𝐴
				−
				𝐵
				)
				𝑎
			

			

				1
			

			
				
			
			

				𝑛
			

			

				𝑘
			

			
				
				
				2
				𝑛
				−
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				
				+
				|
				|
				2
				𝐵
				𝑛
				+
				𝐴
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				|
				|
				
				×
				𝜆
			

			

				𝑛
			

			
				(
				𝑧
				−
				𝜔
				)
			

			

				𝑛
			

			

				,
			

		
	

						where 
	
		
			

				𝑎
			

			

				1
			

			
				>
				0
			

		
	
, 
	
		
			

				𝜆
			

			

				𝑛
			

			
				≥
				0
			

		
	
, and 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				2
			

			

				𝜆
			

			

				𝑛
			

			
				≤
				1
			

		
	
, satisfy inequality (17).Clearly, we have the following relationships:(i)
	
		
			

				𝑆
			

			
				∗
				𝑠
				,
				0
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
				≡
				𝑆
			

			
				∗
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
 and 
	
		
			

				𝑆
			

			
				∗
				𝑠
				,
				1
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
				≡
				𝑆
			

			
				𝑐
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
;(ii)
	
		
			

				𝑆
			

			
				∗
				𝑠
				,
				𝑘
			

			

				1
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
				⊂
				𝑆
			

			
				∗
				𝑠
				,
				𝑘
			

			

				2
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
				(
				𝑘
			

			

				1
			

			
				>
				𝑘
			

			

				2
			

			
				≥
				0
				)
			

		
	
;(iii)
	
		
			

				𝑆
			

			
				∗
				𝑠
				,
				𝑘
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
				⊂
				𝑆
			

			
				∗
				𝑠
				,
				𝑘
				−
				1
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
				⊂
				⋯
				⊂
				𝑆
			

			
				𝑐
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
				⊂
				𝑆
			

			
				∗
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
				(
				𝑘
				∈
				𝑁
				)
			

		
	
.Let us define the quasi- Hadamard  product of the functions 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 and 
	
		
			
				𝑔
				(
				𝑧
				)
			

		
	
 by
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				𝑓
				∗
				𝑔
				(
				𝑧
				)
				=
				𝑎
			

			

				1
			

			

				𝑏
			

			

				1
			

			
				(
				𝑧
				−
				𝜔
				)
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			

				𝑎
			

			

				𝑛
			

			

				𝑏
			

			

				𝑛
			

			
				(
				𝑧
				−
				𝜔
				)
			

			

				𝑛
			

			

				.
			

		
	

Similarly, we can define the quasi-Hadamard product of more than two functions; for example,
						
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝑓
			

			

				1
			

			
				∗
				𝑓
			

			

				2
			

			
				∗
				⋯
				∗
				𝑓
			

			

				𝑚
			

			
				
				(
				𝑧
				)
				=
			

			

				𝑚
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				1
				,
				𝑖
			

			
				
				+
				(
				𝑧
				−
				𝜔
				)
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			

				
			

			

				𝑚
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				,
				𝑖
			

			
				
				(
				𝑧
				−
				𝜔
				)
			

			

				𝑛
			

			

				,
			

		
	

					where the functions 
	
		
			

				𝑓
			

			

				𝑖
			

			
				(
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑚
				)
			

		
	
 are given by (3).
In this paper, we derive certain results associated with the quasi-Hadamard  product of functions in the classes 
	
		
			

				𝑆
			

			
				∗
				𝑠
				,
				𝑘
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
, 
	
		
			

				𝑆
			

			
				∗
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
, and 
	
		
			

				𝑆
			

			
				𝑐
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
, which extend the results obtained by Kumar [10, 11], Darwish [12], and Aouf [13].
2. Main Results
Unless otherwise mentioned, we will assume throughout the following results that 
	
		
			
				−
				1
				≤
				𝐵
				<
				𝐴
				≤
				1
			

		
	
, 
	
		
			
				𝑧
				∈
				𝑈
			

		
	
, 
	
		
			

				𝑘
			

		
	
 is any fixed nonnegative real number, and 
	
		
			

				𝜔
			

		
	
 is a fixed point in 
	
		
			

				𝑈
			

		
	
.
Theorem 6.  Let the functions 
	
		
			

				𝑓
			

			

				𝑖
			

			
				(
				𝑧
				)
			

		
	
 defined by (3) be in the class 
	
		
			

				𝑆
			

			
				𝑐
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
 for every 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑚
			

		
	
, and let the functions 
	
		
			

				𝑔
			

			

				𝑗
			

			
				(
				𝑧
				)
			

		
	
 defined by (5) be in the class 
	
		
			

				𝑆
			

			
				∗
				𝑠
				,
				𝑘
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
 for every 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑞
			

		
	
. Then, the quasi-Hadamard product 
	
		
			

				𝑓
			

			

				1
			

			
				∗
				𝑓
			

			

				2
			

			
				∗
				⋯
				∗
				𝑓
			

			

				𝑚
			

			
				∗
				𝑔
			

			

				1
			

			
				∗
				𝑔
			

			

				2
			

			
				∗
				⋯
				∗
				𝑔
			

			

				𝑞
			

			
				(
				𝑧
				)
			

		
	
 belongs to the class 
	
		
			

				𝑆
			

			
				∗
				𝑠
				,
				2
				𝑚
				+
				(
				𝑘
				+
				1
				)
				𝑞
				−
				1
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
.
Proof. Let 
	
		
			
				𝐺
				(
				𝑧
				)
				=
				𝑓
			

			

				1
			

			
				∗
				𝑓
			

			

				2
			

			
				∗
				⋯
				∗
				𝑓
			

			

				𝑚
			

			
				∗
				𝑔
			

			

				1
			

			
				∗
				𝑔
			

			

				2
			

			
				∗
				⋯
				∗
				𝑔
			

			

				𝑞
			

			
				(
				𝑧
				)
			

		
	
; then,
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				
				𝐺
				(
				𝑧
				)
				=
			

			

				𝑚
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑞
				1
				,
				𝑖
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			
				1
				,
				𝑗
			

			
				
				+
				(
				𝑧
				−
				𝜔
				)
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			

				
			

			

				𝑚
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑞
				𝑛
				,
				𝑖
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			
				𝑛
				,
				𝑗
			

			
				
				(
				𝑧
				−
				𝜔
				)
			

			

				𝑛
			

			

				.
			

		
	

						It is sufficient to show that
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				
				𝑛
			

			
				2
				𝑚
				+
				(
				𝑘
				+
				1
				)
				𝑞
				−
				1
			

			
				
				
				2
				𝑛
				−
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				
				+
				|
				|
				2
				𝐵
				𝑛
				+
				𝐴
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				|
				|
				
				×
				
			

			

				𝑚
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑞
				𝑛
				,
				𝑖
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			
				𝑛
				,
				𝑗
			

			
				
				
				
				≤
				2
				(
				𝐴
				−
				𝐵
				)
			

			

				𝑚
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑞
				1
				,
				𝑖
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			
				1
				,
				𝑗
			

			
				
				.
			

		
	

						Since 
	
		
			

				𝑓
			

			

				𝑖
			

			
				∈
				𝑆
			

			
				𝑐
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
, by Lemma 4, we have
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				𝑛
				
				
				2
				𝑛
				−
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				
				+
				|
				|
				2
				𝐵
				𝑛
				+
				𝐴
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				|
				|
				
				𝑎
			

			
				𝑛
				,
				𝑖
			

			
				≤
				2
				(
				𝐴
				−
				𝐵
				)
				𝑎
			

			
				1
				,
				𝑖
			

			

				,
			

		
	

						for every 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑚
			

		
	
. Thus,
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				𝑛
				
				
				2
				𝑛
				−
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				
				+
				|
				|
				2
				𝐵
				𝑛
				+
				𝐴
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				|
				|
				
				𝑎
			

			
				𝑛
				,
				𝑖
			

			
				≤
				2
				(
				𝐴
				−
				𝐵
				)
				𝑎
			

			
				1
				,
				𝑖
			

			

				,
			

		
	

						or
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝑎
			

			
				𝑛
				,
				𝑖
			

			
				≤
				2
				(
				𝐴
				−
				𝐵
				)
			

			
				
			
			
				𝑛
				
				
				2
				𝑛
				−
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				
				+
				|
				|
				2
				𝐵
				𝑛
				+
				𝐴
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				|
				|
				
				𝑎
			

			
				1
				,
				𝑖
			

			

				,
			

		
	

						for every 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑚
			

		
	
. The right-hand expression of the last inequality is not greater than 
	
		
			

				𝑛
			

			
				−
				2
			

			

				𝑎
			

			
				1
				,
				𝑖
			

		
	
. Therefore,
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				𝑎
			

			
				𝑛
				,
				𝑖
			

			
				≤
				𝑛
			

			
				−
				2
			

			

				𝑎
			

			
				1
				,
				𝑖
			

			

				,
			

		
	

						for every 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑚
			

		
	
. Also, since 
	
		
			

				𝑔
			

			

				𝑗
			

			
				∈
				𝑆
			

			
				∗
				𝑠
				,
				𝑘
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
, we find from (17) that
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			

				𝑛
			

			

				𝑘
			

			
				
				
				2
				𝑛
				−
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				
				+
				|
				|
				2
				𝐵
				𝑛
				+
				𝐴
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				|
				|
				
				𝑏
			

			
				𝑛
				,
				𝑗
			

			
				≤
				2
				(
				𝐴
				−
				𝐵
				)
				𝑏
			

			
				1
				,
				𝑗
			

			

				,
			

		
	

						for every 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑞
			

		
	
. Hence, we obtain
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝑏
			

			
				𝑛
				,
				𝑗
			

			
				≤
				𝑛
			

			
				−
				(
				𝑘
				+
				1
				)
			

			

				𝑏
			

			
				1
				,
				𝑗
			

			

				,
			

		
	

						for every 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑞
			

		
	
.Using (26)–(28) for 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑚
			

		
	
, 
	
		
			
				𝑗
				=
				𝑞
			

		
	
, and 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑞
				−
				1
			

		
	
, respectively, we have
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				
				𝑛
			

			
				2
				𝑚
				+
				(
				𝑘
				+
				1
				)
				𝑞
				−
				1
			

			
				
				
				2
				𝑛
				−
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				
				+
				|
				|
				2
				𝐵
				𝑛
				+
				𝐴
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				|
				|
				
				×
				
			

			

				𝑚
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑞
				𝑛
				,
				𝑖
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			
				𝑛
				,
				𝑗
			

			
				≤
				
				
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				
				𝑛
			

			
				2
				𝑚
				+
				(
				𝑘
				+
				1
				)
				𝑞
				−
				1
			

			
				⋅
				𝑛
			

			
				−
				2
				𝑚
			

			
				⋅
				𝑛
			

			
				−
				(
				𝑘
				+
				1
				)
				(
				𝑞
				−
				1
				)
			

			

				
			

			

				𝑚
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				1
				,
				𝑖
				𝑞
				−
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			
				1
				,
				𝑗
			

			
				
				×
				
				
				2
				𝑛
				−
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				
				+
				|
				|
				2
				𝐵
				𝑛
				+
				𝐴
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				|
				|
				
				𝑏
			

			
				𝑛
				,
				𝑞
			

			
				
				≤
				
			

			

				𝑚
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				1
				,
				𝑖
				𝑞
				−
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			
				1
				,
				𝑗
			

			
				
				×
				
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			

				𝑛
			

			

				𝑘
			

			
				
				
				2
				𝑛
				−
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				
				+
				|
				|
				2
				𝐵
				𝑛
				+
				𝐴
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				|
				|
				
				𝑏
			

			
				𝑛
				,
				𝑞
			

			
				
				
				≤
				2
				(
				𝐴
				−
				𝐵
				)
			

			

				𝑚
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑞
				1
				,
				𝑖
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			
				1
				,
				𝑗
			

			
				
				.
			

		
	

						Thus, we have 
	
		
			
				𝐺
				(
				𝑧
				)
				∈
				𝑆
			

			
				∗
				𝑠
				,
				2
				𝑚
				+
				(
				𝑘
				+
				1
				)
				𝑞
				−
				1
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
. This completes the proof of Theorem 6.
Upon setting 
	
		
			
				𝑘
				=
				1
			

		
	
 in Theorem 6, we obtain the following result.
Corollary 7.  Let the functions 
	
		
			

				𝑓
			

			

				𝑖
			

			
				(
				𝑧
				)
			

		
	
 defined by (3) and the functions 
	
		
			

				𝑔
			

			

				𝑗
			

			
				(
				𝑧
				)
			

		
	
 defined by (5) belong to the class 
	
		
			

				𝑆
			

			
				𝑐
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
 for every 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑚
			

		
	
 and 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑞
			

		
	
. Then, the quasi-Hadamard product 
	
		
			

				𝑓
			

			

				1
			

			
				∗
				𝑓
			

			

				2
			

			
				∗
				⋯
				∗
				𝑓
			

			

				𝑚
			

			
				∗
				𝑔
			

			

				1
			

			
				∗
				𝑔
			

			

				2
			

			
				∗
				⋯
				∗
				𝑔
			

			

				𝑞
			

			
				(
				𝑧
				)
			

		
	
 belongs to the class 
	
		
			

				𝑆
			

			
				∗
				𝑠
				,
				2
				𝑚
				+
				2
				𝑞
				−
				1
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
.
Theorem 8.  Let the functions 
	
		
			

				𝑓
			

			

				𝑖
			

			
				(
				𝑧
				)
			

		
	
 defined by (3) be in the class 
	
		
			

				𝑆
			

			
				∗
				𝑠
				,
				𝑘
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
 for every 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑚
			

		
	
, and let the functions 
	
		
			

				𝑔
			

			

				𝑗
			

			
				(
				𝑧
				)
			

		
	
 defined by (5) be in the class 
	
		
			

				𝑆
			

			
				∗
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
 for every 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑞
			

		
	
. Then, the quasi-Hadamard product 
	
		
			

				𝑓
			

			

				1
			

			
				∗
				𝑓
			

			

				2
			

			
				∗
				⋯
				∗
				𝑓
			

			

				𝑚
			

			
				∗
				𝑔
			

			

				1
			

			
				∗
				𝑔
			

			

				2
			

			
				∗
				⋯
				∗
				𝑔
			

			

				𝑞
			

			
				(
				𝑧
				)
			

		
	
 belongs to the class 
	
		
			

				𝑆
			

			
				∗
				𝑠
				,
				(
				𝑘
				+
				1
				)
				𝑚
				+
				𝑞
				−
				1
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
.
Proof. Suppose that 
	
		
			
				𝐺
				(
				𝑧
				)
			

		
	
 is defined as (21). To prove the theorem, we need to show that
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				
				𝑛
			

			
				(
				𝑘
				+
				1
				)
				𝑚
				+
				𝑞
				−
				1
			

			
				
				
				2
				𝑛
				−
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				
				+
				|
				|
				2
				𝐵
				𝑛
				+
				𝐴
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				|
				|
				
				×
				
			

			

				𝑚
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑞
				𝑛
				,
				𝑖
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			
				𝑛
				,
				𝑗
			

			
				
				
				
				≤
				2
				(
				𝐴
				−
				𝐵
				)
			

			

				𝑚
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑞
				1
				,
				𝑖
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			
				1
				,
				𝑗
			

			
				
				.
			

		
	

						Since 
	
		
			

				𝑓
			

			

				𝑖
			

			
				∈
				𝑆
			

			
				∗
				𝑠
				,
				𝑘
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
, from (17), we have
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			

				𝑛
			

			

				𝑘
			

			
				
				
				2
				𝑛
				−
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				
				+
				|
				|
				2
				𝐵
				𝑛
				+
				𝐴
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				|
				|
				
				𝑎
			

			
				𝑛
				,
				𝑖
			

			
				≤
				2
				(
				𝐴
				−
				𝐵
				)
				𝑎
			

			
				1
				,
				𝑖
			

			

				,
			

		
	

						for every 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑚
			

		
	
. Hence, we get
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				𝑎
			

			
				𝑛
				,
				𝑖
			

			
				≤
				𝑛
			

			
				−
				(
				𝑘
				+
				1
				)
			

			

				𝑎
			

			
				1
				,
				𝑖
			

			

				,
			

		
	

						for every 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑚
			

		
	
. Further, since 
	
		
			

				𝑔
			

			

				𝑗
			

			
				∈
				𝑆
			

			
				∗
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
, by Lemma 3, we have
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				
				
				2
				𝑛
				−
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				
				+
				|
				|
				2
				𝐵
				𝑛
				+
				𝐴
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				|
				|
				
				𝑏
			

			
				𝑛
				,
				𝑗
			

			
				≤
				2
				(
				𝐴
				−
				𝐵
				)
				𝑏
			

			
				1
				,
				𝑗
			

			

				,
			

		
	

						for every 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑞
			

		
	
. Whence, we obtain
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			

				𝑏
			

			
				𝑛
				,
				𝑗
			

			
				≤
				𝑛
			

			
				−
				1
			

			

				𝑏
			

			
				1
				,
				𝑗
			

			

				,
			

		
	

						for every 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑞
			

		
	
.Using (32)–(34) for 
	
		
			
				𝑖
				=
				𝑚
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑚
				−
				1
			

		
	
, and 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑞
			

		
	
, respectively, we get
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				
				𝑛
			

			
				(
				𝑘
				+
				1
				)
				𝑚
				+
				𝑞
				−
				1
			

			
				
				
				2
				𝑛
				−
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				
				+
				|
				|
				2
				𝐵
				𝑛
				+
				𝐴
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				|
				|
				
				×
				
			

			

				𝑚
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑞
				𝑛
				,
				𝑖
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			
				𝑛
				,
				𝑗
			

			
				≤
				
				
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			
				
				𝑛
			

			
				(
				𝑘
				+
				1
				)
				𝑚
				+
				𝑞
				−
				1
			

			
				⋅
				𝑛
			

			
				−
				(
				𝑘
				+
				1
				)
				(
				𝑚
				−
				1
				)
			

			
				⋅
				𝑛
			

			
				−
				𝑞
			

			

				
			

			
				𝑚
				−
				1
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑞
				1
				,
				𝑖
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			
				1
				,
				𝑗
			

			
				
				×
				
				
				2
				𝑛
				−
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				
				+
				|
				|
				2
				𝐵
				𝑛
				+
				𝐴
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				|
				|
				
				𝑎
			

			
				𝑛
				,
				𝑚
			

			
				
				≤
				
			

			
				𝑚
				−
				1
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑞
				1
				,
				𝑖
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			
				1
				,
				𝑗
			

			
				
				×
				
			

			

				∞
			

			

				
			

			
				𝑛
				=
				2
			

			

				𝑛
			

			

				𝑘
			

			
				
				
				2
				𝑛
				−
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				
				+
				|
				|
				2
				𝐵
				𝑛
				+
				𝐴
				(
				1
				−
				(
				−
				1
				)
			

			

				𝑛
			

			
				)
				|
				|
				
				𝑎
			

			
				𝑛
				,
				𝑚
			

			
				
				
				≤
				2
				(
				𝐴
				−
				𝐵
				)
			

			

				𝑚
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑞
				1
				,
				𝑖
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			
				1
				,
				𝑗
			

			
				
				.
			

		
	

						Therefore, we have 
	
		
			
				𝐺
				(
				𝑧
				)
				∈
				𝑆
			

			
				∗
				𝑠
				,
				(
				𝑘
				+
				1
				)
				𝑚
				+
				𝑞
				−
				1
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
. We complete the proof.
By taking 
	
		
			
				𝑘
				=
				0
			

		
	
 in Theorem 8, we get the following result.
Corollary 9.  Let the functions 
	
		
			

				𝑓
			

			

				𝑖
			

			
				(
				𝑧
				)
			

		
	
 defined by (3) and the functions 
	
		
			

				𝑔
			

			

				𝑗
			

			
				(
				𝑧
				)
			

		
	
 defined by (5) belong to the class 
	
		
			

				𝑆
			

			
				∗
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
 for every 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑚
			

		
	
 and 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑞
			

		
	
. Then, the quasi-Hadamard  product 
	
		
			

				𝑓
			

			

				1
			

			
				∗
				𝑓
			

			

				2
			

			
				∗
				⋯
				∗
				𝑓
			

			

				𝑚
			

			
				∗
				𝑔
			

			

				1
			

			
				∗
				𝑔
			

			

				2
			

			
				∗
				⋯
				∗
				𝑔
			

			

				𝑞
			

			
				(
				𝑧
				)
			

		
	
 belongs to the class 
	
		
			

				𝑆
			

			
				∗
				𝑠
				,
				𝑚
				+
				𝑞
				−
				1
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
.
By putting 
	
		
			
				𝑘
				=
				0
			

		
	
 in Theorem 6, or 
	
		
			
				𝑘
				=
				1
			

		
	
 in Theorem 8, we obtain the following result.
Corollary 10.  Let the functions 
	
		
			

				𝑓
			

			

				𝑖
			

			
				(
				𝑧
				)
			

		
	
 defined by (3) be in the class 
	
		
			

				𝑆
			

			
				𝑐
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
 for every 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑚
			

		
	
, and let the functions 
	
		
			

				𝑔
			

			

				𝑗
			

			
				(
				𝑧
				)
			

		
	
 defined by (5) be in the class 
	
		
			

				𝑆
			

			
				∗
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
 for every 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑞
			

		
	
. Then, the quasi-Hadamard product 
	
		
			

				𝑓
			

			

				1
			

			
				∗
				𝑓
			

			

				2
			

			
				∗
				⋯
				∗
				𝑓
			

			

				𝑚
			

			
				∗
				𝑔
			

			

				1
			

			
				∗
				𝑔
			

			

				2
			

			
				∗
				⋯
				∗
				𝑔
			

			

				𝑞
			

			
				(
				𝑧
				)
			

		
	
 belongs to the class 
	
		
			

				𝑆
			

			
				∗
				𝑠
				,
				2
				𝑚
				+
				𝑞
				−
				1
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
.
Next, we discuss some applications of Theorems 6 and 8.
Taking into account the quasi-Hadamard product of functions 
	
		
			

				𝑓
			

			

				1
			

			
				(
				𝑧
				)
				,
				𝑓
			

			

				2
			

			
				(
				𝑧
				)
				,
				…
				,
				𝑓
			

			

				𝑚
			

			
				(
				𝑧
				)
			

		
	
 only, in the proof of Theorem 6, and using (23) and (26) for 
	
		
			
				𝑖
				=
				𝑚
			

		
	
 and 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑚
				−
				1
			

		
	
, respectively, we are led to the following.
Corollary 11.  Let the functions 
	
		
			

				𝑓
			

			

				𝑖
			

			
				(
				𝑧
				)
			

		
	
 defined by (3) belong to the class 
	
		
			

				𝑆
			

			
				𝑐
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
 for every 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑚
			

		
	
. Then, the quasi- Hadamard product 
	
		
			

				𝑓
			

			

				1
			

			
				∗
				𝑓
			

			

				2
			

			
				∗
				⋯
				∗
				𝑓
			

			

				𝑚
			

			
				(
				𝑧
				)
			

		
	
 belongs to the class 
	
		
			

				𝑆
			

			
				∗
				𝑠
				,
				2
				𝑚
				−
				1
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
.
Also, taking into account the quasi-Hadamard product of functions 
	
		
			

				𝑔
			

			

				1
			

			
				(
				𝑧
				)
				,
				𝑔
			

			

				2
			

			
				(
				𝑧
				)
				,
				…
				,
				𝑔
			

			

				𝑞
			

			
				(
				𝑧
				)
			

		
	
 only, in the proof of Theorem 8, and using (33) and (34) for 
	
		
			
				𝑗
				=
				𝑞
			

		
	
 and 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑞
				−
				1
			

		
	
, respectively, we are led to the following.
Corollary 12.  Let the functions 
	
		
			

				𝑔
			

			

				𝑗
			

			
				(
				𝑧
				)
			

		
	
 defined by (5) belong to the class 
	
		
			

				𝑆
			

			
				∗
				𝑠
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
 for every 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑞
			

		
	
. Then, the quasi-Hadamard product 
	
		
			

				𝑔
			

			

				1
			

			
				∗
				𝑔
			

			

				2
			

			
				∗
				⋯
				∗
				𝑔
			

			

				𝑞
			

			
				(
				𝑧
				)
			

		
	
 belongs to the class 
	
		
			

				𝑆
			

			
				∗
				𝑠
				,
				𝑞
				−
				1
			

			
				(
				𝜔
				,
				𝐴
				,
				𝐵
				)
			

		
	
.
Remark 13. By taking 
	
		
			
				𝜔
				=
				0
			

		
	
 in the previous results and making use of relationship (14), we obtain the corresponding results.
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