Research Article

Finite p-Group with Small Abelian Subgroups

Yuemei Mao and Qianlu Li
Department of Mathematics, Shanxi Datong University, Datong, Shanxi 037009, China
Correspondence should be addressed to Yuemei Mao; 921884707@qq.com
Received 30 March 2013; Accepted 17 May 2013
Academic Editor: Ali Jaballah

Copyright © 2013 Y. Mao and Q. Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A finite p-group G is said to have the property P, if, for any abelian subgroup M of G, there is $|M Z(G) / Z(G)| \leq p$. We show that if G satisfies P, then G has the following two types: (1) G is isoclinic to some stem groups of order p^{5}, which form an isoclinic family.
(2) G is isoclinic to a special p-group of exponent p. Elementary structures of groups with P are determined.

1. Preliminaries

Let p be a prime and G be a finite p-group. A group G is said to have the property P, if any abelian subgroup M of G satisfies $|M Z(G) / Z(G)| \leq p$. It is well known that if $M Z(G) / Z(G)$ is cyclic, then M is abelian. It rises to consider the groups with property P.

Mann [1] obtained the structure of 2-groups with property P; leting any abelian subgroup M of 2-group G satisfy $|M Z(G) / Z(G)| \leq p$, then G is isoclinic to a dihedral group. And for any odd prime p he showed that if any abelian subgroup M of G satisfies $|M Z(G) / Z(G)| \leq p$, then $G / Z(G)$ is an elementary abelian p-group or a nonabelian group of order p^{3} and exponent p.

Lemma 1 (see [1]). Let G be a finite p-group which satisfies the property P. Then $G / Z(G)$ is an elementary abelian p-group or a nonabelian group of order p^{3} and exponent p.

This paper further discusses groups with property P. In the following all considered groups are finite p-groups among which p is an odd prime.

First we state some notions and lemmas.
Definition 2. Groups G and H are said to be isoclinic, if there exist isomorphisms $\sigma: G / Z(G) \rightarrow H / Z(H)$ and $\theta: G^{\prime} \rightarrow$ H^{\prime} which are compatible, in the sense that $(a Z(G))^{\sigma}=c Z(H)$ and $(b Z(G))^{\sigma}=d Z(H)(c, d \in H-Z(H))$ imply that $[a, b]^{\theta}=$ $[c, d]$.

Definition 3. A finite p-group G is called a stem group, if $Z(G) \leq G^{\prime}$.

Definition 4. Group G is called a special p-group, if G is an elementary abelian p-group or $G^{\prime}=Z(G)=\Phi(G)$ is an elementary abelian p-group.

Lemma 5 (see [2]). Finite p-groups are isoclinic to stem groups.

Lemma 6 (see [3]). Let G be a finite regular p-group, $s \geq 0$; then for any $a, b \in G, a^{p^{s}}=b^{p^{s}}$ if and only if $\left(a^{-1} b\right)^{p^{s}}=1$.

Lemma 7 (see [4]). Let G be a regular p-group; then for any i, $\Omega_{i}(G)$ is the set of elements of order p^{i}.

2. Main Results

We need the following result.
Lemma 8. Suppose that G and H are isoclinic. If G satisfies P, then so does H.

Proof. Assume that isomorphisms $\sigma: G / Z(G) \rightarrow H / Z(H)$ and $\theta: \quad G^{\prime} \rightarrow H^{\prime}$ are compatible. And assume that M is an abelian subgroup of H. Then there exists a subgroup N of G such that $(N / Z(G))^{\sigma}=M Z(H) / Z(H)$. Suppose that $c, d \in$ $N \backslash Z(G)$ and $(c Z(G))^{\sigma}=a Z(H),(d Z(G))^{\sigma}=b Z(H)$. Then $a, b \in M \backslash Z(H)$. Then $[c, d]^{\theta}=[a, b]=1$ since σ and θ are
compatible. It follows that $|N / Z(G)| \leqslant p$ since G satisfies P. Hence $|M Z(H) / Z(H)| \leqslant p$. This completes the proof.

Now we state our main result.

Theorem 9. Let G be a finite p-group satisfying property P, then
(1) G is isoclinic to some stem groups of order p^{5}, which form an isoclinic family, or
(2) G is isoclinic to a special p-group of exponent p.

Proof. By Lemma $1, G / Z(G)$ is an elementary abelian p-group or a nonabelian group of order p^{3} and exponent p.
(1) Suppose that $G / Z(G)$ is not abelian.

Then $G / Z(G)$ is of order p^{3} and exponent p. By Lemma 5 we may suppose that $Z(G) \leqslant G^{\prime}$. Noting that the nilpotent class of G is 3 , thus $Z(G) \neq G^{\prime}$. It follows that G^{\prime} is abelian since $\left|G^{\prime}\right| Z(G) \mid=p$. Assuming that $G / Z(G)=\langle a Z(G), b Z(G)\rangle$, then $G=\langle a, b\rangle$ since $Z(G)<G^{\prime}$. Let $H=\left\langle a, a^{b}\right\rangle=\langle a,[a, b]\rangle$. Then H is nilpotent of class 2 and thus H is a regular p group. Note that $a^{p} \in Z(G)$ since $G / Z(G)$ is of exponent p. So $\left(b^{-1} a b\right)^{p}=b^{-1} a^{p} b=a^{p}$, following that $[a, b]^{p}=$ $\left(a^{-1} b^{-1} a b\right)^{p}=1$ by Lemma 6. Hence $G^{\prime}=\langle[a, b]\rangle^{G}=\langle[a, b]$, $[a, b, a],[a, b, b]\rangle$ is abelian and $\left|G^{\prime}\right| \leqslant p^{3}$.

If $\left|G^{\prime}\right|=p$, then G is inner-abelian and $G / Z(G) \cong Z_{p}^{2}$, a contradiction.

If $\left|G^{\prime}\right|=p^{2}$, there are two cases.
Case $1([a, b, a]=1$ or $[a, b, b]=1)$. If $[a, b, a]=1$, then $\left\langle G^{\prime}, a\right\rangle$ is abelian and $\left\langle G^{\prime}, a\right\rangle / Z(G) \cong Z_{p}^{2}$, a contradiction. For $[a, b, b]=1$, then $\left\langle G^{\prime}, b\right\rangle$ is abelian and $\left\langle G^{\prime}, b\right\rangle / Z(G) \cong Z_{p}^{2}$, a contradiction.

Case $2([a, b, a]=[a, b, b])$. Then we have $[a, b, a]\left[a, b, b^{-1}\right]=$ $\left[a, b, a b^{-1}\right]=1$. Thus $H=\left\langle[a, b], a b^{-1}, Z(G)\right\rangle$ is abelian and $H / Z(G) \cong Z_{p}^{2}$, a contradiction. Hence $\left|G^{\prime}\right|=p^{3}$ and then $|G|=p^{5}$.

Now we show that all groups of order p^{5} with P are isoclinic.

Suppose that $G=\left\langle a_{1}, b_{1}\right\rangle, H=\left\langle a_{2}, b_{2}\right\rangle$ are groups of order p^{5} with P. Then $G / Z(G)=\left\langle a_{1} Z(G), b_{1} Z(G)\right\rangle \cong E_{p^{3}}$ and $H / Z(H)=\left\langle a_{2} Z(H), b_{2} Z(H)\right\rangle \cong E_{p^{3}}$.

Set $c_{1}=\left[a_{1}, b_{1}\right], c_{2}=\left[a_{2}, b_{2}\right]$ and define $\sigma: G / Z(G) \rightarrow$ $H / Z(H)$ such that $\left(a_{1} Z(G)\right)^{\sigma}=a_{2} Z(H),\left(b_{1} Z(G)\right)^{\sigma}=$ $b_{2} Z(H)$.

Then σ spans an isomorphism and $\left(c_{1} Z(G)\right)^{\sigma}=\left[a_{1} Z(G)\right.$, $\left.b_{1} Z(G)\right]^{\sigma}=\left[a_{2} Z(H), b_{2} Z(H)\right]=c_{2} Z(H)$. Note that $Z(G)=$ $\left\langle\left[c_{1}, a_{1}\right]\right\rangle \times\left\langle\left[c_{1}, b_{1}\right]\right\rangle, Z(H)=\left\langle\left[c_{2}, a_{2}\right]\right\rangle \times\left\langle\left[c_{2}, b_{2}\right]\right\rangle$ and $G^{\prime}=$ $\left\langle c_{1}\right\rangle \times Z(G), H^{\prime}=\left\langle c_{2}\right\rangle \times Z(H)$.

Setting $c_{1}^{\theta}=c_{2},\left[c_{1}, a_{1}\right]^{\theta}=\left[c_{2}, a_{2}\right]$, and $\left[c_{1}, b_{1}\right]^{\theta}=\left[c_{2}, b_{2}\right]$, then θ deduces an isomorphism from G^{\prime} onto H^{\prime}. Now we show that σ and θ are compatible.

For any $x, y \in G$, write $x=a_{1}^{i_{1}} b_{1}^{i_{2}} c_{1}^{i_{3}} z_{1}, y=a_{1}^{j_{1}} b_{1}^{j_{2}} c_{1}^{j_{3}} z_{2}$, where $z_{1}, z_{2} \in Z(G)$. Then

$$
\begin{align*}
(x Z(G))^{\sigma} & =\left(a_{1}^{i_{1}} b_{1}^{i_{2}} c_{1}^{i_{3}} Z(G)\right)^{\sigma} \\
& =\left(a_{1}^{i_{1}} Z(G)\right)^{\sigma}\left(b_{1}^{i_{2}} Z(G)\right)^{\sigma}\left(c_{1}^{i_{3}} Z(G)\right)^{\sigma} \\
& =a_{2}^{i_{1}} Z(H) b_{2}^{i_{2}} Z(H) c_{2}^{i_{3}} Z(H)=a_{2}^{i_{1}} b_{2}^{i_{2}} c_{2}^{i_{3}} Z(H) \tag{1}
\end{align*}
$$

Similarly, $(y Z(G))^{\sigma}=a_{2}^{j_{1}} b_{2}^{j_{2}} c_{2}^{j_{3}} Z(H)$. Note that

$$
\begin{align*}
{[x, y]=} & {\left[a_{1}^{i_{1}} b_{1}^{i_{2}} c_{1}^{i_{3}} z_{1}, a_{1}^{j_{1}} b_{1}^{j_{2}} c_{1}^{j_{3}} z_{2}\right] } \\
= & {\left[a_{1}^{i_{1}} b_{1}^{i_{2}} c_{1}^{i_{3}}, a_{1}^{j_{1}} b_{1}^{j_{2}} c_{1}^{j_{3}}\right] } \\
= & {\left[a_{1}^{i_{1}} b_{1}^{i_{2}}, a_{1}^{j_{1}} b_{1}^{j_{2}} c_{1}^{j_{3}}\right]\left[c_{1}^{i_{3}}, a_{1}^{j_{1}} b_{1}^{j_{2}} c_{1}^{j_{3}}\right] } \\
& \times\left[a_{1}^{i_{1}} b_{1}^{i_{2}}, a_{1}^{j_{1}} b_{1}^{j_{2}} c_{1}^{j_{3}}, c_{1}^{i_{3}}\right] \\
= & {\left[a_{1}^{i_{1}} b_{1}^{i_{2}}, a_{1}^{j_{1}} b_{1}^{j_{2}}\right]\left[a_{1}^{i_{1}}, c_{1}^{j_{3}}\right]\left[b_{1}^{i_{2}}, c_{1}^{j_{3}}\right]\left[c_{1}^{i_{3}}, a_{1}^{j_{1}}\right] } \\
& \times\left[c_{1}^{i_{3}}, b_{1}^{j_{2}}\right] \\
= & {\left[c_{1}, a_{1}\right]^{i_{3} j_{1}-i_{1} j_{3}}\left[c_{1}, b_{1}\right]^{i_{3} j_{2}-i_{2} j_{3}}\left[a_{1}^{i_{1}} b_{1}^{i_{2}}, a_{1}^{j_{1}} b_{1}^{j_{2}}\right] } \\
= & {\left[c_{1}, a_{1}\right]^{i_{j} j_{1}-i_{1} j_{3}}\left[c_{1}, b_{1}\right]^{i_{3} j_{2}-i_{2} j_{3}} } \\
& \times\left[a_{1}^{i_{1}} b_{1}^{i_{2}}, a_{1}^{j_{1}}\right]\left[a_{1}^{i_{1}} b_{1}^{i_{2}}, b_{1}^{j_{2}}\right]\left[a_{1}^{i_{1}} b_{1}^{i_{2}}, a_{1}^{j_{1}}, b_{1}^{j_{2}}\right] \\
= & {\left[c_{1}, a_{1}\right]^{i_{3} j_{1}-i_{1} j_{3}}\left[c_{1}, b_{1}\right]^{i_{3} j_{2}-i_{2} j_{3}}\left[c_{1}, a_{1}\right]\binom{i_{1}}{2}\binom{i_{2}}{1} } \\
& \left.\times\left[c_{1}, b_{1}\right]^{i_{1}} \begin{array}{c}
i_{1} \\
1
\end{array}\right)\binom{i_{2}}{2} \\
& \times\left[c_{1}, a_{1}\right]^{\binom{i_{2}}{1}\binom{j_{1}}{2}}\left[c_{1}, b_{1}\right]\binom{j_{1}}{1}\binom{i_{2}}{2} \\
& \times\left[c_{1}, b_{1}\right]^{i_{1} i_{2} j_{2}-i_{2} j_{1} j_{2}} c_{1}^{i_{1} j_{2}-i_{2} j_{1}} \\
= & {\left[c_{1}, a_{1}\right]^{i_{3} j_{1}-i_{1} j_{3}+\binom{i_{2}}{1}\binom{j_{1}}{2}+\binom{i_{1}}{2}\binom{j_{2}}{1}} } \\
& \left.\times\left[c_{1}, b_{1}\right]^{i_{3} j_{2}-i_{2} j_{3}+i_{1} i_{2} j_{2}-i_{2} j_{1} j_{2}+\binom{j_{1}}{1}\left(i_{2}\right.} \begin{array}{l}
2
\end{array}\right)+\binom{i_{1}}{1}\binom{j_{2}}{2} c_{1}^{i_{1} j_{2}-i_{2} j_{1}} . \tag{2}
\end{align*}
$$

Set

$$
\begin{gather*}
f_{1}=i_{3} j_{1}-i_{1} j_{3}+\binom{i_{2}}{1}\binom{j_{1}}{2}+\binom{i_{1}}{2}\binom{j_{2}}{1}, \\
f_{2}=i_{3} j_{2}-i_{2} j_{3}+i_{1} i_{2} j_{2}-i_{2} j_{1} j_{2}+\binom{j_{1}}{1}\binom{i_{2}}{2}+\binom{i_{1}}{1}\binom{j_{2}}{2}, \\
f_{3}=i_{1} j_{2}-i_{2} j_{1} . \tag{3}
\end{gather*}
$$

Then $[x, y]=c_{1}^{f_{3}}\left[c_{1}, a_{1}\right]^{f_{1}}\left[c_{1}, b_{1}\right]^{f_{2}}$. Thus $[x, y]^{\theta}=c_{2}^{f_{3}}\left[c_{2}\right.$, $\left.a_{2}\right]^{f_{1}}\left[c_{2}, b_{2}\right]^{f_{2}}=\left[a_{2}^{i_{1}} b_{2}^{i_{2}} c_{2}^{i_{3}}, a_{2}^{j_{1}} b_{2}^{j_{2}} c_{2}^{j_{3}}\right]$. Hence σ and θ are compatible.
(2) Suppose that $G / Z(G)$ is an elementary abelian p group.

Note that $G^{\prime} \leq Z(G)$ since $G / Z(G)$ is abelian. By Lemma 5 we may suppose that $Z(G)=G^{\prime}$. If $\exp G=p$, then G is a special p-group of exponent p. So suppose that $\exp G>p$.

Let $G / Z(G)=\left\langle\bar{a}_{1}\right\rangle \times\left\langle\bar{a}_{2}\right\rangle \times \cdots \times\left\langle\bar{a}_{n}\right\rangle$, where $\bar{a}_{i}=$ $a_{i} Z(G)$. Then $G=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and $a_{i}^{p} \in Z(G)$. Note that $G^{\prime}=\left\langle\left[a_{k}, a_{l}\right]\right\rangle^{G}$ and $\left[a_{k}, a_{l}\right]^{p}=\left[a_{k}^{p}, a_{l}\right]=1$. Hence G^{\prime} is an elementary abelian p-group of exponent p. Suppose that $G^{\prime}=\left\langle c_{k l} \mid f_{m}\left(c_{k l}\right)=1\right\rangle$, where $c_{k l}=\left[a_{k}, a_{l}\right]$ and $f_{m}\left(c_{k l}\right)=1$ indicate the laws of G^{\prime}. Suppose that $K=\left\langle d_{k l} \mid f_{m}\left(d_{k l}\right)=1\right\rangle$ and $K \cong G^{\prime}$. By Schreier group expansion theories, we can add elements $b_{1}, b_{2}, \ldots, b_{n}$ of order p such that $\left[b_{k}, b_{l}\right]=d_{k l}$ into group K, note that $H=\left\{b_{1}, b_{2}, \ldots, b_{n} \mid b_{i}^{p}=1,\left[b_{k}, b_{l}\right]=\right.$ $\left.d_{k l}\right\}$. Then H is a group by Schreier group expansion theories.

Define a map $\sigma: c_{k l} \mapsto d_{k l}$ for $k, l=1, \ldots, n$. Then σ deduces an isomorphism from G^{\prime} onto H^{\prime}. Note that $H / H^{\prime}=$ $\left\langle\bar{b}_{1}\right\rangle \times\left\langle\bar{b}_{2}\right\rangle \times \cdots \times\left\langle\bar{b}_{n}\right\rangle$ and $G / G^{\prime}=\left\langle\bar{a}_{1}\right\rangle \times\left\langle\bar{a}_{2}\right\rangle \times \cdots \times\left\langle\bar{a}_{n}\right\rangle$.

Setting $\sigma_{1}: a_{i} G^{\prime} \stackrel{b_{i}}{ } H^{\prime}$, then σ_{1} spans an isomorphism from G / G^{\prime} onto H / H^{\prime}.

For any $x G^{\prime}, y G^{\prime} \in G / G^{\prime}$, assume that $x=a_{1}^{i_{1}} a_{2}^{i_{2}} \ldots$ $a_{n}^{i_{n}} c_{1}, y=a_{1}^{j_{1}} a_{2}^{j_{2}} \cdots a_{n}^{j_{n}} c_{2}$, where $c_{1}, c_{2} \in G^{\prime}$.

Then $\left(x G^{\prime}\right)^{\sigma_{1}}=\left(a_{1}^{i_{1}} a_{2}^{i_{2}} \cdots a_{n}^{i_{n}} G^{\prime}\right)^{\sigma_{1}}=b_{1}^{i_{1}} b_{2}^{i_{2}} \cdots b_{n}^{i_{n}} H^{\prime}\left(y G^{\prime}\right)^{\sigma_{1}}=$ $\left(a_{1}^{j_{1}} a_{2}^{j_{2}} \cdots a_{n}^{j_{n}} G^{\prime}\right)^{\sigma_{1}}=b_{1}^{j_{1}} b_{2}^{j_{2}} \cdots b_{n}^{j_{n}} H^{\prime}$. So $[x, y]^{\sigma_{2}}=\left[a_{1}^{i_{1}} a_{2}^{i_{2}} \cdots\right.$ $\left.a_{n}^{i_{n}} c_{1}, a_{1}^{j_{1}} a_{2}^{j_{2}} \cdots a_{n}^{j_{n}} c_{2}\right]^{\sigma_{2}}=\left(\prod_{1 \leqslant k \leqslant l \leqslant n}\left[a_{k}, a_{l}\right]^{i_{k} j_{l}-i_{l} j_{k}}\right)^{\sigma_{2}}=\prod_{1 \leqslant k \leqslant l \leqslant n}\left[b_{k}\right.$, $\left.b_{l}\right]^{i_{k} j_{l}-i_{l} j_{k}}=\left[b_{1}^{i_{1}} b_{2}^{i_{2}} \cdots b_{n}^{i_{n}}, b_{1}^{j_{1}} b_{2}^{j_{2}} \cdots b_{n}^{j_{n}}\right]$.

Thus σ_{1} and σ_{2} are compatible.
For any $x \in Z(H)$, write $x=b_{1}^{i_{1}} b_{2}^{i_{2}} \cdots b_{n}^{i_{n}} c$, where $c \in H^{\prime}$. Then $\left[b_{1}^{i_{1}} b_{2}^{i_{2}} \cdots b_{n}^{i_{n}} c, b_{i}\right]=1$.

Note that $\left(b_{1}^{i_{1}} b_{2}^{i_{2}} \cdots b_{n}^{i_{n}} H^{\prime}\right)^{\sigma_{1}^{-1}}=\left(b_{1}^{i_{1}} b_{2}^{i_{2}} \cdots \bar{b}_{n}^{i_{n}}\right)^{\sigma_{1}^{-1}}=\bar{a}_{1}^{i_{1}} \bar{a}_{2}^{i_{2}} \cdots$ $\bar{a}_{n}^{i_{n}}=a_{1}^{i_{1}} a_{2}^{i_{2}} \cdots a_{n}^{i_{n}} G^{\prime}$, and similarly $\left(b_{i} H^{\prime}\right)^{\sigma_{1}^{-1}}=a_{i} G^{\prime}$. Then $\left[b_{1}^{i_{1}} b_{2}^{i_{2}} \cdots b_{n}^{i_{n}}, b_{i}\right]^{\sigma_{1}^{-1}}=\left[a_{1}^{i_{1}} a_{2}^{i_{2}} \cdots a_{n}^{i_{n}}, a_{i}\right]=1$. Hence $a_{1}^{i_{1}} a_{2}^{i_{2}} \cdots$ $a_{n}^{i_{n}} \in Z(G)=G^{\prime}$.

It follows that $b_{1}^{i_{1}} b_{2}^{i_{2}} \cdots b_{n}^{i_{n}} H^{\prime}=\left(G^{\prime}\right)^{\sigma_{1}}=H^{\prime}$ and thus $b_{1}^{i_{1}} b_{2}^{i_{2}} \cdots b_{n}^{i_{n}} \in H^{\prime}$. So $Z(H) \leqslant H^{\prime}$. As a result $H^{\prime}=Z(H)$. Since $H=\left\{b_{1}, b_{2}, \ldots, b_{n} \mid b_{i}^{p}=1,\left[b_{k}, b_{l}\right]=d_{k l}\right\}$. We know that $\mho_{1}(H)=\left\langle b_{1}^{p}, b_{2}^{p}, \ldots, b_{n}^{p}\right\rangle=1$; then $\exp H=p$. Hence G is isoclinic to a special p-group of exponent p.

Note. In the sense of isoclinism, to investigate groups with P is to consider the special p-groups of exponent p.

We need the following result.
Lemma 10. Let G be a special p-group of exponent p. Then
(1) ifd $(G)=n$, then $\left|G^{\prime}\right| \leq p^{n(n-1) / 2}$;
(2) for any $x, y \in G$, if $\langle x Z(G)\rangle=\langle y Z(G)\rangle$, then G satisfies P.

Then we deduce the following.
Theorem 11. Let G be a special p-group of exponent p and $d(G)=n$, then
(1) if $\left|G^{\prime}\right|<p^{n-1}$, then G does not satisfy P.
(2) if $\left|G^{\prime}\right|=p^{n(n-1) / 2}$, then G satisfies P.

Proof. Suppose that $G=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$. Since G^{\prime} is an elementary abelian p-group, we may see G^{\prime} as an additive group of the vector space on $G F(p)$.
(1) Assume that $\left|G^{\prime}\right|<p^{n-1}$. Then $\left[a_{1}, a_{2}\right],\left[a_{1}, a_{3}\right], \ldots$, $\left[a_{1}, a_{n}\right]$ are linearly dependent. So there exist some integers which are not all $0 \bmod p$ such that $\left[a_{1}\right.$, $\left.a_{2}\right]^{k_{1}}\left[a_{1}, a_{3}\right]^{k_{2}} \cdots\left[a_{1}, a_{n}\right]^{k_{n-1}}=1$. Thus $\left\langle a_{1}, a_{2}^{k_{1}} a_{3}^{k_{2}} \cdots a_{n}^{k_{n-1}}\right\rangle$ is abelian. However, note that $\mid\left\langle a_{1}, a_{2}^{k_{1}} a_{3}^{k_{2}} \cdots a_{n}^{k_{n-1}}\right\rangle Z(G) /$ $Z(G) \mid \neq p$ since $a_{1}, a_{2}, \ldots, a_{n}$ are generators of G. So G does not have P.
(2) Assume that $\left|G^{\prime}\right|=p^{n(n-1) / 2}$. Then $G^{\prime}=\left\langle\left[a_{1}, a_{2}\right]\right.$, $\left.\ldots,\left[a_{1}, a_{n}\right], \ldots,\left[a_{n-1}, a_{n}\right]\right\rangle$. For any $x, y \in G$, assume that $x=a_{1}^{i_{1}} a_{2}^{i_{2}} \cdots a_{n}^{i_{n}} c_{1}$ and $y=a_{1}^{j_{1}} a_{2}^{j_{2}} \cdots a_{n}^{j_{n}} c_{2}$, where $c_{1}, c_{2} \in G^{\prime}$. Then $[x, y]=\left[a_{1}^{i_{1}} a_{2}^{i_{2}} \cdots a_{n}^{i_{n}} c_{1}, a_{1}^{j_{1}} a_{2}^{j_{2}} \cdots a_{n}^{j_{n}} c_{2}\right]=\left[a_{1}^{i_{1}} a_{2}^{i_{2}} \cdots\right.$ $\left.a_{n}^{i_{n}}, a_{1}^{j_{1}} a_{2}^{j_{2}} \cdots a_{n}^{j_{n}}\right]=\prod_{1 \leqslant k \leqslant l \leqslant n}\left[a_{k}, a_{l}\right]^{i_{k} j_{l}-i_{l} j_{k}}$.

Looking at G^{\prime} as an additive group of the vector space on $G F(p)$, then $\left[a_{1}, a_{2}\right], \ldots,\left[a_{1}, a_{n}\right], \ldots,\left[a_{n-1}, a_{n}\right]$ are linearly independent. If $[x, y]=1$, then $i_{k} j_{l}-i_{l} j_{k}=0 \bmod p$ for $1 \leqslant k \leqslant l \leqslant n$. Thus $i_{l} / j_{l}=i_{2} / j_{2} \cdots=i_{n} / j_{n}$. Setting $i_{l} / j_{l}=m$, then $x=a_{1}^{j_{1} m} a_{2}^{j_{2} m} \cdots a_{n}^{j_{n} m} c_{1}=\left(a_{1}^{j_{1}} a_{2}^{j_{2}}\right)^{m} c_{2}^{\binom{m}{2}} a_{3}^{j_{3} m} \cdots a_{n}^{j_{n} m} c_{1}=$ $\left(a_{1}^{j_{1}} a_{2}^{j_{2}}, \ldots, a_{n}^{j_{n}} c_{2}\right)^{m} c=y^{m} c$, where $c \in G^{\prime}$. Hence $\langle x Z(G)\rangle=$ $\left\langle y^{m} Z(G)\right\rangle \leqslant\langle y Z(G)\rangle$. By Lemma $10 G$ satisfies the property P.

Corollary 12. Let G be a special p-group of exponent p. Then
(1) if $d(G)=2$, then G satisfies the property P.
(2) if $d(G)=3$, then G satisfies the property P if and only if $\left|G^{\prime}\right|=p^{3}$.

Proof. (1) If $d(G)=2$, then G is an inner-abelian p-group. Obviously, G has the property P.
(2) Assume that $d(G)=3$ and $G=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$. By Theorem $11 G$ satisfies P if $\left|G^{\prime}\right|=p^{3}$, but it does not if $\left|G^{\prime}\right|=$ p. Assuming that $\left|G^{\prime}\right|=p^{2}$, then $\left[a_{1}, a_{2}\right],\left[a_{1}, a_{3}\right],\left[a_{2}, a_{3}\right]$ are linearly dependent. So there exist integers k_{1}, k_{2}, k_{3} which are not all $0 \bmod p$ such that $\left[a_{1}, a_{2}\right]^{k_{1}}\left[a_{1}, a_{3}\right]^{k_{2}}\left[a_{2}, a_{3}\right]^{k_{3}}=1$. Hence $\left\langle a_{1}, a_{2}^{k_{1}} a_{3}^{k_{2}} a_{2}^{i k_{3}} a_{3}^{j k_{3}}\right\rangle$ is abelian.

Since a_{1}, a_{2}, and a_{3} are generators of $G, \mid\left\langle a_{1}\right.$, $\left.a_{2}^{k_{1}} a_{3}^{k_{2}} a_{2}^{i k_{3}} a_{3}^{j k_{3}}\right\rangle Z(G) / Z(G) \mid \neq p$, then G does not satisfy P;

Theorem 13. Assume that $G=\left\langle a_{1}, \ldots, a_{n}\right\rangle(n \geq 4)$ is a special p-group of exponent p and $\left|G^{\prime}\right|=p^{m}$, where $n-1 \leq m<n(n-1) / 2$. Suppose that $G^{\prime}=\left\langle\left[a_{k_{1}}\right.\right.$, $\left.\left.a_{l_{1}}\right], \ldots,\left[a_{k_{n-1}}, a_{l_{n-1}}\right], \ldots,\left[a_{k_{m}}, a_{l_{m}}\right]\right\rangle$ for $k_{i}, l_{i} \in\{1,2, \ldots, n\}$. If G satisfies the following properties, then G has P.
(1) $\left[a_{k}, a_{l}\right] \neq 1$ for any $k \neq l$.
(2) For any distinct $l \neq m \in\{1, \ldots, n\}$ and for not all $0 \bmod$ p integers $i, j,\left[a_{k}, a_{l}\right]^{i} \neq\left[a_{k}, a_{m}\right]^{j}$.
(3) For $\left[a_{k_{1}}, a_{l_{1}}\right],\left[a_{k_{2}}, a_{l_{2}}\right], \ldots,\left[a_{k_{n-1}}, a_{l_{n-1}}\right]$, which satisfy $\left\{k_{1}, l_{1}, k_{2}, l_{2}, \ldots, k_{n-1}, l_{n-1}\right\}=\{1,2, \ldots, n\}$ and $k_{i+1} \in$ $\left\{k_{i}, l_{i}\right\}$ or $l_{i+1} \in\left\{k_{i}, l_{i}\right\}$, where $i=1,2, \ldots, n-2$.
(4) Any $\left[a_{k_{i}}, a_{l_{i}}\right]$ of $\left[a_{k_{m+1}}, a_{l_{m+1}}\right], \ldots,\left[a_{k_{n(n-1) / 2}}, a_{l_{n(n-1) / 2}}\right]$ can be expressed as $\left[a_{k_{i}}, a_{l_{i}}\right]=\left[a_{k_{n}}, a_{l_{n}}\right]^{t_{1 i}}\left[a_{k_{n+1}}\right.$,
$\left.a_{l_{n+1}}\right]^{t_{2 i}} \cdots\left[a_{k_{m}}, a_{l_{m}}\right]^{t_{(m-n+1) i}}$, where $t_{1 i}, t_{2 i}, \ldots, t_{(m-n+1) i}$ are integers.

Proof. For any $x, y \in G$, write $x=a_{1}^{i_{1}} a_{2}^{i_{2}} \cdots a_{n}^{i_{n}} c_{1}$ and $y=$ $a_{1}^{j_{1}} a_{2}^{j_{2}} \cdots a_{n}^{j_{n}} c_{2}$, where $c_{1}, c_{2} \in G^{\prime}$. Then

$$
\begin{align*}
{[x, y]=} & {\left[a_{1}^{i_{1}} a_{2}^{i_{2}} \cdots a_{n}^{i_{n}} c_{1}, a_{1}^{j_{1}} a_{2}^{j_{2}} \cdots a_{n}^{j_{n}} c_{2}\right] } \\
= & {\left[a_{k_{1}}, a_{l_{1}}\right]^{i_{k_{1}} j_{l_{1}}-i_{l_{1}} j_{k_{1}}}\left[a_{k_{2}}, a_{l_{2}}\right]^{i_{k_{2}} j_{2}-i_{l_{2}} j_{k_{2}}} \cdots\left[a_{k_{n-1}}, a_{l_{n-1}}\right]^{f_{1}} } \\
& \times\left[a_{k_{n}}, a_{l_{n}}\right]^{f_{2}} \cdots\left[a_{k_{m}}, a_{l_{m}}\right]^{f_{3}}, \tag{4}
\end{align*}
$$

where

$$
\begin{gather*}
f_{1}=i_{k_{n-1}} j_{l_{n-1}}-i_{l_{n-1}} j_{k_{n-1}}, \\
f_{2}=i_{k_{n}} j_{l_{n}}-i_{l_{n}} j_{k_{n}}+\sum_{s=m+1}^{n(n-1) / 2} t_{1 s}\left(i_{k_{s}} j_{l_{s}}-i_{l_{s}} j_{k_{s}}\right), \tag{5}\\
f_{3}=i_{k_{m}} j_{l_{m}}-i_{l_{m}} j_{k_{m}}+\sum_{s=m+1}^{n(n-1) / 2} t_{(n-m+1) s}\left(i_{k_{s}} j_{l_{s}}-i_{l_{s}} j_{k_{s}}\right) .
\end{gather*}
$$

Note that $\left[a_{k_{1}}, a_{l_{1}}\right],\left[a_{k_{2}}, a_{l_{2}}\right], \ldots,\left[a_{k_{n-1}}, a_{l_{n-1}}\right],\left[a_{k_{n}}, a_{l_{n}}\right], \ldots$, [$a_{k_{m}}, a_{l_{m}}$] are linearly independent.

Hence if $[x, y]=1$ then $i_{k_{r}} j_{l_{r}}-i_{l_{r}} j_{k_{r}}=i_{k_{r}} j_{l_{r}}-$ $i_{l_{r}} j_{k_{r}}+\sum_{s=m+1}^{n(n-1) / 2} t_{r s}\left(i_{k_{s}} j_{l_{s}}-i_{l_{s}} j_{k_{s}}\right)=0 \bmod p$, where $r=$ $1,2, \ldots, n, \ldots, m$. It follows that $i_{l} / j_{l}=i_{2} / j_{2} \cdots=i_{n} / j_{n}$ by (1) and (2). Supposing that $i_{l} / j_{l}=m$, then $x=y^{m} c$ and thus $\langle x Z(G)\rangle=\left\langle y^{m} Z(G)\right\rangle \leqslant\langle y Z(G)\rangle$. Hence $\mid\langle x$, $y, Z(G)\rangle / Z(G)|=|\langle y, Z(G)\rangle / Z(G)|=p$, following that G has P.

Corollary 14. Let G be a special p-group of exponent p and $d(G)=n(n \geq 4)$. If $\left|G^{\prime}\right|=p^{n-1}$ or p^{n}, then G does not satisfy the property P.

Proof. By Theorem 13 if $\left|G^{\prime}\right|=p^{n-1}$ or p^{n}, then G does not satisfy the conditions of Theorem 9. So G does not have P.

Acknowledgments

The authors thank Professor Mingyao Xu for his valuable suggestions. This work was supported by the Natural Science Foundation of Shanxi (Grant no. 10771132), the Natural Science Foundation of the Ministry of Education of China for the Returned Overseas Scholars (Grant no. 2008101), and the Natural Science Foundation of Shanxi for the Returned Overseas Scholars (Grant no. 201199).

References

[1] A. Mann, "Groups with small abelian subgroups," Archiv der Mathematik, vol. 50, no. 3, pp. 210-213, 1988.
[2] P. Hall, "The classification of prime-power groups," Journal für die Reine und Angewandte Mathematik, vol. 182, pp. 130-141, 1940.
[3] A. Mann, "The power structure of p-groups. I," Journal of Algebra, vol. 42, no. 1, pp. 121-135, 1976.
[4] L. Wilson, "On the power structure of powerful p-groups," Journal of Group Theory, vol. 5, no. 2, pp. 129-144, 2002.

Advances in Operations Research $-$

The Scientific World Journal

Advances in
Decision Sciences
= -

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Mathematical Problems in Engineering

Journal of Function Spaces
$\underline{=}$

International Journal of Differential Equations 5

