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We investigate a variant of the stochastic logistic model that allows individual variation and time-dependent infection and recovery
rates. The model is described as a heterogeneous density dependent Markov chain. We show that the process can be approximated
by a deterministic process defined by an integral equation as the population size grows.

1. Introduction

The stochastic logistic model, also called the endemic SIS
model in the epidemiological context, was first discussed by
Weiss and Dishon [1]. This model describes the evolution of
an infection in a fixed population of size 𝑛 by a continuous-
time Markov chain for the number of infected individuals
𝑌
𝑛. The state space is {0, 1, . . . , 𝑛}, and the transition rates are

given by

𝑌
𝑛

󳨀→ 𝑌
𝑛

+ 1 at rate 𝑛−1𝜆𝑌𝑛 (𝑛 − 𝑌𝑛) ,

𝑌
𝑛

󳨀→ 𝑌
𝑛

− 1 at rate 𝜇𝑌𝑛,
(1)

where 𝜆 and 𝜇 are the infection rate of susceptibles and the
recovery rate of infectives, respectively.This simplemodel has
found applications in a variety of fields, including population
biology, metapopulation ecology, chemistry, and physics.
Properties such asmean epidemic size [2, 3], mean extinction
time [1, 4, 5], and quasi-stationary distributions [6–8] have
been extensively studied under different initial conditions.

The stochastic logistic model has an interesting limit
property that it can be approximated by deterministic dif-
ferential equations. In particular, based on Theorem 3.1 of
[9], the rescaled process 𝑛−1𝑌𝑛 converges in probability
uniformly on finite time intervals to the solution of an
ordinary differential equation. The issue of differential equa-
tion approximations for stochastic processes traces back

to the pioneer work of Kurtz [9, 10], where deterministic
limit of pure jump density-dependent Markov processes
was add-ressed via Trotter type approximation theorems.
Recently, McVinish and Pollett [11] show that a deterministic
limit process can be established for a stochastic logistic
model with individual variation, where the coefficients of
the transition rates of the Markov chain can vary with the
nodes. We refer the interested reader to a comprehensive
survey [12] for numerous sufficient conditions for this type of
convergence.

In this paper, along the above line of study, we investigate
a variant of the stochastic logistic model where both indi-
vidual variation and time-dependent infection and recovery
rates are allowed. Specifically, we consider a continuous-time
Markov chain 𝑋𝑛 = (𝑋𝑛

1
, . . . , 𝑋

𝑛

𝑛
) on the state space {0, 1}𝑛

with transition rates given by

𝑋
𝑛

󳨀→ 𝑋
𝑛

+ 𝑒
𝑛

𝑖
at rate 𝜆

𝑖,𝑡
(1 − 𝑋

𝑛

𝑖
) 𝑓(𝑛

−1

𝑛

∑

𝑗=1

𝑔
𝑗
(𝑋
𝑛

𝑗
)) ,

𝑋
𝑛

󳨀→ 𝑋
𝑛

− 𝑒
𝑛

𝑖
at rate 𝜇

𝑖,𝑡
𝑋
𝑛

𝑖
,

(2)

where 𝑖 = 1, 2, . . . , 𝑛, 𝜆
𝑖,𝑡
, 𝜇
𝑖,𝑡
∈ R
+
, and 𝑒𝑛

𝑖
is the 𝑛-dimen-

sional vector whose 𝑖th entry is 1, and other entries are 0. Let
𝑋
𝑛

𝑖
= 0 represent that individual 𝑖 is susceptible and 𝑋𝑛

𝑖
= 1



2 Journal of Mathematics

represent that individual 𝑖 is infected. Then 𝑌𝑛 = ∑𝑛
𝑖=1
𝑋
𝑛

𝑖
is

equivalent to the stochastic logistic model by setting 𝜆
𝑖,𝑡
= 𝜆,

𝜇
𝑖,𝑡
= 𝜇, 𝑓(𝑥) = 𝑥, and 𝑔

𝑗
(𝑥) = 𝑥 for all 𝑖, 𝑗, and 𝑡.

The above model (2) can be viewed as a generalization of
that treated in [11] in twofolds. Firstly, the infection and recov-
ery rates are time varying, incorporating realistic scenarios
where the infection and recovery capacities may change over
time [13]. As such, the transition rates of theMarkov chain are
explicitly time dependent, making the previously obtained
sufficient conditions no longer applicable.

Secondly, the introduction of functions 𝑔
𝑗
(𝑥) accommo-

dates needed flexibility for some applications. Indeed, since
𝑋
𝑛

𝑗
∈ {0, 1}, the linear form 𝑔

𝑗
(𝑥) = 𝜅

𝑗
𝑥 used in [11] implies

that no contribution can be made by susceptible individuals.
This is only a rough approximation. For one thing, susceptible
individuals aware of a disease in their proximity can take
measures (such as wearing masks, avoiding public places,
and frequent hand washing) to reduce their susceptibility,
which in turn affect the epidemic dynamics dramatically [14,
15]. For another, the epidemic progression strongly depends
on the contact patterns between susceptible and infected
individuals, especially in the network context. Identifying
individual role is an interesting and demanding task [16].
In the present framework, each node 𝑗 applies individual
contribution 𝑔

𝑗
(0) (and 𝑔

𝑗
(1)), indicating the underlying

interaction structure/strength among individuals.
The rest of the paper is organized as follows. We state the

main result in Section 2 and provide the proof in Section 3.

2. The Result

In what follows, we assume naturally that 𝑔
𝑗
(1) ≥ 𝑔

𝑗
(0) ≥ 0

for all 𝑗. We will show that the stochastic logistic model (2)
converges weakly to the solution of an integral equation as
the population size 𝑛 → ∞.

Let (𝑆,B) be a measurable space with 𝑆 ⊆ R2
+
and

B the Borel 𝜎-algebra on 𝑆. Denote by 𝐶
𝑏
(𝑆) the set of

bounded, continuous functions on 𝑆. Let Ω be the set of 𝜎-
finite measures on 𝑆. For 𝑛 ∈ N and ℎ ∈ 𝐶

𝑏
(𝑆), we define the

measure-valued nonrandom process {𝜎𝑛
𝑡
, 𝑡 ∈ R

+
} and the

measure-valued Markov process {𝜌𝑛
𝑡
, 𝑡 ∈ R

+
} by

𝜎
𝑛

𝑡
(ℎ) := ∫

𝑆

ℎ (𝜇, 𝜆) 𝜎
𝑛

𝑡
(d𝜇, d𝜆) ,

= 𝑛
−1

𝑛

∑

𝑖=1

(𝑔
𝑖
(1) − 𝑔

𝑖
(0)) ℎ (𝜇

𝑖,𝑡
, 𝜆
𝑖,𝑡
) ,

𝜌
𝑛

𝑡
(ℎ) := ∫

𝑆

ℎ (𝜇, 𝜆) 𝜌
𝑛

𝑡
(d𝜇, d𝜆)

= 𝑛
−1

𝑛

∑

𝑖=1

(𝑔
𝑖
(1) − 𝑔

𝑖
(0))𝑋

𝑛

𝑖,𝑡
ℎ (𝜇
𝑖,𝑡
, 𝜆
𝑖,𝑡
) .

(3)

For some set 𝐴, let 𝐷(R
+
, 𝐴) be the set of right-continuous

functions with left-hand limits mapping R
+
to 𝐴. Thus,

for 𝑛 ∈ N, 𝜎𝑛 ∈ 𝐷(R
+
, Ω) and the sample paths of 𝜌𝑛

belong to 𝐷(R
+
, Ω), since the sample paths of 𝑋𝑛 belong

to 𝐷(R
+
, {0, 1}

𝑛

) (application of Theorem 16.16 in [17, page
316]).

We assume that the following assumptions hold.
(A1) 𝑛−1∑𝑛

𝑖=1
𝑔
𝑖
(0) → 𝑔 < ∞, and sup

𝑛
𝑔
1,𝑛
< ∞, where

𝑔
𝑎,𝑛
= 𝑛
−𝑎

∑
𝑛

𝑖=1
(𝑔
𝑖
(1) − 𝑔

𝑖
(0))
𝑎 for 𝑎 ∈ N.

(A2) 𝜎𝑛
𝑡

𝑑

󳨀→ 𝜎
𝑡
uniformly for 𝑡 ∈ R

+
, and 𝜌𝑛

0

𝑑

󳨀→ 𝜌
0
in

Ω as 𝑛 → ∞, where 𝜎
𝑡
and 𝜌

0
are nonrandom

measures, and 𝑑󳨀→ means weak convergence (i.e.,
lim
𝑛→∞

𝜎
𝑛

𝑡
(ℎ) = 𝜎

𝑡
(ℎ), and 𝜌𝑛

0
(ℎ) converges to 𝜌

0
(ℎ)

in distribution as 𝑛 → ∞ for all ℎ ∈ 𝐶
𝑏
(𝑆) [17, page

316]).
(A3) 𝑆 is bounded in R2

+
.

(A4) 𝑓 : R
+
→ R
+
is Lipschitz continuous.

(A5) 𝜆
𝑖,𝑡
and 𝜇
𝑖,𝑡
as functions of 𝑡 are piecewise constant for

𝑖 = 1, . . . , 𝑛.

Theorem 1. If assumptions (A1)–(A5) hold, then the measure-
valued Markov process 𝜌𝑛

𝑡
converges weakly to a measure-

valued nonrandom process 𝜌
𝑡
∈ 𝐷(R

+
, Ω), that is,

𝜌
𝑛
𝑑

󳨀󳨀󳨀→ 𝜌, (4)

as 𝑛 → ∞, where 𝜌 is the unique solution of

0 = 𝜌
𝑡
(ℎ) − 𝜌

0
(ℎ) − ∫

𝑡

0

𝐺𝜌
𝑠
(ℎ) d𝑠, (5)

with

𝜌
𝑡
(ℎ) = ∫

𝑆

ℎ (𝜇, 𝜆) 𝜌
𝑡
(d𝜇, d𝜆) ,

𝐺𝜌
𝑡
(ℎ) = ∫

𝑆

𝜆ℎ (𝜇, 𝜆) 𝑓 (∫

𝑆

𝜌
𝑡
(d𝜇󸀠, d𝜆󸀠) + 𝑔)𝜎

𝑡
(d𝜇, d𝜆)

− ∫

𝑆

𝜆ℎ (𝜇, 𝜆) 𝑓 (∫

𝑆

𝜌
𝑡
(d𝜇󸀠, d𝜆󸀠) + 𝑔) 𝜌

𝑡
(d𝜇, d𝜆)

− ∫

𝑆

𝜇ℎ (𝜇, 𝜆) 𝜌
𝑡
(d𝜇, d𝜆) .

(6)

Let 𝐿1(𝑆) be the space of 𝜎
𝑡
-integrable functions on 𝑆. We

have the following corollary.

Corollary 2. Suppose that 𝜌 is the unique solution to (5).Then
there exists a unique function

𝜑 : R
+
󳨀→ 𝐿
1

(𝑆)

𝑡 󳨃󳨀→ 𝜑
𝑡

(7)

with 0 ≤ 𝜑
𝑡
≤ 1 such that

𝜌
𝑡
(𝐴) = ∫

𝐴

𝜑
𝑡
(𝜇, 𝜆) 𝜎

𝑡
(d𝜇, d𝜆) (8)

for all Borel set 𝐴 ∈ 𝑆, and

𝜑
𝑡
= 𝜑
0
+ ∫

𝑡

0

(𝜆𝑓(∫

𝑆

𝜑
𝑠
(𝜇
󸀠

, 𝜆
󸀠

) 𝜎
𝑠
(d𝜇󸀠, d𝜆󸀠) + 𝑔)

× (1 − 𝜑
𝑠
) − 𝜇𝜑

𝑠
) d𝑠.

(9)
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3. Proofs

In this section, Theorem 1 will be proved through a series of
lemmas by tightness and uniqueness arguments [18].The idea
of proofs is similar to that in [11], andwe include the complete
proofs here, not only for the convenience of the reader but
also to convince the reader that the results do hold in our
setting.

Lemma 3. The sequence 𝜌𝑛 is tight in𝐷(R
+
, Ω).

Proof. Recall that [17, Theorem 16.27, page 324] 𝜌𝑛 is tight in
𝐷(R
+
, Ω) if and only if 𝜌𝑛

𝑡
(ℎ) is tight in 𝐷(R

+
,R) for every

ℎ ∈ 𝐶
𝑏
(𝑆). According to Aldous’s tightness criterion [18,

Theorem 16.10, page 178], the tightness of 𝜌𝑛
𝑡
(ℎ) holds, if the

following two conditions are satisfied.

(A) For each 𝜀 > 0, 𝜂 > 0, and 𝑟 ≥ 1, there exist a 𝛿
0
> 0

and an 𝑛
0
∈ N such that if 𝜏

𝑛
is a discreteF𝑛

𝑡
-stopping

time satisfying 𝜏
𝑛
≤ 𝑟, then

sup
𝑛≥𝑛0

sup
𝛿≤𝛿0

𝑃 (

󵄨
󵄨
󵄨
󵄨
󵄨
𝜌
𝑛

𝜏𝑛

(ℎ) − 𝜌
𝑛

𝜏𝑛+𝛿
(ℎ)

󵄨
󵄨
󵄨
󵄨
󵄨
≥ 𝜂) ≤ 𝜀. (10)

(B) For each 𝑟 > 0,

lim
𝑎→∞

lim sup
𝑛→∞

𝑃(sup
𝑡≤𝑟

𝜌
𝑛

𝑡
(ℎ) > 𝑎) = 0. (11)

To show (A), we express the generator of𝑋𝑛 by

𝐺
𝑛
𝑙 (𝑥) =

𝑛

∑

𝑖=1

(𝑙 (𝑥 + 𝑒
𝑛

𝑖
) − 𝑙 (𝑥)) 𝜆

𝑖,𝑡
(1 − 𝑥

𝑖
)

× 𝑓(𝑛
−1

𝑛

∑

𝑗=1

𝑔
𝑗
(𝑥
𝑗
))

+

𝑛

∑

𝑖=1

(𝑙 (𝑥 − 𝑒
𝑛

𝑖
) − 𝑙 (𝑥)) 𝜇

𝑖,𝑡
𝑥
𝑖
,

(12)

for all real-valued functions 𝑙(𝑥) with 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) ∈

{0, 1}
𝑛. Hence, using (3), we obtain

𝐺
𝑛
𝜌
𝑛

𝑡
(ℎ)

= ∫

𝑆

𝜆ℎ (𝜇, 𝜆) 𝑓(∫

𝑆

𝜌
𝑛

𝑡
(d𝜇󸀠, d𝜆󸀠)

+ 𝑛
−1

𝑛

∑

𝑗=1

𝑔
𝑗
(0))𝜎

𝑛

𝑡
(d𝜇, d𝜆)

− ∫

𝑆

𝜆ℎ (𝜇, 𝜆) 𝑓(∫

𝑆

𝜌
𝑛

𝑡
(d𝜇󸀠, d𝜆󸀠)

+ 𝑛
−1

𝑛

∑

𝑗=1

𝑔
𝑗
(0))𝜌

𝑛

𝑡
(d𝜇, d𝜆)

− ∫

𝑆

𝜇ℎ (𝜇, 𝜆) 𝜌
𝑛

𝑡
(d𝜇, d𝜆) .

(13)

Applying Dynkin’s formula to 𝜌𝑛
𝑡
(ℎ) (see, e.g., [19, Propo-

sition 1.7, page 162]), we have that

𝑀
𝑛

𝑡
(ℎ) = 𝜌

𝑛

𝑡
(ℎ) − 𝜌

𝑛

0
(ℎ) − ∫

𝑡

0

𝐺
𝑛
𝜌
𝑛

𝑠
(ℎ) d𝑠 (14)

is a martingale with respect to the filtrationF𝑛
𝑡
= 𝜎{𝑋

𝑛

𝑖,𝑠
, 0 ≤

𝑠 ≤ 𝑡}, and𝑀𝑛
0
(ℎ) = 0. Moreover,𝑀𝑛

𝑡
(ℎ) is square integrable.

The condition (A) holds if for each 𝜀 > 0, 𝜂 > 0, and 𝑟 ≥ 1,
there exist a 𝛿

0
> 0 and an 𝑛

0
∈ N such that for any discrete

F𝑛
𝑡
-stopping time satisfying 𝜏

𝑛
≤ 𝑟,

sup
𝑛≥𝑛0

sup
𝛿≤𝛿0

𝑃(

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝜏𝑛+𝛿

𝜏𝑛

𝐺
𝑛
𝜌
𝑛

𝑠
(ℎ) d𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜂) ≤ 𝜀, (15)

sup
𝑛≥𝑛0

sup
𝛿≤𝛿0

𝑃 (

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝑛

𝜏𝑛+𝛿
(ℎ) − 𝑀

𝑛

𝜏𝑛

(ℎ)

󵄨
󵄨
󵄨
󵄨
󵄨
≥ 𝜂) ≤ 𝜀. (16)

To see (15), we note that
󵄨
󵄨
󵄨
󵄨
𝐺
𝑛
𝜌
𝑛

𝑡
(ℎ)
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑆

𝜆ℎ (𝜇, 𝜆) 𝑓(∫

𝑆

𝜌
𝑛

𝑡
(d𝜇󸀠, d𝜆󸀠) + 𝑛−1

𝑛

∑

𝑗=1

𝑔
𝑗
(0))

× 𝜎
𝑛

𝑡
(d𝜇, d𝜆)

+ ∫

𝑆

𝜆ℎ (𝜇, 𝜆) 𝑓(∫

𝑆

𝜌
𝑛

𝑡
(d𝜇󸀠, d𝜆󸀠) + 𝑛−1

𝑛

∑

𝑗=1

𝑔
𝑗
(0))

× 𝜌
𝑛

𝑡
(d𝜇, d𝜆)

+ ∫

𝑆

𝜇ℎ (𝜇, 𝜆) 𝜌
𝑛

𝑡
(d𝜇, d𝜆)

≤ ∫

𝑆

ℎ (𝜇, 𝜆)(2𝜆𝑓(𝑔
1,𝑛
+ 𝑛
−1

𝑛

∑

𝑗=1

𝑔
𝑗
(0)) + 𝜇)

× 𝜎
𝑛

𝑡
(d𝜇, d𝜆)

≤ 𝑔
1,𝑛

× sup
(𝜇,𝜆)∈𝑆

{

{

{

ℎ (𝜇, 𝜆)(2𝜆𝑓(𝑔
1,𝑛
+𝑛
−1

𝑛

∑

𝑗=1

𝑔
𝑗
(0))+𝜇)

}

}

}

,

(17)

by using (3). It follows fromMarkov’s inequality and (17) that

𝑃(

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝜏𝑛+𝛿

𝜏𝑛

𝐺
𝑛
𝜌
𝑛

𝑠
(ℎ) d𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜂)

≤ 𝜂
−1

𝐸(∫

𝜏𝑛+𝛿

𝜏𝑛

󵄨
󵄨
󵄨
󵄨
𝐺
𝑛
𝜌
𝑛

𝑠
(ℎ)
󵄨
󵄨
󵄨
󵄨
d𝑠)

≤ 𝜂
−1

𝛿𝑔
1,𝑛

× sup
(𝜇,𝜆)∈𝑆

{

{

{

ℎ (𝜇, 𝜆)(2𝜆𝑓(𝑔
1,𝑛
+ 𝑛
−1

𝑛

∑

𝑗=1

𝑔
𝑗
(0)) + 𝜇)

}

}

}

.

(18)
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From assumptions (A1) and (A4), we obtain sup
𝑛
𝑓(𝑔
1,𝑛
+

𝑛
−1

∑
𝑛

𝑗=1
𝑔
𝑗
(0)) < ∞. Therefore, we can find 𝛿

0
and 𝑛

0
such

that (15) is satisfied by using the assumptions (A1), (A3), (A4),
and the fact that ℎ ∈ 𝐶

𝑏
(𝑆).

To prove (16), we need to introduce the quadratic vari-
ation process [𝑀𝑛(ℎ)] for 𝑀𝑛(ℎ). Since 𝑀𝑛

𝑡
(ℎ) is a square

integrable martingale, it follows from Proposition 6.1 in [19,
page 79] that (𝑀𝑛(ℎ))2−[𝑀𝑛(ℎ)] is also amartingale. By using
Markov’s inequality and martingale properties, we obtain

𝑃 (

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝑛

𝜏𝑛+𝛿
(ℎ) − 𝑀

𝑛

𝜏𝑛

(ℎ)

󵄨
󵄨
󵄨
󵄨
󵄨
≥ 𝜂)

≤ 𝜂
−2

𝐸((𝑀
𝑛

𝜏𝑛+𝛿
(ℎ) − 𝑀

𝑛

𝜏𝑛

(ℎ))

2

)

= 𝜂
−2

𝐸(𝐸 ((𝑀
𝑛

𝜏𝑛+𝛿
(ℎ) − 𝑀

𝑛

𝜏𝑛

(ℎ))

2

| F
𝑛

𝜏𝑛

))

= 𝜂
−2

(𝐸 ((𝑀
𝑛

𝜏𝑛+𝛿
(ℎ))

2

) + 𝐸 ((𝑀
𝑛

𝜏𝑛

(ℎ))

2

)

−2𝐸 (𝑀
𝑛

𝜏𝑛

(ℎ) 𝐸 (𝑀
𝑛

𝜏𝑛+𝛿
(ℎ) | F

𝑛

𝜏𝑛

)) )

= 𝜂
−2

(𝐸 ((𝑀
𝑛

𝜏𝑛+𝛿
(ℎ))

2

) − 𝐸 ((𝑀
𝑛

𝜏𝑛

(ℎ))

2

))

= 𝜂
−2

(𝐸 ((𝑀
𝑛

𝜏𝑛+𝛿
(ℎ))

2

− [𝑀
𝑛

(ℎ)]
𝜏𝑛+𝛿
)

+ 𝐸 ([𝑀
𝑛

(ℎ)]
𝜏𝑛+𝛿
)

−𝐸 ((𝑀
𝑛

𝜏𝑛

(ℎ))

2

− [𝑀
𝑛

(ℎ)]
𝜏𝑛

) − 𝐸 ([𝑀
𝑛

(ℎ)]
𝜏𝑛

))

= 𝜂
−2

(𝐸 ([𝑀
𝑛

(ℎ)]
𝜏𝑛+𝛿

− [𝑀
𝑛

(ℎ)]
𝜏𝑛

)) .

(19)

Applying Dynkin’s formula to (𝜌𝑛
𝑡
(ℎ))
2 similarly as in the

derivation of (14), we have that

𝑀̃
𝑛

𝑡
(ℎ) = (𝜌

𝑛

𝑡
(ℎ))
2

− (𝜌
𝑛

0
(ℎ))
2

− 2∫

𝑡

0

𝜌
𝑛

𝑠
(ℎ) 𝐺
𝑛
𝜌
𝑛

𝑠
(ℎ) d𝑠 − 𝑛−1 ∫

𝑡

0

𝐺
𝑛
𝜌
𝑛

𝑠
(ℎ) d𝑠

(20)

is a martingale, where

𝐺
𝑛
𝜌
𝑛

𝑡
(ℎ)

= ∫

𝑆

𝜆ℎ
2

(𝜇, 𝜆) 𝑓(∫

𝑆

𝜌
𝑛

𝑡
(d𝜇󸀠, d𝜆󸀠) + 𝑛−1

𝑛

∑

𝑗=1

𝑔
𝑗
(0))

× 𝜎̃
𝑛

𝑡
(d𝜇, d𝜆)

− ∫

𝑆

𝜆ℎ
2

(𝜇, 𝜆) 𝑓(∫

𝑆

𝜌
𝑛

𝑡
(d𝜇󸀠, d𝜆󸀠) + 𝑛−1

𝑛

∑

𝑗=1

𝑔
𝑗
(0))

× 𝜌
𝑛

𝑡
(d𝜇, d𝜆)

− ∫

𝑆

𝜇ℎ
2

(𝜇, 𝜆) 𝜌
𝑛

𝑡
(d𝜇, d𝜆) ,

(21)

with

∫

𝑆

ℎ (𝜇, 𝜆) 𝜎̃
𝑛

𝑡
(d𝜇, d𝜆)

= 𝑛
−1

𝑛

∑

𝑖=1

(𝑔
𝑖
(1) − 𝑔

𝑖
(0))
2

ℎ (𝜇
𝑖,𝑡
, 𝜆
𝑖,𝑡
) ,

∫

𝑆

ℎ (𝜇, 𝜆) 𝜌
𝑛

𝑡
(d𝜇, d𝜆)

= 𝑛
−1

𝑛

∑

𝑖=1

(𝑔
𝑖
(1) − 𝑔

𝑖
(0))
2

𝑋
𝑛

𝑖,𝑡
ℎ (𝜇
𝑖,𝑡
, 𝜆
𝑖,𝑡
) .

(22)

By using (14) and (20), we obtain for any 0 ≤ 𝑠 < 𝑡,

(𝜌
𝑛

𝑡
(ℎ) − 𝜌

𝑛

𝑠
(ℎ))
2

= (𝜌
𝑛

𝑡
(ℎ))
2

− (𝜌
𝑛

𝑠
(ℎ))
2

− 2𝜌
𝑛

𝑠
(ℎ) (𝜌

𝑛

𝑡
(ℎ) − 𝜌

𝑛

𝑠
(ℎ))

= 𝑀̃
𝑛

𝑡
(ℎ) − 𝑀̃

𝑛

𝑠
(ℎ) + 𝑛

−1

∫

𝑡

𝑠

𝐺
𝑛
𝜌
𝑛

𝑟
(ℎ) d𝑟

− 2𝜌
𝑛

𝑠
(ℎ) (𝑀

𝑛

𝑡
(ℎ) − 𝑀

𝑛

𝑠
(ℎ))

+ 2∫

𝑡

𝑠

𝜌
𝑛

𝑟
(ℎ) 𝐺
𝑛
𝜌
𝑛

𝑟
(ℎ) d𝑟

− 2𝜌
𝑛

𝑠
(ℎ) ∫

𝑡

𝑠

𝐺
𝑛
𝜌
𝑛

𝑟
(ℎ) d𝑟.

(23)

It follows from (3) and the assumption (A5) that 𝜌𝑛
𝑡
(ℎ) has

piecewise constant sample paths, and ∫𝑡
0

𝐺
𝑛
𝜌
𝑛

𝑠
(ℎ)d𝑠 is a con-

tinuous finite variation process. Therefore, (14), (23), and the
fact 𝑀̃𝑛

0
(ℎ) = 0 imply that

[𝑀
𝑛

(ℎ)]
𝑡
= [𝜌
𝑛

(ℎ)]
𝑡

= 𝑀̃
𝑛

𝑡
(ℎ) − 2∫

𝑡

0

𝜌
𝑛

𝑠
(ℎ) 𝑑𝑀

𝑛

𝑠
(ℎ)

+ 𝑛
−1

∫

𝑡

0

𝐺
𝑛
𝜌
𝑛

𝑠
(ℎ) d𝑠.

(24)

From (19), (24), and martingale properties, we obtain

𝑃 (

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝑛

𝜏𝑛+𝛿
(ℎ) − 𝑀

𝑛

𝜏𝑛

(ℎ)

󵄨
󵄨
󵄨
󵄨
󵄨
≥ 𝜂)

≤ 𝑛
−1

𝜂
−2

𝐸(∫

𝜏𝑛+𝛿

𝜏𝑛

𝐺
𝑛
𝜌
𝑛

𝑠
(ℎ) d𝑠)

≤ 𝑛
−1

𝜂
−2

× ∫

𝜏𝑛+𝛿

𝜏𝑛

∫

𝑆

ℎ
2

(𝜇, 𝜆)(2𝜆𝑓(𝑔
1,𝑛
+ 𝑛
−1

𝑛

∑

𝑗=1

𝑔
𝑗
(0)) + 𝜇)

× 𝜎̃
𝑛

𝑠
(d𝜇, d𝜆) d𝑠

≤ 𝑛
−1

𝜂
−2

𝛿𝑔
2,𝑛

× sup
(𝜇,𝜆)∈𝑆

{

{

{

ℎ
2

(𝜇, 𝜆)(2𝜆𝑓(𝑔
1,𝑛
+𝑛
−1

𝑛

∑

𝑗=1

𝑔
𝑗
(0))+𝜇)

}

}

}

.

(25)
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The assumption (A1) implies that lim sup
𝑖→∞

(𝑔
𝑖
(1)−𝑔

𝑖
(0)) <

∞, and hence sup
𝑛
𝑔
2,𝑛
< ∞.Therefore, as in the derivation of

(15), we can choose some 𝑛
0
and 𝛿
0
such that (16) is satisfied.

Now, the only thing remaining to verify is the condition
(B). Since ℎ ∈ 𝐶

𝑏
(𝑆) and the assumption (A3) holds, there

exists a constant 𝐶 > 0 such that

sup
𝑡≤𝑟

󵄨
󵄨
󵄨
󵄨
𝜌
𝑛

𝑡
(ℎ)
󵄨
󵄨
󵄨
󵄨
≤ 𝐶 𝑔

1,𝑛 (26)

for all 𝑛 ∈ N and 𝑟 > 0. FromMarkov’s inequality and the as-
sumption (A1), we have

lim sup
𝑛→∞

𝑃(sup
𝑡≤𝑟

𝜌
𝑛

𝑡
(ℎ) > 𝑎) ≤ lim sup

𝑛→∞

𝑎
−1

𝐸(sup
𝑡≤𝑟

󵄨
󵄨
󵄨
󵄨
𝜌
𝑛

𝑡
(ℎ)
󵄨
󵄨
󵄨
󵄨
)

≤ 𝑎
−1

𝐶 sup
𝑛

𝑔
1,𝑛
󳨀→ 0,

(27)

as 𝑎 → ∞. The proof of Lemma 3 is complete.

Lemma 4. For any ℎ ∈ 𝐶
𝑏
(𝑆), 𝑀𝑛(ℎ) 𝑑󳨀→ 0 in 𝐷(R

+
,R) as

𝑛 → ∞.

Proof. By the corollary in [18, page 28], it is sufficient to
show that 𝑑0

∞
(𝑀
𝑛

(ℎ), 0)

𝑝

󳨀→ 0 as 𝑛 → ∞, where
𝑝

󳨀→ means
convergence in probability. Here, by definition, the space
𝐷(R
+
,R) is the so-called Skorohod space 𝐷[0,∞), and 𝑑0

∞

is the metric on it, which defines the Skorohod topology (see,
e.g., [18, page 168]). Theorem 16.7 in [18, page 174] further
implies that it is sufficient to show that 𝑑0

𝑡
(𝑀
𝑛

(ℎ), 0)

𝑝

󳨀→ 0 for
each 𝑡 ≥ 0. Themetric 𝑑0

𝑡
generates the topology of Skorohod

space𝐷[0, 𝑡] (see [18, pages 166 and 125] for definitions).
Since 𝑑0

𝑡
(𝑀
𝑛

(ℎ), 0) ≤ sup
𝑠≤𝑡
|𝑀
𝑛

𝑠
(ℎ)|, by Doob’s martin-

gale inequality, we have for any 𝜀 > 0,

𝑃 (𝑑
0

𝑡
(𝑀
𝑛

(ℎ) , 0) ≥ 𝜀) ≤ 𝑃( sup
𝑠∈[0,𝑡]

󵄨
󵄨
󵄨
󵄨
𝑀
𝑛

𝑠
(ℎ)
󵄨
󵄨
󵄨
󵄨
≥ 𝜀)

≤ 𝜀
−2

𝐸 ((𝑀
𝑛

𝑡
(ℎ))
2

)

= 𝜀
−2

𝐸[𝑀
𝑛

(ℎ)]
𝑡

= 𝜀
−2

𝑛
−1

𝐸(∫

𝑡

0

𝐺
𝑛
𝜌
𝑛

𝑠
(ℎ) d𝑠) ,

(28)

where the first equality uses the fact that (𝑀𝑛
𝑡
(ℎ))
2

−[𝑀
𝑛

(ℎ)]
𝑡

is a martingale with expectation 0, and the second equality
follows from (24). It then follows from the derivation in (25)
that

lim
𝑛→∞

𝑃 (𝑑
0

𝑡
(𝑀
𝑛

(ℎ) , 0) ≥ 𝜀) = 0, (29)

which concludes the proof of Lemma 4.

From Lemma 3, the sequence 𝜌𝑛 is tight, and then, there
exists a weakly convergent subsequence 𝜌𝑛𝑘 in𝐷(R

+
, Ω). We

still denote it by 𝜌𝑛 in the next lemma for convenience.

Lemma 5. If 𝜌𝑛 𝑑󳨀→ 𝜌 as 𝑛 → ∞, then for any ℎ ∈ 𝐶
𝑏
(𝑆),

𝑀
𝑛

(ℎ)

𝑑

󳨀→ 𝑀(ℎ) in𝐷(R
+
,R) as 𝑛 → ∞, where

𝑀
𝑡
(ℎ) = 𝜌

𝑡
(ℎ) − 𝜌

0
(ℎ) − ∫

𝑡

0

𝐺𝜌
𝑠
(ℎ) d𝑠. (30)

Proof. For each 𝑛 ∈ N, define a random process𝑁𝑛(ℎ) by

𝑁
𝑛

𝑡
(ℎ) = 𝜌

𝑛

𝑡
(ℎ) − 𝜌

𝑛

0
(ℎ) − ∫

𝑡

0

𝐺𝜌
𝑛

𝑠
(ℎ) d𝑠. (31)

From Theorem 3.1 in [18, page 28] and the arguments in the
proof of Lemma 4, it is sufficient to show the following two
conditions:

(A) sup
𝑠≤𝑡
|𝑀
𝑛

𝑠
(ℎ)−𝑁

𝑛

𝑠
(ℎ)|

𝑝

󳨀→ 0 as 𝑛 → ∞, for each 𝑡 ≥ 0,

(B) 𝑁𝑛(ℎ) 𝑑󳨀→ 𝑀(ℎ) as 𝑛 → ∞.

To show (A), note that

sup
𝑠≤𝑡

󵄨
󵄨
󵄨
󵄨
𝑀
𝑛

𝑠
(ℎ) − 𝑁

𝑛

𝑠
(ℎ)
󵄨
󵄨
󵄨
󵄨

= ∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑆

𝜆ℎ (𝜇, 𝜆) 𝑓(∫

𝑆

𝜌
𝑛

𝑠
(d𝜇󸀠, d𝜆󸀠) + 𝑛−1

𝑛

∑

𝑗=1

𝑔
𝑗
(0))

× (𝜎
𝑛

𝑠
(d𝜇, d𝜆) − 𝜎

𝑠
(d𝜇, d𝜆))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

d𝑠.

(32)

From the argument following (17), there is some constant𝐶 >
0 satisfying

𝑓(∫

𝑆

𝜌
𝑛

𝑠
(d𝜇󸀠, d𝜆󸀠) + 𝑛−1

𝑛

∑

𝑗=1

𝑔
𝑗
(0)) ≤ 𝐶. (33)

Hence, by the dominated convergence theorem,

sup
𝑠≤𝑡

󵄨
󵄨
󵄨
󵄨
𝑀
𝑛

𝑠
(ℎ) − 𝑁

𝑛

𝑠
(ℎ)
󵄨
󵄨
󵄨
󵄨

≤ 𝐶∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑆

𝜆ℎ (𝜇, 𝜆) (𝜎
𝑛

𝑠
(d𝜇, d𝜆) − 𝜎

𝑠
(d𝜇, d𝜆))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

d𝑠
𝑝

󳨀󳨀󳨀→ 0,

(34)

as 𝑛 → ∞, since 𝜆ℎ ∈ 𝐶
𝑏
(𝑆) and the assumption (A2) holds.

To show (B), it is sufficient to show that [18, Theorem 2.1,
page 16]

𝐸 (𝑙 (𝑁
𝑛

(ℎ))) 󳨀→ 𝐸 (𝑙 (𝑀 (ℎ))) , (35)

as 𝑛 → ∞, for any bounded, uniformly continuous function
𝑙 : 𝐷(R

+
,R) → R. By the definition of 𝑁𝑛(ℎ) and the

assumption 𝜌𝑛 𝑑󳨀→ 𝜌, we only need to show that 𝑙(𝑁𝑛(ℎ))
is a continuous function of 𝜌𝑛 mapping 𝐷(R

+
, Ω) to R,

invoking the dominated convergence theorem. Furthermore,
it is sufficient to show that𝑁𝑛(ℎ) is a continuous function of
𝜌
𝑛 mapping𝐷(R

+
, Ω) to𝐷(R

+
,R). In the following, we take

one term in𝑁𝑛(ℎ) as an example to show the continuity with
respect to 𝜌𝑛. Other terms can be shownanalogously.



6 Journal of Mathematics

Define

𝑙
𝑛

𝑡
:= ∫

𝑆

𝜆ℎ (𝜇, 𝜆) 𝑓 (∫

𝑆

𝜌
𝑛

𝑡
(d𝜇󸀠, d𝜆󸀠) + 𝑔) 𝜌𝑛

𝑡
(d𝜇, d𝜆) ,

𝑙
𝑡
:= ∫

𝑆

𝜆ℎ (𝜇, 𝜆) 𝑓 (∫

𝑆

𝜌
𝑡
(d𝜇󸀠, d𝜆󸀠) + 𝑔) 𝜌

𝑡
(d𝜇, d𝜆) .

(36)

Suppose that 𝜌𝑛 → 𝜌 in 𝐷(R
+
, Ω) holds. We need to

show ∫𝑡
0

𝑙
𝑛

𝑠
d𝑠 → ∫

𝑡

0

𝑙
𝑠
d𝑠 in 𝐷(R

+
,R) as 𝑛 → ∞. Indeed,

since 𝜆ℎ ∈ 𝐶
𝑏
(𝑆) and ∫

𝑆

ℎ(𝜇, 𝜆)𝜌
𝑡
(d𝜇, d𝜆) : 𝐷(R

+
, Ω) →

𝐷(R
+
,R) is continuous for any ℎ ∈ 𝐶

𝑏
(𝑆), we have

∫
𝑆

𝜆ℎ(𝜇, 𝜆)𝜌
𝑛

𝑡
(d𝜇, d𝜆) → ∫

𝑆

𝜆ℎ(𝜇, 𝜆)𝜌
𝑡
(d𝜇, d𝜆) in 𝐷(R

+
,R)

and ∫
𝑆

𝜌
𝑛

𝑡
(d𝜇, d𝜆) → ∫

𝑆

𝜌
𝑡
(d𝜇, d𝜆) in 𝐷(R

+
,R), as 𝑛 →

∞. Hence, from the assumptions (A3) and (A4), we obtain
𝑙
𝑛

𝑡
→ 𝑙
𝑡
in 𝐷(R

+
,R). It follows from [18, Equation (12.14),

page 124] that 𝑙𝑛
𝑡

→ 𝑙
𝑡
for all but countably many 𝑡.

The dominated convergence theorem then yields ∫𝑡
0

𝑙
𝑛

𝑠
d𝑠 →

∫

𝑡

0

𝑙
𝑠
d𝑠 in supremum norm on finite time intervals and hence

in𝐷(R
+
,R).

Lemma 6. The solution to (5) is unique in𝐷(R
+
, Ω).

Proof. Suppose that 𝜌 and 𝜌 are two solutions to (5), and they
are the limits of two weakly convergent subsequences of 𝜌𝑛,
respectively. By the assumption (A2), 𝜌

0
= 𝜌
0
. We need to

show that 𝜌
𝑡
= 𝜌
𝑡
for all 𝑡 ∈ R

+
.

From (3), we have

∫

𝑆

ℎ (𝜇, 𝜆) 𝜌
𝑛

𝑡
(d𝜇, d𝜆) ≤ ∫

𝑆

ℎ (𝜇, 𝜆) 𝜎
𝑛

𝑡
(d𝜇, d𝜆) , (37)

for any ℎ ∈ 𝐶
𝑏
(𝑆). Therefore, by the assumption (A2),

∫

𝑆

ℎ (𝜇, 𝜆) 𝜌
𝑡
(d𝜇, d𝜆) ≤ ∫

𝑆

ℎ (𝜇, 𝜆) 𝜎
𝑡
(d𝜇, d𝜆) , (38)

∫

𝑆

ℎ (𝜇, 𝜆) 𝜌
𝑡
(d𝜇, d𝜆) ≤ ∫

𝑆

ℎ (𝜇, 𝜆) 𝜎
𝑡
(d𝜇, d𝜆) (39)

hold. Define 𝑑(𝜌
𝑡
, 𝜌
𝑡
) = sup

|ℎ|≤1,ℎ∈𝐶𝑏(𝑆)
|𝜌
𝑡
(ℎ) − 𝜌

𝑡
(ℎ)|. In view

of (5), we obtain

󵄨
󵄨
󵄨
󵄨
𝜌
𝑡
(ℎ) − 𝜌

𝑡
(ℎ)
󵄨
󵄨
󵄨
󵄨

= ∫

𝑡

0

𝐺𝜌
𝑠
(ℎ) − 𝐺𝜌

𝑠
(ℎ) d𝑠

≤ ∫

𝑡

0

∫

𝑆

𝜆ℎ (𝜇, 𝜆)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (∫

𝑆

𝜌
𝑠
(d𝜇󸀠, d𝜆󸀠) + 𝑔)

−𝑓(∫

𝑆

𝜌
𝑠
(d𝜇󸀠, d𝜆󸀠) + 𝑔)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

× 𝜎
𝑠
(d𝜇, d𝜆) d𝑠

+ ∫

𝑡

0

∫

𝑆

𝜆ℎ (𝜇, 𝜆)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (∫

𝑆

𝜌
𝑠
(d𝜇󸀠, d𝜆󸀠) + 𝑔)

−𝑓(∫

𝑆

𝜌
𝑠
(d𝜇󸀠, d𝜆󸀠) + 𝑔)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

× 𝜌
𝑠
(d𝜇, d𝜆) d𝑠

+ ∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑆

𝜆ℎ (𝜇, 𝜆) 𝜌
𝑠
(d𝜇, d𝜆) − ∫

𝑆

𝜆ℎ (𝜇, 𝜆) 𝜌
𝑠
(d𝜇, d𝜆)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

× 𝑓 (∫

𝑆

𝜌
𝑠
(d𝜇󸀠, d𝜆󸀠) + 𝑔) d𝑠

+ ∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑆

𝜇ℎ (𝜇, 𝜆) 𝜌
𝑠
(d𝜇, d𝜆)

−∫

𝑆

𝜇ℎ (𝜇, 𝜆) 𝜌
𝑠
(d𝜇, d𝜆)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

d𝑠.

(40)

The assumption (A4) indicates that
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (∫

𝑆

𝜌
𝑠
(d𝜇󸀠, d𝜆󸀠) + 𝑔) − 𝑓(∫

𝑆

𝜌
𝑠
(d𝜇󸀠, d𝜆󸀠) + 𝑔)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶
𝑓

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑆

𝜌
𝑠
(d𝜇󸀠, d𝜆󸀠) − ∫

𝑆

𝜌
𝑠
(d𝜇󸀠, d𝜆󸀠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶
𝑓
𝑑 (𝜌
𝑠
, 𝜌
𝑠
) ,

(41)

for some constant𝐶
𝑓
> 0.Therefore, using (38) we can derive

󵄨
󵄨
󵄨
󵄨
𝜌
𝑡
(ℎ) − 𝜌

𝑡
(ℎ)
󵄨
󵄨
󵄨
󵄨

≤ 2𝐶
𝑓
∫

𝑡

0

(∫

𝑆

𝜆ℎ (𝜇, 𝜆) 𝜎
𝑠
(d𝜇, d𝜆)) 𝑑 (𝜌

𝑠
, 𝜌
𝑠
) d𝑠

+ 𝐶( sup
(𝜇,𝜆)∈𝑆

𝜆)∫

𝑡

0

𝑑 (𝜌
𝑠
, 𝜌
𝑠
) d𝑠

+ ( sup
(𝜇,𝜆)∈𝑆

𝜇)∫

𝑡

0

𝑑 (𝜌
𝑠
, 𝜌
𝑠
) d𝑠,

(42)

where 𝐶 > 0 is some constant. To see this, note that by the
assumptions (A1), (A2), and (38), we have

∫

𝑆

𝜌
𝑠
(d𝜇󸀠, d𝜆󸀠) + 𝑔 ≤ ∫

𝑆

𝜎
𝑠
(d𝜇󸀠, d𝜆󸀠) + 𝑔 < ∞, (43)

for any 0 ≤ 𝑠 ≤ 𝑡. The assumption (A4) then implies

sup
𝑠≤𝑡

𝑓(∫

𝑆

𝜌
𝑠
(d𝜇󸀠, d𝜆󸀠) + 𝑔) ≤ 𝐶 < ∞. (44)

Again employing the assumption (A2), we have ∫
𝑆

𝜆ℎ(𝜇,

𝜆)𝜎
𝑠
(d𝜇, d𝜆) < ∞ for all 0 ≤ 𝑠 ≤ 𝑡. Hence, by using the

assumption (A3), the inequality (42) becomes

𝑑 (𝜌
𝑠
, 𝜌
𝑠
) ≤ 𝐶
󸀠

∫

𝑡

0

𝑑 (𝜌
𝑠
, 𝜌
𝑠
) d𝑠 (45)

for some constant 𝐶󸀠 > 0. A simple application of Gronwall’s
lemma yields 𝑑(𝜌

𝑡
, 𝜌
𝑡
) = 0 for all 𝑡 ∈ R

+
, which concludes the

proof.

Proof of Theorem 1. By Lemma 4 and Lemma 5, the limit of
any weakly convergent subsequence of 𝜌𝑛 must satisfy (5). By
Lemma 6, we find that the sequence 𝜌𝑛 must itself converge
weakly to that unique solution (see the corollary in [18, page
59]). The proof of Theorem 1 is thus completed.
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Proof of Corollary 2. For any open set 𝐹 ⊆ 𝑆, we obtain from
(38) that

∫

𝑆

𝑓
𝑛

(𝜇, 𝜆) 𝜌
𝑡
(d𝜇, d𝜆) ≤ ∫

𝑆

𝑓
𝑛

(𝜇, 𝜆) 𝜎
𝑡
(d𝜇, d𝜆) , (46)

where𝑓𝑛 is taken as a continuous function upwardly converg-
ing to the indicator function of 𝐹. By using the dominated
convergence theorem, we know that 𝜌

𝑡
(𝐹) ≤ 𝜎

𝑡
(𝐹). A reg-

ularity property (see, e.g., [17, page 18, Lemma 1.34]) implies
that 𝜌

𝑡
(𝐴) ≤ 𝜎

𝑡
(𝐴) for all 𝐴 ∈ 𝑆. This means that 𝜌

𝑡
is

absolutely continuous with respect to 𝜎
𝑡
for any 𝑡 ≥ 0. An

application of the Radon-Nykodym theorem yields the exis-
tence of 𝜑

𝑡
such that (8) holds with 0 ≤ 𝜑

𝑡
≤ 1. Now the result

follows straightforwardly fromTheorem 1.
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