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Recently, Denniston, Melton, and Rodabaugh presented a new categorical outlook on a certain lattice-valued extension of Formal
Concept Analysis (FCA) of Ganter and Wille; their outlook was based on the notion of lattice-valued interchange system and
a category of Galois connections. This paper extends the approach of Denniston et al. clarifying the relationships between Chu
spaces of Pratt, many-valued formal contexts of FCA, lattice-valued interchange systems, and Galois connections.

1. Introduction

This paper considers a particular application of the theory
of variety-based topological systems, introduced in [1] as a
generalization of topological systems of Vickers [2], which
in turn provide a common framework for both topologi-
cal spaces and their underlying algebraic structures frames
(also called locales), thereby allowing researchers to switch
freely between the spatial and localic viewpoints. Vickers’
concept, whichwasmotivated by the theory of crisp topology,
has recently drawn the attention of fuzzy topologists, who
have incorporated the notion in their topic of study. The
first attempt in this respect was done by Denniston and
Rodabaugh [3], who considered various functorial relation-
ships between topological systems of Vickers and lattice-
valued topological spaces of Rodabaugh [4]. Soon afterwards,
the study of Guido [5, 6] followed; he used topological
systems in order to construct a functor from the category
of 𝐿-topological spaces to the category of crisp topological
spaces, thereby providing a common framework for various
approaches to the hypergraph functor of the fuzzy commu-
nity (see, e.g., [7]).

It soon appeared though that the translation of the
most important tools of the theory of topological systems
(e.g., system spatialization and localification procedures) into
the language of lattice-valued topology required a suitable

fuzzification of the former concept, which was accomplished
successfully by Denniston et al. in [8]. The authors brought
their theory into maturity in [9], where they considered its
applications to both lattice-valued variable-basis topology of
Rodabaugh [4] and (𝐿,𝑀)-fuzzy topology of Kubiak and
Šostak [10]. Later on, they introduced a particular instance
of their concept called interchange system [11], which was
motivated by certain aspects of program semantics (the so-
called predicate transformers) initiated by Dijkstra [12]. It
should be noted, however, that an interchange system is a
particular instance of the well-known concept of Chu space
in the sense of Pratt [13] (the original notion goes back to Barr
[14]).Moreover, the interchange systemmorphisms of [11] are
precisely the Chu space morphisms (called Chu transforms)
of [13]. (In [15], Denniston et al. use the terms transformer
system and transformer morphism.) The underlying moti-
vations of interchange systems and Chu spaces are quite
different, which is reflected well enough in both their names
and their respective theories.

Parallel to the previously mentioned developments, we
introduced the concept of variety-based topological system
[1], which not only extended the setting of Denniston et al.,
but also included the case of state property systems of Aerts
[16–18] (introduced as the basic mathematical structure in
the Geneva-Brussels approach to foundations of physics),
considered in [19] in full detail, and we brought the functor of
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Guido to a new level [20] (e.g., made it variable-basis in the
sense of Rodabaugh [4], as well as extended the machinery of
Höhle [7], to construct its right adjoint functor). Moreover,
in [21], we provided a thorough categorical extension of the
system spatialization procedure to the variety-based setting,
the respective localification procedure being elaborated in
[22]. Additionally, certain aspects of the new theory bearing
links to bitopological spaces of Kelly [23] as well as to
noncommutative topology of Mulvey and Pelletier [24, 25]
were treated extensively in [26, 27], respectively.

Seeing the fruitfulness of their newly introduced notions,
both Denniston et al. and the author of this paper indepen-
dently turned their attention to possible applications of the
arising system framework to the areas beyond topology. In
particular, in [28], we started the theory of lattice-valued
soft universal algebra, whereas Denniston et al. presented
in [29, 30] a challenging categorical outlook on a certain
lattice-valued extension of Formal Concept Analysis (FCA)
of Ganter and Wille [31]. Similar to the case of lattice-valued
topological systems, their research motivated us to take a
deeper look into the proposed topic of lattice-valued FCA,
thereby streamlining the motivating approach of Denniston
et al. and also extending some of their results.

Modifying slightly the definition of the category of Galois
connections of McDill et al. [32], Denniston et al. [29]
consider its relationships to the already mentioned category
of interchange systems, the objects of both categories being
essentially formal contexts of FCA. The main result is a
categorical embedding of each category into its counterpart,
the ultimate conclusion though amounting to the categories
in question being rather different; that is, the two viewpoints
on FCA are not categorically isomorphic. The rest of the
paper provides a lattice-valued, fixed-basis extension of the
crisp achievements, based on the lattice-valued FCA of
Bêlohlávek [33]. Moreover, towards the end of the paper,
with the help of the constructed embeddings, the authors
compare the categories of (lattice-valued) formal contexts
and (lattice-valued) topological systems inside the category
of (lattice-valued) interchange systems, making a significant
(and rather striking) metamathematical conclusion on their
being disjoint.

The just mentioned approach of Denniston et al. can
be extended, taking into consideration the following facts.
Firstly, it never gives much attention to the links between
interchange systems and Chu spaces, thereby making no
use of the well-developed machinery of the latter. Secondly,
while pursuing their approach to many-valued FCA, the
authors never mention the already existing many-valued
formal contexts of Ganter and Wille [31], which (being
similar to Chu spaces) essentially extend their own. Thirdly,
being categorically oriented, the paper introduces two types
of formal context morphisms, in terms of Chu transforms
and Galois connections, respectively, but misses the well-
established context morphisms of FCA, which are different
from those of the paper. Lastly (andmost important), turning
to fuzzification of their notions, the authors concentrate
on the fixed-basis lattice-valued approach, notwithstanding
that the more promising variable-basis setting (initiated by
one of them) has already gained its popularity in the fuzzy

community, currently being a kind of de facto standard for
fuzzy structures.

The main purposes of this paper are to extend the results
of Denniston et al. and to clarify the relationships between
Chu spaces, many-valued formal contexts of FCA, lattice-
valued interchange systems, and Galois connections. In
particular, we introduce three categories (each of themhaving
a twofold modification, arising from its respective variable-
basis), whose objects are lattice-valued versions of formal
contexts of FCA, but whose morphisms are quite different,
each instance reflecting the approach of Pratt, Ganter and
Wille, andDenniston et al., respectively. Following the results
of [29], we embed (nonfully) each of the categories into its
two counterparts, showing, however, that the constructed
embeddings fail to provide a categorical isomorphism (even
an adjoint situation) between any two of the presented
three approaches. As a consequence, we obtain three dif-
ferent categorical outlooks on FCA, which are done in the
variable-basis lattice-valued framework of [4]. Moreover,
the respective underlying lattices of the fuzzified formal
contexts are quantales [34, 35] instead of complete residuated
lattices of Denniston et al.; that is, the heavy assumption on
commutativity of the quantale multiplication is dropped. In
particular, we show lattice-valued generalizations of formal
concept, preconcept, and protoconcept of [36], which are
based on an arbitrary (namely, non-commutative) quantale
(actually, an algebra, having a quantale as its reduct).

Similar to Denniston et al., we develop the required
machinery of quantale-valued Galois connections, which
extends that of Erné et al. [37] and which is motivated
by the commutative approach of fuzzy Galois connections
of Bêlohlávek [38]. For example, we provide yet another
generalization to the quantale setting of the well-known
fact that every order-reversing Galois connection between
powersets arises as a pair of Birkhoff operators with respect
to a binary relation [39]. The generalization though appears
to be somewhat truncated, in the sense that while lattice-
valued binary relations still give rise to order-reversingGalois
connections, the converseway is not always available ([38, 40]
do restore the full result even in the lattice-valued case, but
rely on the more demanding notion of fuzzy Galois con-
nection). Moreover, we define a category of order-preserving
Galois connections as a certain subcategory of the category
of Chu spaces, in which (unlike McDill et al. and Denniston
et al.) Galois connections play the role of morphisms rather
than objects, thereby providing particular instances of Chu
transforms. We fail to provide a similar machinery for the
order-reversing case.

At the end of the paper, we will notice that the approach
to FCA through order-reversing Galois connections taken
up by Denniston et al. does not suit exactly the underlying
ideas of FCA of Ganter and Wille, which are formulated
in terms of the incidence relations of formal contexts. The
main sticking point here is the previously mentioned fact
that the important crisp case one-to-one correspondence
between order-reversing Galois connections on powersets
and pairs of Birkhoff operators breaks down in the lattice-
valued case (quantales). As a consequence, the incidence
relation viewpoint provides one with a Galois connection,
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whereas the latter alone lacks the strength of bringing a
respective incidence relation in play (cf. Problems 1 and 2).

The paper is based on both category theory and universal
algebra, relyingmore on the former.Thenecessary categorical
background can be found in [41–43]. For algebraic notions,
the reader is referred to [34, 35, 44, 45]. Although we tried
to make the paper as much self-contained as possible, it
is expected from the reader to be acquainted with basic
concepts of category theory, that is, those of category and
functor.

2. Algebraic Preliminaries

For convenience of the reader, we begin with those algebraic
preliminaries, which are crucial for the understanding of the
results of the paper. Experienced researchers may skip this
section, consulting it for the notations of the author only.

2.1. Varieties of Algebras. An important foundational aspect
of the paper is the abstract algebraic structure (called algebra,
for short) which is a set, equippedwith a family of operations,
satisfying certain identities. The theory of universal algebra
calls a class of finitary algebras (induced by a set of finitary
operations), which is closed under the formation of homo-
morphic images, subalgebras, and direct products, a variety.
In this paper, we extend the notion of varieties to include
infinitary algebraic theories. Our motivation includes ideas
of [45–47].

Definition 1. LetΩ = (𝑛𝜆)𝜆∈Λ be a (possibly, proper or empty)
class of cardinal numbers. AnΩ-algebra is a pair (𝐴, (𝜔𝐴

𝜆
)𝜆∈Λ),

which comprises a set 𝐴 and a family of maps 𝐴𝑛𝜆
𝜔
𝐴

𝜆

󳨀󳨀→

𝐴 (𝑛𝜆-ary primitive operations on 𝐴). An Ω-homomorphism
(𝐴1, (𝜔

𝐴1

𝜆
)𝜆∈Λ)

𝜑

󳨀→ (𝐴2, (𝜔
𝐴2

𝜆
)𝜆∈Λ) is a map 𝐴1

𝜑

󳨀→ 𝐴2 such
that the diagram

𝐴1 𝐴2

𝐴
𝑛𝜆
1 𝐴

𝑛𝜆
2

𝜔
𝐴1
𝜆

𝜔
𝐴2
𝜆

𝜑

𝜑

𝑛𝜆

(1)

commutes for every 𝜆 ∈ Λ. Alg(Ω) is the construct of Ω-
algebras andΩ-homomorphisms.

Every concrete category of this paper has an underlying
functor | − | to the respective ground category (e.g., the
category Set of sets andmaps), the latter mentioned explicitly
in each case.

Definition 2. Let M (resp., E) be the class of Ω-
homomorphisms with injective (resp., surjective) underlying
maps. A variety of Ω-algebras are a full subcategory of
Alg(Ω), closed under the formation of products, M-
subobjects (subalgebras), and E-quotients (homomorphic
images). The objects (resp., morphisms) of a variety are
called algebras (resp., homomorphisms).

Definition 3. Given a varietyA, a reduct ofA is a pair (‖−‖,B),
where B is a variety such that ΩB ⊆ ΩA, and A

‖−‖

󳨀󳨀→ B is a
concrete functor.The pair (A, ‖−‖) is called then an extension
of B.

The following definitions recall several well-known vari-
eties [34, 35, 48, 49], thereby providing the background for
the subsequent developments of this paper.

Definition 4. CSLat (Ξ) is the variety of Ξ-semilattices, that
is, partially ordered sets (posets), which have arbitrary Ξ ∈

{⋀,⋁} (meets and joins, resp.).

Given aΞ-semilattice𝐴, we have both⋀ and⋁ (however,
only one of them is respected by Ξ-semilattice homomor-
phisms) and denote its largest (resp., smallest) element
⊤𝐴 (resp., ⊥𝐴). Given a ⋁-semilattice 𝐴, we denote ≀𝐴≀

its respective ⋀-semilattice and vice versa. The standard
result of [50, Sections 0–3] says that every ⋁-semilattice
homomorphism 𝐴1

𝜑

󳨀→ 𝐴2 has the upper adjoint map

|𝐴2|
𝜑
⊢

󳨀󳨀→ |𝐴1|, which is characterized uniquely by the
condition 𝜑(𝑎1) ⩽ 𝑎2 iff 𝑎1 ⩽ 𝜑

⊢
(𝑎2) for every 𝑎1 ∈

𝐴1 and every 𝑎2 ∈ 𝐴2, which, for order-preserving maps
only, is equivalent to the properties 𝜑 ∘ 𝜑

⊢
⩽ 1𝐴2

and
1𝐴1

⩽ 𝜑
⊢
∘ 𝜑 (given an algebra 𝐴, 1𝐴 denotes the identity

map on 𝐴). The explicit formula for the map is given by
𝜑
⊢
(𝑎2) = ⋁{𝑎1 ∈ 𝐴1 | 𝜑(𝑎1) ⩽ 𝑎2}, whereas the map

itself is easily shown to be ⋀-preserving. The dual descrip-
tion of the lower adjoint map (based on a ⋀-semilattice

homomorphism 𝐴1

𝜑

󳨀→ 𝐴2 and denoted by |𝐴2|
𝜑
⊣

󳨀󳨀→

|𝐴1|) is left to the reader (see also Section 2.3 on Galois
connections).

Definition 5. Quant is the variety of quantales, that is, triples
(𝑄,⋁, ⊗) where

(1) (𝑄,⋁) is a⋁-semilattice;
(2) (𝑄, ⊗) is a semigroup; that is, 𝑞1 ⊗ (𝑞2 ⊗ 𝑞3) = (𝑞1 ⊗

𝑞2) ⊗ 𝑞3 for every 𝑞1, 𝑞2, 𝑞3 ∈ 𝑄;
(3) ⊗ distributes across ⋁ from both sides; that is, 𝑞 ⊗

(⋁ 𝑆) = ⋁
𝑠∈𝑆
(𝑞 ⊗ 𝑠) and (⋁ 𝑆) ⊗ 𝑞 = ⋁

𝑠∈𝑆
(𝑠 ⊗ 𝑞) for

every 𝑞 ∈ 𝑄 and every 𝑆 ⊆ 𝑄.

Every quantale𝑄 has two residuations, which are induced
by its binary operation ⊗ (called multiplication) and which
are defined by 𝑞1→ 𝑙 𝑞2 = ⋁{𝑞 ∈ 𝑄 | 𝑞 ⊗ 𝑞1 ⩽ 𝑞2} and
𝑞1→ 𝑟 𝑞2 = ⋁{𝑞 ∈ 𝑄 | 𝑞1 ⊗𝑞 ⩽ 𝑞2} (notice that “𝑙” (resp., “𝑟”)
stands for “multiply on the left” (resp., “right”)), respectively,
providing a single residuation ⋅ → ⋅ in case of a commutative
multiplication (resulting in complete residuated lattices of
Denniston et al. [29]). These operations have the standard
properties of poset adjunctions [50, Sections 0–3] or (order-
preserving) Galois connections [37] (see Section 2.3 of this
paper), for example, 𝑞1 ⩽ 𝑞2→ 𝑙 𝑞3 iff 𝑞1 ⊗ 𝑞2 ⩽ 𝑞3 iff
𝑞2 ⩽ 𝑞1→ 𝑟 𝑞3. For convenience of the reader, the following
theorem recalls some of their other features, which will be
heavily used throughout the paper.
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Theorem 6. The residuations ⋅→ 𝑙⋅ and ⋅→ 𝑟⋅ of a quantale 𝑄
have the following properties.

(1) 𝑞→ 𝑙 (⋀𝑆) = ⋀
𝑠∈𝑆

(𝑞→ 𝑙 𝑠) and 𝑞→ 𝑟 (⋀𝑆) =

⋀
𝑠∈𝑆
(𝑞→ 𝑟 𝑠) for every 𝑞 ∈ 𝑄 and every 𝑆 ⊆ 𝑄. In

particular, 𝑞→ 𝑙 ⊤𝑄 = ⊤𝑄 and 𝑞→ 𝑟 ⊤𝑄 = ⊤𝑄 for
every 𝑞 ∈ 𝑄.

(2) (⋁𝑆)→ 𝑙 𝑞 = ⋀
𝑠∈𝑆

(𝑠→ 𝑙 𝑞) and (⋁𝑆)→ 𝑟 𝑞 =

⋀
𝑠∈𝑆

(𝑠→ 𝑟 𝑞) for every 𝑞 ∈ 𝑄 and every 𝑆 ⊆ 𝑄. In
particular, ⊥𝑄→ 𝑙 𝑞 = ⊤𝑄 and ⊥𝑄→ 𝑟 𝑞 = ⊤𝑄 for
every 𝑞 ∈ 𝑄.

(3) 𝑞1 ⩽ (𝑞1→ 𝑙 𝑞2)→ 𝑟 𝑞2 and 𝑞1 ⩽ (𝑞1→ 𝑟 𝑞2)→ 𝑙 𝑞2

for every 𝑞1, 𝑞2 ∈ 𝑄.
(4) (𝑞1 ⊗ 𝑞2)→ 𝑙 𝑞3 = 𝑞1→ 𝑙 (𝑞2→ 𝑙 𝑞3) and (𝑞1 ⊗

𝑞2)→ 𝑟 𝑞3 = 𝑞2→ 𝑟 (𝑞1→ 𝑟 𝑞3) for every 𝑞1, 𝑞2, 𝑞3 ∈
𝑄.

Proof. To give the flavor of the employedmachinery, we show
the proofs of some of the claims of the items.

Ad (3). 𝑞1→ 𝑙 𝑞2 ⩽ 𝑞1→ 𝑙 𝑞2 implies (𝑞1→ 𝑙 𝑞2) ⊗

𝑞1 ⩽ 𝑞2 implies 𝑞1 ⩽ (𝑞1→ 𝑙 𝑞2)→ 𝑟 𝑞2.
Ad (4). Given 𝑞 ∈ 𝑄, 𝑞 ⩽ (𝑞1 ⊗ 𝑞2)→ 𝑙 𝑞3 iff
𝑞 ⊗ (𝑞1 ⊗ 𝑞2) ⩽ 𝑞3 iff 𝑞 ⊗ 𝑞1 ⩽ 𝑞2→ 𝑙 𝑞3 iff 𝑞 ⩽

𝑞1→ 𝑙 (𝑞2→ 𝑙 𝑞3).
Moreover, 𝑞 ⩽ (𝑞1 ⊗ 𝑞2)→ 𝑟 𝑞3 iff (𝑞1 ⊗ 𝑞2) ⊗ 𝑞 ⩽ 𝑞3 iff

𝑞2 ⊗ 𝑞 ⩽ 𝑞1→ 𝑟 𝑞3 iff 𝑞 ⩽ 𝑞2→ 𝑟 (𝑞1→ 𝑟 𝑞3).

In the subsequent developments, we will consider some
special types of quantales mentioned in the following.

Definition 7. CQuant is the variety of commutative quantales,
which are quantales𝑄 with commutative multiplication; that
is, 𝑞1 ⊗ 𝑞2 = 𝑞2 ⊗ 𝑞1 for every 𝑞1, 𝑞2 ∈ 𝑄.

Definition 8. UQuant is the variety of unital quantales, which
are quantales 𝑄 having an element 1𝑄 such that the triple
(𝑄, ⊗, 1𝑄) is a monoid; that is, 𝑞 ⊗ 1𝑄 = 𝑞 = 1𝑄 ⊗ 𝑞 for every
𝑞 ∈ 𝑄.

Definition 9. SRSQuant (resp., SLSQuant) is the variety
of strictly right-sided (resp., left-sided) quantales, which are
quantales𝑄 such that 𝑞⊗⊤𝑄 = 𝑞 (resp.,⊤𝑄⊗𝑞 = 𝑞) for every
𝑞 ∈ 𝑄. STSQuant is the variety of strictly two-sided quantales,
that is, unital quantales whose unit is the top element.

Definition 10. Frm is the variety of frames, that is, strictly
two-sided quantales, in which multiplication is the meet
operation.

Definition 11. CBAlg is the variety of complete Boolean
algebras, that is, frames 𝐴, in which ⋀ are considered as
primitive operations (cf. Definition 1) and which additionally
are equipped with the complement operation (−)󸀠, assigning
to every 𝑎 ∈ 𝐴 an element 𝑎󸀠 ∈ 𝐴 such that 𝑎 ∧ 𝑎󸀠 = ⊥𝐴 and
𝑎 ∨ 𝑎

󸀠
= ⊤𝐴.

The varieties CBAlg, Frm, STSQuant, UQuant, and
CSLat(⋁) provide a sequence of variety reducts in the sense
of Definition 3. Additionally, Frm is an extension of CQuant.

The notations related to varieties in this paper follow
the category-theoretic pattern (which is different from the
respective one of the fuzzy community). From now on,
varieties are denoted by A or B, whereas those which extend
the variety CSLat(Ξ) of Ξ-semilattices with Ξ ∈ {⋁,⋀}

will be distinguished with the notation L. S will stand
for either subcategories of varieties or the subcategories of
their dual categories. The categorical dual of a variety A is
denoted by A𝑜𝑝. However, the dual of Frm uses the already
accepted notation Loc [48]. Given a homomorphism 𝜑, the
corresponding morphism of the dual category is denoted by
𝜑
𝑜𝑝 and vice versa. Every algebra𝐴 of a varietyA gives rise to

the subcategory S𝐴 of eitherA or A𝑜𝑝, whose only morphism
is the identity map 𝐴

1𝐴
󳨀󳨀→ 𝐴.

2.2. Powerset Operators. One of the main tools in the subse-
quent developments of the paper will be generalized versions
of the so-called forward and backward powerset operators.

More precisely, given a map 𝑋1

𝑓

󳨀→ 𝑋2, there exists the

forward (resp., backward) powerset operator P(𝑋1)
𝑓
→

󳨀󳨀󳨀→

P(𝑋2) (resp., P(𝑋2)
𝑓
←

󳨀󳨀→ P(𝑋1)) defined by 𝑓
→
(𝑆) =

{𝑓(𝑠) | 𝑠 ∈ 𝑆} (resp., 𝑓←(𝑇) = {𝑥 ∈ 𝑋1 | 𝑓(𝑥) ∈ 𝑇}). The two
operators admit functorial extensions to varieties of algebras.
(For a thorough treatment of the powerset operator theory,
the reader is referred to the articles of Rodabaugh [49, 51–53],
dealing with the lattice-valued case, or to the papers of the
author himself [21, 54], dealing with a more general variety-
based approach.)

To begin with, notice that given an algebra 𝐴 of a variety
A and a set 𝑋, there exists the 𝐴-powerset of 𝑋, namely, the
set 𝐴𝑋 of all maps 𝑋 𝛼

󳨀→ 𝐴. Equipped with the pointwise
algebraic structure involving that of 𝐴, 𝐴𝑋 provides an
algebra of A. In the paper, we will often use specific elements
of this powerset algebra.More precisely, every 𝑎 ∈ 𝐴 gives rise
to the constant map 𝑋

𝑎

󳨀→ 𝐴 with the value 𝑎. Moreover, if A
extends the variety CSLat(⋁) of ⋁-semilattices, then every

𝑆 ⊆ 𝑋 and every 𝑎 ∈ 𝐴 give rise to the map 𝑋
𝜒
𝑎

𝑆

󳨀󳨀→ 𝐴 (𝑎-
characteristic map of 𝑆), which is defined by

𝜒
𝑎

𝑆
(𝑥) = {

𝑎, 𝑥 ∈ 𝑆

⊥𝐴, otherwise.
(2)

Of particular importance will be the characteristic maps
of singletons, that is, 𝜒⊤𝐴

{𝑥}
or 𝜒1𝐴

{𝑥}
, the latter case assuming

additionally that A extends the variety UQuant of unital
quantales.

Coming back to powerset operators, the following exten-
sion of the forward one has already appeared in a more
general way in [28], being different from the respective
lattice-valued approaches of Rodabaugh.
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Theorem 12. Given a variety L, which extends CSLat(⋁),
every subcategory S of L provides the functor Set ×

S
(−)
→

󳨀󳨀󳨀󳨀→ CSLat(⋁), which is defined by ((𝑋1, 𝐿1)
(𝑓,𝜑)

󳨀󳨀󳨀→

(𝑋2, 𝐿2))
→
= ‖𝐿

𝑋1

1
‖

(𝑓,𝜑)
→

󳨀󳨀󳨀󳨀󳨀→ ‖𝐿
𝑋2

2
‖, where ((𝑓, 𝜑)→ (𝛼))(𝑥2) =

𝜑(⋁
𝑓(𝑥1)=𝑥2

𝛼(𝑥1)).

Proof. To show that ‖𝐿
𝑋1

1
‖

(𝑓,𝜑)
→

󳨀󳨀󳨀󳨀󳨀→ ‖𝐿
𝑋2

2
‖ is ⋁-

preserving, notice that given 𝑆 ⊆ 𝐿
𝑋1

1
, for every

𝑥2 ∈ 𝑋2, ((𝑓, 𝜑)
→
(⋁ 𝑆))(𝑥2) = 𝜑(⋁

𝑓(𝑥1)=𝑥2
(⋁ 𝑆)(𝑥1)) =

𝜑(⋁
𝑓(𝑥1)=𝑥2

⋁
𝑠∈𝑆
𝑠(𝑥1)) = 𝜑(⋁

𝑠∈𝑆
⋁
𝑓(𝑥1)=𝑥2

𝑠(𝑥1)) =

⋁
𝑠∈𝑆
𝜑(⋁

𝑓(𝑥1)=𝑥2
𝑠(𝑥1)) = ⋁

𝑠∈𝑆
((𝑓, 𝜑)

→
(𝑠))(𝑥2) =

(⋁
𝑠∈𝑆
(𝑓, 𝜑)

→
(𝑠))(𝑥2).

To show that the functor preserves composition,

notice that given Set × S-morphisms (𝑋1, 𝐿1)
(𝑓,𝜑)

󳨀󳨀󳨀→

(𝑋2, 𝐿2) and (𝑋2, 𝐿2)
(𝑓
󸀠
,𝜑
󸀠
)

󳨀󳨀󳨀󳨀󳨀→ (𝑋3, 𝐿3), for every
𝛼 ∈ 𝐿

𝑋1

1
and every 𝑥3 ∈ 𝑋3, ((𝑓

󸀠
, 𝜑

󸀠
)
→

∘

(𝑓, 𝜑)
→
(𝛼))(𝑥3) = 𝜑

󸀠
(⋁

𝑓󸀠(𝑥2)=𝑥3
((𝑓, 𝜑)

→
(𝛼))(𝑥2)) =

𝜑
󸀠
(⋁

𝑓󸀠(𝑥2)=𝑥3
𝜑(⋁

𝑓(𝑥1)=𝑥2
𝛼(𝑥1))) = 𝜑

󸀠
∘ 𝜑(⋁

𝑓󸀠∘𝑓(𝑥1)=𝑥3
𝛼(𝑥1)) =

((𝑓
󸀠
∘𝑓, 𝜑

󸀠
∘ 𝜑)

→
(𝛼))(𝑥3) = (((𝑓

󸀠
, 𝜑

󸀠
) ∘ (𝑓, 𝜑))

→
(𝛼))(𝑥3).

The case S = S𝐿 is denoted by (−)
→

𝐿
and is called a

(variety-based) fixed-basis approach, whereas all other cases
are subsumed under (variety-based) variable-basis approach.
Similar notations and naming conventions are applicable
to all other variety-based extensions of powerset operators
introduced in this subsection and, for the sake of brevity, will
not be mentioned explicitly.

There is another extension of the forward powerset
operator, which uses the idea of Rodabaugh [52] (the reader
is advised to recall the notation for lower and upper adjoint
maps from the previous subsection). Before the actual result,
however, some words are due to our employed powerset
operator notations. In all cases, which are direct analogues of
the classical powerset operators of the fuzzy community (e.g.,
those of Rodabaugh [51] and his followers), we use the solid
arrow notation, that is, “(−)←” (resp., “(−)→ ”) for backward
(resp., forward) powerset operator. In the cases, which are not
well known to the researchers, we use dashed arrow notation,
that is, “(−)\” (resp., “(−)[”) for backward (resp., forward)
powerset operator, possibly, adding some new symbols (e.g.,
“⊣” or “⊢”) to underline the involvement of upper or lower
adjoint maps in the definition of the operator in question
(e.g., (−)⊣[ or (−)⊢[) as in the following theorem.

Theorem 13.

(1) Given a variety L, which extendsCSLat(⋀), every sub-

category S of L𝑜𝑝 gives rise to the functor Set×S
(−)
⊣[

󳨀󳨀󳨀󳨀→

CSLat(⋁) defined by ((𝑋1, 𝐿1)
(𝑓,𝜑)

󳨀󳨀󳨀→ (𝑋2, 𝐿2))
⊣[

=

≀𝐿
𝑋1

1
≀

(𝑓,𝜑)
⊣[

󳨀󳨀󳨀󳨀󳨀→ ≀𝐿
𝑋2

2
≀, where ((𝑓, 𝜑)

⊣[
(𝛼))(𝑥2) =

𝜑
𝑜𝑝⊣
(⋁

𝑓(𝑥1)=𝑥2
𝛼(𝑥1)).

(2) Let L be a variety, which extends CSLat(⋁), and
let S be a subcategory of L𝑜𝑝 such that for every

S-morphism 𝐿1

𝜑

󳨀→ 𝐿2, the map |𝐿1|
𝜑
𝑜𝑝⊢

󳨀󳨀󳨀→ |𝐿2| is ⋁-

preserving. Then there exists the functor Set × S
(−)
⊢[

󳨀󳨀󳨀󳨀→

CSLat(⋁) defined by ((𝑋1, 𝐿1)
(𝑓,𝜑)

󳨀󳨀󳨀→ (𝑋2, 𝐿2))
⊢[

=

‖𝐿
𝑋1

1
‖

(𝑓,𝜑)
⊢[

󳨀󳨀󳨀󳨀󳨀→ ‖𝐿
𝑋2

2
‖, where ((𝑓, 𝜑)

⊢[
(𝛼))(𝑥2) =

𝜑
𝑜𝑝⊢
(⋁

𝑓(𝑥1)=𝑥2
𝛼(𝑥1)).

Proof. We rely on the fact that every⋀- (resp.,⋁-) semilattice
is actually a complete lattice and, therefore, is a ⋁- (resp.,
⋀-) semilattice. The proof then follows the steps of those of
Theorem 12, employing the fact that given CSLat(⋀)- (resp.,

CSLat(⋁)-) homomorphisms 𝐿1
𝜑

󳨀→ 𝐿2 and 𝐿2

𝜑
󸀠

󳨀→ 𝐿3, it
follows that (𝜑󸀠 ∘𝜑)⊣ = 𝜑⊣ ∘𝜑󸀠

⊣

(resp., (𝜑󸀠 ∘𝜑)⊢ = 𝜑⊢ ∘𝜑󸀠
⊢

).

The respective generalization of the backward powerset
operator is even stronger (see, e.g., [21]), in the sense that the
employed varieties do not need to be related to any kind of
lattice-theoretic structure.

Theorem 14. Given a variety A, every subcategory S of A𝑜𝑝

induces the functor Set × S
(−)
←

󳨀󳨀󳨀→ A𝑜𝑝, which is defined by

((𝑋1, 𝐴1)
(𝑓,𝜑)

󳨀󳨀󳨀→ (𝑋2, 𝐴2))
←

= 𝐴
𝑋1

1

((𝑓,𝜑)
←
)
𝑜𝑝

󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 𝐴
𝑋2

2
, where

(𝑓, 𝜑)
←
(𝛼) = 𝜑

𝑜𝑝
∘ 𝛼 ∘ 𝑓.

Proof. To show that𝐴𝑋2

2

(𝑓,𝜑)
←

󳨀󳨀󳨀󳨀󳨀→ 𝐴
𝑋1

1
is anA-homomorphism,

notice that given 𝜆 ∈ ΛA and ⟨𝛼𝑖⟩𝑛𝜆
∈ (𝐴

𝑋2

2
)
𝑛𝜆 , for every

𝑥1 ∈ 𝑋1, it follows that

((𝑓, 𝜑)
←
(𝜔

𝐴
𝑋2

2

𝜆
(⟨𝛼𝑖⟩𝑛𝜆

))) (𝑥1)

= 𝜑
𝑜𝑝
∘ (𝜔

𝐴
𝑋2

2

𝜆
(⟨𝛼𝑖⟩𝑛𝜆

)) ∘ 𝑓 (𝑥1)

= 𝜑
𝑜𝑝
∘ (𝜔

𝐴2

𝜆
(⟨𝛼𝑖 ∘ 𝑓 (𝑥1)⟩𝑛𝜆

))

= 𝜔
𝐴1

𝜆
(⟨𝜑

𝑜𝑝
∘ 𝛼𝑖 ∘ 𝑓 (𝑥1)⟩𝑛𝜆

)

= 𝜔
𝐴1

𝜆
(⟨((𝑓, 𝜑)

←
(𝛼𝑖)) (𝑥1)⟩𝑛𝜆

)

= (𝜔
𝐴
𝑋1

1

𝜆
(⟨(𝑓, 𝜑)

←
(𝛼𝑖)⟩𝑛𝜆

)) (𝑥1) .

(3)

To show that the functor preserves composition, notice

that given Set × S-morphisms (𝑋1, 𝐴1)
(𝑓,𝜑)

󳨀󳨀󳨀→ (𝑋2, 𝐴2) and

(𝑋2, 𝐴2)
(𝑓
󸀠
,𝜑
󸀠
)

󳨀󳨀󳨀󳨀󳨀→ (𝑋3, 𝐴3), for every 𝛼 ∈ 𝐴
𝑋3

3
, (𝑓, 𝜑)← ∘

(𝑓
󸀠
, 𝜑

󸀠
)
←
(𝛼) = (𝑓, 𝜑)

←
(𝜑

󸀠𝑜𝑝
∘ 𝛼 ∘𝑓

󸀠
) = 𝜑

𝑜𝑝
∘ 𝜑

󸀠𝑜𝑝
∘ 𝛼 ∘𝑓

󸀠
∘ 𝑓 =

(𝜑
󸀠
∘ 𝜑)

𝑜𝑝
∘ 𝛼 ∘ 𝑓

󸀠
∘ 𝑓 = (𝑓

󸀠
∘ 𝑓, 𝜑

󸀠
∘ 𝜑)

←
(𝛼) = ((𝑓

󸀠
, 𝜑

󸀠
) ∘

(𝑓, 𝜑))
←
(𝛼).

Similar to the case of variety-based forward powerset
operators, we have the following modifications of the functor
introduced inTheorem 14.

Theorem 15. Suppose that either (Ξ1, Ξ2, †) = (⋁,⋀, ⊢) or
(Ξ1, Ξ2, †) = (⋀,⋁, ⊣). Given a variety L, which extends
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CSLat(Ξ1), every subcategory S of L provides the functor Set×

S
(−)
†\

󳨀󳨀󳨀󳨀→ (CSLat(Ξ2))
𝑜𝑝, which is defined by ((𝑋1, 𝐿1)

(𝑓,𝜑)

󳨀󳨀󳨀→

(𝑋2, 𝐿2))
†\

= ≀𝐿
𝑋1

1
≀

((𝑓,𝜑)
†\
)
𝑜𝑝

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ ≀𝐿
𝑋2

2
≀, where (𝑓, 𝜑)†\(𝛼) =

𝜑
†
∘ 𝛼 ∘ 𝑓.

Proof. The proof is a straightforward modification of that of
Theorem 14.

In the paper, we will use the following dualized versions
of the functors of Theorems 12 and 13.

Theorem 16.

(1) Given a variety L, which extends CSLat(⋁), every
subcategory S of L𝑜𝑝 gives rise to the functor Set𝑜𝑝 ×

S
(−)
→𝑜

󳨀󳨀󳨀󳨀→ (CSLat(⋁))𝑜𝑝 defined by ((𝑋1, 𝐿1)
(𝑓,𝜑)

󳨀󳨀󳨀→

(𝑋2, 𝐿2))
→𝑜

= ‖𝐿
𝑋1

1
‖

((𝑓,𝜑)
→𝑜

)
𝑜𝑝

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ ‖𝐿
𝑋2

2
‖, where

((𝑓, 𝜑)
→𝑜

(𝛼))(𝑥1) = 𝜑
𝑜𝑝
(⋁

𝑓𝑜𝑝(𝑥2)=𝑥1
𝛼(𝑥2)).

(2) Given a variety L, which extends CSLat(⋀), every
subcategory S of L gives rise to the functor Set𝑜𝑝 ×

S
(−)
⊣[𝑜

󳨀󳨀󳨀󳨀󳨀→ (CSLat(⋁))𝑜𝑝 defined by ((𝑋1, 𝐿1)
(𝑓,𝜑)

󳨀󳨀󳨀→

(𝑋2, L2))
⊣[𝑜

= ≀𝐿
𝑋1

1
≀

((𝑓,𝜑)
⊣[𝑜

)
𝑜𝑝

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ ≀𝐿
𝑋2

2
≀, where

((𝑓, 𝜑)
⊣[𝑜

(𝛼))(𝑥1) = 𝜑
⊣
(⋁

𝑓𝑜𝑝(𝑥2)=𝑥1
𝛼(𝑥2)).

(3) Let L be a variety, which extends CSLat(⋁), and
let S be a subcategory of L such that for every S-

morphism 𝐿1

𝜑

󳨀→ 𝐿2, the map |𝐿2|
𝜑
⊢

󳨀󳨀→ |𝐿1| is
⋁-preserving. Then there exists the functor Set𝑜𝑝 ×

S
(−)
⊢[𝑜

󳨀󳨀󳨀󳨀󳨀→ (CSLat(⋁))𝑜𝑝 defined by ((𝑋1, 𝐿1)
(𝑓,𝜑)

󳨀󳨀󳨀→

(𝑋2, 𝐿2))
⊢[𝑜

= ‖𝐿
𝑋1

1
‖

((𝑓,𝜑)
⊢[𝑜

)
𝑜𝑝

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ ‖𝐿
𝑋2

2
‖, where

((𝑓, 𝜑)
⊢[𝑜

(𝛼))(𝑥1) = 𝜑
⊢
(⋁

𝑓𝑜𝑝(𝑥2)=𝑥1
𝛼(𝑥2)).

Additionally, the functors of Theorems 14 and 15 can be
dualized as follows.

Theorem 17.

(1) Given a variety A, every subcategory S of A induces

the functor Set𝑜𝑝 × S
(−)
←𝑜

󳨀󳨀󳨀󳨀→ A, which is defined by

((𝑋1, 𝐴1)
(𝑓,𝜑)

󳨀󳨀󳨀→ (𝑋2, 𝐴2))
←𝑜

= 𝐴
𝑋1

1

(𝑓,𝜑)
←𝑜

󳨀󳨀󳨀󳨀󳨀→ 𝐴
𝑋2

2
,

where (𝑓, 𝜑)←𝑜
(𝛼) = 𝜑 ∘ 𝛼 ∘ 𝑓

𝑜𝑝.
(2) Suppose that either (Ξ1, Ξ2, †) = (⋁,⋀, ⊢) or

(Ξ1, Ξ2, †) = (⋀,⋁, ⊣). Given a variety L, which
extends CSLat(Ξ1), every subcategory S of L𝑜𝑝 pro-

vides the functor Set𝑜𝑝 × S
(−)
†\𝑜

󳨀󳨀󳨀󳨀󳨀→ CSLat(Ξ2),

which is defined by ((𝑋1, 𝐿1)
(𝑓,𝜑)

󳨀󳨀󳨀→ (𝑋2, 𝐿2))
†\𝑜

=

≀𝐿
𝑋1

1
≀

(𝑓,𝜑)
†\𝑜

󳨀󳨀󳨀󳨀󳨀󳨀→ ≀𝐿
𝑋2

2
≀, where (𝑓, 𝜑)†\𝑜

(𝛼) = 𝜑
𝑜𝑝†

∘ 𝛼 ∘

𝑓
𝑜𝑝.

The reader should notice that the functors of Theorem 17
are not standard in the fuzzy community.

2.3. Galois Connections. Thepaper relies heavily on the well-
developedmachinery ofGalois connections. For convenience
of the reader, we recall from [32, 37, 50] their basic definitions.

Definition 18. An order-preserving (resp., -reversing) Galois
connection is a tuple ((𝑋1, ⩽), 𝑓, 𝑔, (𝑋2, ⩽)), where (𝑋1, ⩽),

(𝑋2, ⩽) are posets and𝑋1

𝑓

󴀘󴀯
𝑔
𝑋2 are maps such that for every

𝑥1 ∈ 𝑋1 and every 𝑥2 ∈ 𝑋2, 𝑥1 ⩽ 𝑔(𝑥2) iff 𝑓(𝑥1) ⩽ 𝑥2 (resp.,
𝑥1 ⩽ 𝑔(𝑥2) iff 𝑥2 ⩽ 𝑓(𝑥1)).

As a consequence, one easily gets the following well-
known features of Galois connections.

Theorem 19. Every order-preserving (resp., order-reversing)
Galois connection ((𝑋1, ⩽), 𝑓, 𝑔, (𝑋2, ⩽)) has the following
properties.

(1) 1𝑋1 ⩽ 𝑔 ∘ 𝑓 and 𝑓 ∘ 𝑔 ⩽ 1𝑋2
(resp., 1𝑋1 ⩽ 𝑔 ∘ 𝑓 and

1𝑋2
⩽ 𝑓 ∘ 𝑔).

(2) Both 𝑓 and 𝑔 are order-preserving (resp., order-
reversing).

(3) 𝑓(⋁𝑆) = ⋁
𝑠∈𝑆
𝑓(𝑠) and 𝑔(⋀𝑇) = ⋀

𝑡∈𝑇
𝑔(𝑡) (resp.,

𝑓(⋁𝑆) = ⋀
𝑠∈𝑆
𝑓(𝑠) and 𝑔(⋁𝑇) = ⋀

𝑡∈𝑇
𝑔(𝑡)) provided

that the joins and meets in question exist in the
domains.

(4) 𝑔 ∘ 𝑓 ∘ 𝑔 = 𝑔 and 𝑓 ∘ 𝑔 ∘ 𝑓 = 𝑓.

Notice that the second item of Theorem 19 is responsible
for the term “order-preserving” (resp., “order-reversing”) in
Definition 18. Moreover, in view of the results ofTheorem 19,
there exists the following equivalent definition of Galois
connections.

Definition 20. An order-preserving (resp., order-
reversing) Galois connection is provided by a tuple
((𝑋1, ⩽), 𝑓, 𝑔, (𝑋2, ⩽)), where (𝑋1, ⩽), (𝑋2, ⩽) are posets

and (𝑋1, ⩽)

𝑓

󴀘󴀯
𝑔

(𝑋2, ⩽) are order-preserving (resp., order-
reversing) maps such that 1𝑋1 ⩽ 𝑔 ∘ 𝑓 and 𝑓 ∘ 𝑔 ⩽ 1𝑋2 (resp.,
1𝑋1

⩽ 𝑔 ∘ 𝑓 and 1𝑋2 ⩽ 𝑓 ∘ 𝑔).

To give the flavor of these notions, we show some
examples of order-preserving Galois connections already
encountered in the paper. An important example of order-
reversing Galois connections will be encountered later on in
the paper.

Example 21.

(1) Every ⋁-semilattice (resp., ⋀-semilattice) homo-
morphism 𝐴1

𝜑

󳨀→ 𝐴2 provides the order-preserving
Galois connection (𝐴1, 𝜑, 𝜑

⊢
, 𝐴2) (resp., (𝐴2, 𝜑

⊢
,

𝜑, 𝐴1)).

(2) Every element 𝑞 of a quantale 𝑄 provides the order-
preservingGalois connections (𝑄, ⋅⊗𝑞, 𝑞→ 𝑙⋅, 𝑄) and
(𝑄, 𝑞 ⊗ ⋅, 𝑞→ 𝑟 ⋅, 𝑄).
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(3) Every map 𝑋1

𝑓

󳨀→ 𝑋2 provides the order-preserving
Galois connection (P(𝑋1), 𝑓

→
, 𝑓

←
,P(𝑋2)).

(4) Given a variety L extending CSLat(⋁), every

Set × L-morphism (𝑋1, 𝐿1)
(𝑓,𝜑)

󳨀󳨀󳨀→ (𝑋2, 𝐿2)

provides the order-preserving Galois connection
(𝐿

𝑋1

1
, (𝑓, 𝜑)

→
, (𝑓, 𝜑)

⊢\
, 𝐿

𝑋2

2
).

To conclude, we would like to notice that this paper
studies the properties of the classical Galois connections
on lattice-valued powersets. In contrast [38, 40], employ
the notion of fuzzy Galois connection, which is particularly
designed to fit the lattice-valued powerset framework. Such
a modification is needed to preserve the main results valid
on crisp powersets. The preservation in question comes,
however, at the expense of a more complicated definition of
fuzzy Galois connections themselves, which will be off our
topic of study.

3. Variety-Based Topological Systems and
Their Modifications

In [1], we introduced the concept of variety-based topological
systems as a generalization of Vickers’ topological systems
[2] mentioned in the Introduction section. Moreover, in
[22], we presented a modified category of variety-based
topological systems, to accommodate Vickers’ system local-
ification procedure. For convenience of the reader, we recall
both definitions, restating them, however, in a slightly more
general way, to suit the framework of the current paper.

Definition 22. Given a variety A, a subcategory S of A𝑜𝑝, and
a reduct B of A, SB-TopSys is the category, concrete over
the product category Set × B𝑜𝑝

× S, which comprises the
following data.

Objects. Tuples 𝐷 = (pt𝐷,Ω𝐷, Σ𝐷, ⊨) (SB-topological sys-
tems or SB-systems), where (pt𝐷,Ω𝐷, Σ𝐷) is a Set ×B𝑜𝑝

× S-
object, whereas pt𝐷 × Ω𝐷

⊨

󳨀→ Σ𝐷 is a map (Σ𝐷-satisfaction
relation on (pt𝐷,Ω𝐷)) such that Ω𝐷

⊨(𝑥,−)

󳨀󳨀󳨀󳨀→ ‖Σ𝐷‖ is a B-
homomorphism for every 𝑥 ∈ pt𝐷.

Morphisms. 𝐷1

𝑓=(pt𝑓,Ω𝑓,Σ𝑓)
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 𝐷2 are all those Set × B𝑜𝑝

× S-

morphisms (pt𝐷1, Ω𝐷1, Σ𝐷1)
𝑓

󳨀→ (pt𝐷2, Ω𝐷2, Σ𝐷2), which
satisfy the property ⊨1(𝑥, (Ω𝑓)

𝑜𝑝
(𝑏)) = (Σ𝑓)

𝑜𝑝
∘⊨2(pt𝑓(𝑥), 𝑏)

for every 𝑥 ∈ pt𝐷1 and every 𝑏 ∈ Ω𝐷2 (SB-continuity).
The following notational remark applies to all the cate-

gories of systems introduced in this paper.

Remark 23. The case S = S𝐴 is called (variety-based) fixed-
basis approach, whereas all other cases are subsumed under
(variety-based) variable-basis approach. Moreover, if A =

B, then the notation SB-TopSys is truncated to S-TopSys,
whereas if S = S𝐴, then the notation is shortened to
𝐴B-TopSys. In the latter case, the objects (resp., morphisms)
are truncated to𝐷 = (pt𝐷,Ω𝐷, ⊨) (resp., 𝑓 = (pt𝑓,Ω𝑓)).

The next example gives the reader the intuition for the
new category, showing that the latter incorporates many of
the already existing concepts in the literature.

Example 24.

(1) If A = CBAlg, then the category 2Frm-TopSys, where
2 = {⊥, Τ} is the two-element complete Boolean
algebra, is isomorphic to the category TopSys of
topological systems of Vickers [2].

(2) If A = B = Frm, then the category Loc-TopSys
is the category of lattice-valued topological systems of
Denniston et al. [8, 9].

(3) If A = CQuant, then the category 𝐴Set-TopSys is
the category 𝐴-IntSys of lattice-valued interchange
systems of Denniston et al. [11, 29, 30], which is also
the category𝐴-TransSys of lattice-valued transformer
systems of Denniston et al. [15] (notice that both
categories are fixed-basis).

(4) If A = B = Set, then the category 𝐴-TopSys
is the category Chu𝐴 of Chu spaces over the set 𝐴
of Pratt [13]. In particular, the objects of Chu2 are
called formal contexts in Formal Concept Analysis
of Ganter and Wille [31], whereas the objects of the
category Chu𝐴 itself are called many-valued formal
contexts [31, Section 1.3]. Additionally, the respective
contextmorphisms proposed byGanter andWille [31,
Chapter 7] are different from the morphisms of Chu
spaces, which will be dealt with in the subsequent
sections of the paper.

Moreover, the following definition (extended and adapted
for the current setting from [15]) illustrates the concept of a
topological system morphism.

Definition 25. Letting A = CBAlg, GalCon (notice that
“GalCon” stands for “Galois connections”) is the full subcat-
egory of the category 2Set-TopSys, whose objects are those
2Set-topological systems 𝐷, which satisfy the following two
conditions:

(1) pt𝐷 = Ω𝐷 = 𝑋;
(2) ⊨ is a partial order on𝑋.

The reader can easily see (or verify) that the objects of the
category GalCon are posets, and its morphisms are precisely
the order-preserving Galois connections, which is reflected
in its name. This category is essentially different from the
category GAL of Galois connections of [32], in the sense
that while the latter category uses Galois connections as its
objects, the categoryGalCon uses them as morphisms. It will
be the topic of our future research, to consider the properties
of the category GalCon (at least) up to the extent of the
respective ones of the category GAL. Notice, however, that
the topic of the category GAL will find its proper place in the
subsequent developments of the paper.

The reader should also be aware of the important
fact that the case of order-reversing Galois connections
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(𝑋1, ⩽)

𝑓

󴀘󴀯
𝑔
(𝑋2, ⩽) (up to the knowledge of the author) does

not allow the previously mentioned system interpretation.
Indeed, the already mentioned adjunction condition now
reads as 𝑥1 ⩽ 𝑔(𝑥2) iff 𝑥2 ⩽ 𝑓(𝑥1) for every 𝑥1 ∈ 𝑋1

and every 𝑥2 ∈ 𝑋2. With the help of the dual partial order
⩽
𝑑 on 𝑋2, we do get an order-preserving Galois connection

(𝑋1, ⩽)

𝑓

󴀘󴀯
𝑔
(𝑋2, ⩽

𝑑
). It is unclear though how to incorporate

in the system setting another order-reversing Galois con-

nection (𝑋2, ⩽)

𝑓
󸀠

󴀘󴀯
𝑔󸀠
(𝑋3, ⩽) (or (𝑋2, ⩽)

𝑓
󸀠

󴀘󴀯
𝑔󸀠

(𝑋3, ⩽
𝑑
)), that is,

how to define the morphism composition law of the possible
category (notice that (𝑋2, ⩽) and (𝑋2, ⩽

𝑑
) are different as

posets; i.e., the codomain of the first connection is not the
domain of the second one).

In the next step, we introduce the modified category of
topological systems inspired by [22].

Definition 26. Given a variety A, a subcategory S of A,
and a reduct B of A, SB-TopSys𝑚 (notice that “𝑚” stands
for “modified”) is the category, concrete over the product
category Set × B𝑜𝑝

× S, which comprises the following data.

Objects. Tuples𝐷 = (pt𝐷,Ω𝐷, Σ𝐷, ⊨), where (pt𝐷,Ω𝐷, Σ𝐷)
is a Set×B𝑜𝑝

×S-object andpt𝐷×Ω𝐷 ⊨

󳨀→ Σ𝐷 is amap such that
Ω𝐷

⊨(𝑥,−)

󳨀󳨀󳨀󳨀→ ‖Σ𝐷‖ is a B-homomorphism for every 𝑥 ∈ pt𝐷.

Morphisms.𝐷1

𝑓=(pt𝑓,Ω𝑓,Σ𝑓)
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 𝐷2 are Set×B𝑜𝑝

×S-morphisms

(pt𝐷1, Ω𝐷1, Σ𝐷1)
𝑓

󳨀→ (pt𝐷2, Ω𝐷2, Σ𝐷2) such that Σ𝑓 ∘

⊨1(𝑥, (Ω𝑓)
𝑜𝑝
(𝑏)) = ⊨2(pt𝑓(𝑥), 𝑏) for every 𝑥 ∈ pt𝐷1 and

every 𝑏 ∈ Ω𝐷2.

Since both a category and its dual have the same objects,
the only difference between the categories of systems intro-
duced in Definitions 22 and 26 is in the direction of the Σ-
component of their respective morphisms. In particular, with
the notational conventions of Remark 23, we get that all the
items of Example 24, except the second one, can be restated
in terms of the category SB-TopSys𝑚. Moreover, it is easy to
provide the conditions, under which the system settings of
Definitions 22 and 26 coincide.

Definition 27. Given a subcategory S of A𝑜𝑝, SB-TopSys𝑖
(resp., S𝑜𝑝B -TopSys𝑖

𝑚
) is the nonfull subcategory of the cat-

egory SB-TopSys (resp., S
𝑜𝑝

B -TopSys𝑚), which has the same

objects and whose morphisms 𝐷1

𝑓

󳨀→ 𝐷2 are such that

Σ𝐷1

Σ𝑓

󳨀󳨀→ Σ𝐷2 (resp., Σ𝐷1

(Σ𝑓)
𝑜𝑝

󳨀󳨀󳨀󳨀→ Σ𝐷2) is an S- (resp., S𝑜𝑝-)
isomorphism.

Theorem 28. There exists the isomorphism SB-TopSys𝑖
𝐹

󳨀→

S𝑜𝑝B -TopSys𝑖
𝑚
, which is defined by the formula 𝐹(𝐷1

𝑓

󳨀→ 𝐷2) =

𝐷1

(pt𝑓,Ω𝑓,((Σ𝑓)𝑜𝑝)−1)
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 𝐷2.

Proof. Straightforward computations.

As a consequence, we obtain that there is no differ-
ence between the (fixed-basis) categories 𝐴B-TopSys and
𝐴B-TopSys𝑚.There exists, however, another obvious modifi-
cation of the category of topological systems, which has never
appeared in the literature before.

Definition 29. Given a variety A, a subcategory S of A𝑜𝑝,
and a reduct B of A, SB-TopSys𝑎 (notice that “𝑎” stands
for “alternative”) is the category, concrete over the product
category Set × B × S, which comprises the following data.

Objects.Tuples𝐷 = (pt𝐷,Ω𝐷, Σ𝐷, ⊨), where (pt𝐷,Ω𝐷, Σ𝐷)
is a Set × B × S-object, whereas pt𝐷 × Ω𝐷

⊨

󳨀→ Σ𝐷 is a map
such that Ω𝐷

⊨(𝑥,−)

󳨀󳨀󳨀󳨀→ ‖Σ𝐷‖ is a B-homomorphism for every
𝑥 ∈ pt𝐷.

Morphisms. 𝐷1

𝑓=(pt𝑓,Ω𝑓,Σ𝑓)
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 𝐷2 are Set × B ×

S-morphisms (pt𝐷1, Ω𝐷1, Σ𝐷1)
𝑓

󳨀→ (pt𝐷2, Ω𝐷2, Σ𝐷2)

such that ⊨1(𝑥, 𝑏) = (Σ𝑓)
𝑜𝑝
∘ ⊨2(pt𝑓(𝑥), Ω𝑓(𝑏)) for every

𝑥 ∈ pt𝐷1 and every 𝑏 ∈ Ω𝐷1.

It is important to emphasize that leaving (essentially)
the same objects, we change the definition of morphisms
dramatically. In particular, we cannot obtain a single item of
Example 24 in the new framework.

Similar to the previously mentioned classical system
setting, we can introduce a modified category of systems.

Definition 30. Given a variety A, a subcategory S of A, and a
reduct B ofA, SB-TopSys𝑎𝑚 is the category, concrete over the
product category Set × B × S, which comprises the following
data.

Objects. Tuples𝐷 = (pt𝐷,Ω𝐷, Σ𝐷, ⊨), where (pt𝐷,Ω𝐷, Σ𝐷)
is a Set×B×S-object and pt𝐷×Ω𝐷 ⊨

󳨀→ Σ𝐷 is a map such that
Ω𝐷

⊨(𝑥,−)

󳨀󳨀󳨀󳨀→ ‖Σ𝐷‖ is a B-homomorphism for every 𝑥 ∈ pt𝐷.

Morphisms. 𝐷1

𝑓=(pt𝑓,Ω𝑓,Σ𝑓)
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 𝐷2 are Set × B × S-morphisms

(pt𝐷1, Ω𝐷1, Σ𝐷1)
𝑓

󳨀→ (pt𝐷2, Ω𝐷2, Σ𝐷2) such that Σ𝑓 ∘

⊨1(𝑥, 𝑏) = ⊨2(pt𝑓(𝑥), Ω𝑓(𝑏)) for every 𝑥 ∈ pt𝐷1 and every
𝑏 ∈ Ω𝐷1.

The explicit restatement of Theorem 28 for the setting of
the categories SB-TopSys𝑎, SB-TopSys𝑎𝑚 is straightforward
and is, therefore, left to the reader.

4. Lattice-Valued Formal Concept Analysis

For the required preliminaries in hand, in this section, we
introduce different approaches to fuzzification of basic tools
of Formal Concept Analysis (FCA) of Ganter and Wille [31].
In particular, we present three possible category-theoretic
machineries, the first two of which stem from the approach of
Denniston et al. [29], whereas the last one comes fromGanter
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and Wille themselves. For the sake of brevity, we omitted
every motivational reason for the need of fuzziness in FCA,
which is clearly stated in, for example, [33], and also could be
found at the beginning of Section 5 of [29]. Ourmain interest
is not the idea of FCA itself, but rather a better category-
theoretic framework for its successful development.

4.1. Lattice-Valued Formal Contexts as Chu Spaces. In the
last item of Example 24, we represented Chu spaces over
sets of Pratt [13] as particular instances of variety-based
topological systems. Moreover, we also mentioned that one
of the main building blocks of FCA, that is, (many-valued)
formal contexts, is, in fact, nothing else than Chu spaces
(already noticed in the literature [55, 56]). With these ideas
in mind, we introduce the following definition.

Definition 31. Let L be an extension of the variety Quant of
quantales and let B = Set.

(1) S-FC𝐶 (notice that “𝐶” stands for “Chu”) is a new
notation for the category SSet-TopSys, whose objects
((lattice-valued) formal contexts) are now denoted
K = (𝐺,𝑀, 𝐿, 𝐼) (in the notation of Definition 22,
K = 𝐷, which yields 𝐺 = pt 𝐷,𝑀 = Ω𝐷,
𝐿 = Σ𝐷 and 𝐼 = ⊨), where 𝐺 (from German
“Gegenstände”) is the set of context objects,𝑀 (from
German “Merkmale”) is the set of context attributes,
and 𝐼 (fromGerman “Inzidenzrelation”) is the context
incidence relation.The respectivemorphisms ((lattice-

valued) formal context morphisms) K1

𝑓

󳨀→ K2 are

now triples (𝐺1,𝑀1, 𝐿1)
𝑓=(𝛼,𝛽,𝜑)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ (𝐺2,𝑀2, 𝐿2) (in
the notation of Definition 22, 𝛼 = pt𝑓, 𝛽 = Ω𝑓

and 𝜑 = Σ𝑓, and then, for every 𝑔 ∈ 𝐺1 and every
𝑚 ∈ 𝑀2, 𝐼1(𝑔, 𝛽

𝑜𝑝
(𝑚)) = 𝜑

𝑜𝑝
∘ 𝐼2(𝛼(𝑔), 𝑚)). The case

of L = CBAlg and S = S2 is called the crisp case.

(2) S-FC𝐶

𝑚
is a newnotation for the category SB-TopSys𝑚.

The notational and naming remarks for objects and
morphisms of Definition 31 will apply to all the categories
of (lattice-valued) formal contexts introduced in this paper.
Moreover, the reader can easily apply Theorem 28, to single
out the isomorphic subcategories of the categories S-FC𝐶 and
S-FC𝐶

𝑚
.

At the moment, there is no agreement in the fuzzy
community, whether to build formal contexts over L or
L𝑜𝑝, and, therefore, we just add the lower index “(−)𝑚” in
the former case. More precisely, this paper is (up to the
knowledge of the author) the first attempt to develop a
variable-basis approach (à la [4]) to lattice-valued FCA, the
motivational article of Denniston et al. [29] being fixed-basis.

4.2. Lattice-Valued Formal Contexts in the Sense of Ganter
andWille. In the previous subsection, we presented a lattice-
valued approach to FCAbased inChu spaces. An experienced
reader, however, may be well aware of many-valued contexts
of Ganter andWille themselves [31, Section 13], the theory of
which is already established in the literature. In the following,

we provide its category-theoretic analogue, bringing together
both many-valued contexts and their morphisms.

Definition 32. LetL be an extension ofQuant and letB = Set.

(1) S-FC𝐺𝑊(notice that “𝐺𝑊” stands for “Ganter and
Wille”) is a new notation for the category SB-TopSys𝑎.

(2) S-FC𝐺𝑊

𝑚
is a new notation for the category

SB-TopSys𝑎𝑚.

It should be emphasized immediately that neither Ganter
norWille (up to the knowledge of the author) has considered
a categorical approach to (many-valued) formal contexts, that
is, has united both formal contexts and their morphisms in
one entity. Additionally, both (many-valued) formal contexts
and their morphisms are treated in an algebraic way in [31]
(from where our notation for context morphisms, which is
different from the system setting, is partly borrowed). There
does exist some research on certain categories of contexts
(e.g., [57–61]), which, however, does not study the categorical
foundation for FCA, but rather concentrates on a fixed
categorical framework and its related results. It is the main
purpose of this paper, to investigate such possible category-
theoretic foundations and their relationships to each other
(leaving their related results to the further study on the
topic). In particular, we consider a category of contexts,
whose morphisms are strikingly different from the standard
framework of topological systems.

4.3. Lattice-Valued Formal Contexts in the Sense of Denniston
et al. In [29], Denniston et al. have introduced another
approach to lattice-valued FCA, which was based on the
categoryGAL of order-preservingGalois connections of [32].
In the following, we extend their approach in two respects.
Firstly, we employ the variety Quant of quantales instead of
CQuant of commutative ones of [29] (called there complete
commutative residuated lattices). Secondly, we provide a
variable-basis approach (à la [4]) to the topic, instead of the
fixed-based one of [29].

To begin with, we introduce some new notions and
notations (induced by the respective ones of [29]), which will
be used in the subsequent developments of the paper.

Definition 33. Every lattice-valued formal contextK has the
following (lattice-valued) Birkhoff operators:

(1) 𝐿𝐺 𝐻

󳨀→ 𝐿
𝑀, which is given by (𝐻(𝑠))(𝑚) =

⋀
𝑔∈𝐺

(𝑠(𝑔)→ 𝑙 𝐼(𝑔,𝑚)),

(2) 𝐿𝑀 𝐾

󳨀→ 𝐿
𝐺, which is given by (𝐾(𝑡))(𝑔) =

⋀
𝑚∈𝑀

(𝑡(𝑚)→ 𝑟 𝐼(𝑔,𝑚)).

Given a lattice-valued context K, the notation 𝑠 for the
elements of 𝐿𝐺 (resp., 𝑡 for the elements of 𝐿𝑀), that is, lattice-
valued sets of context objects (resp., attributes), will be used
throughout the paper.

To give the reader more intuition, we provide an example
of the just introduced notions.
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Example 34. Every crisp context K (recall our crispness
remark from Definition 31(1)) provides the maps

(1) P(𝐺)
𝐻

󳨀→ P(𝑀), which is given by𝐻(𝑆) = {𝑚 ∈ 𝑀 |

𝑠 𝐼 𝑚 for every 𝑠 ∈ 𝑆},

(2) P(𝑀)
𝐾

󳨀→ P(𝐺), which is given by 𝐾(𝑇) = {𝑔 ∈ 𝐺 |

𝑔 𝐼 𝑡 for every 𝑡 ∈ 𝑇},

which are the classical Birkhoff operators generated by a
binary relation.

An important property of the maps of Definition 33 is
contained in the following result.

Theorem 35. For every lattice-valued context K,
(𝐿

𝐺
, 𝐻,𝐾, 𝐿

𝑀
) is an order-reversing Galois connection.

Proof. For convenience of the reader, we provide the proof,
which is different from that of [29].

To show that the map 𝐻 is order-reversing, notice that
given 𝑠1, 𝑠2 ∈ 𝐿

𝐺 such that 𝑠1 ⩽ 𝑠2, and some𝑚 ∈ 𝑀, for every
𝑔 ∈ 𝐺, it follows that 𝑠2(𝑔)→ 𝑙 𝐼(𝑔,𝑚) ⩽ 𝑠1(𝑔)→ 𝑙 𝐼(𝑔,𝑚)

(Theorem 6(2)) and, therefore, (𝐻(𝑠2))(𝑚) =

⋀
𝑔∈𝐺

(𝑠2(𝑔)→ 𝑙 𝐼(𝑔,𝑚)) ⩽ ⋀
𝑔∈𝐺

(𝑠1(𝑔)→ 𝑙 𝐼(𝑔,𝑚)) =

(𝐻(𝑠1))(𝑚). The case of𝐾 is similar.
To show that 1𝐿𝐺 ⩽ 𝐾 ∘ 𝐻, notice that given 𝑠 ∈ 𝐿

𝐺

and 𝑔 ∈ 𝐺, it follows that (𝐾 ∘ 𝐻(𝑠))(𝑔) =

⋀
𝑚∈𝑀

((𝐻(𝑠))(𝑚)→ 𝑟 𝐼(𝑔,𝑚)) = ⋀
𝑚∈𝑀

((⋀
𝑔󸀠∈𝐺

(𝑠(𝑔
󸀠
)→ 𝑙

𝐼(𝑔
󸀠
, 𝑚)))→ 𝑟 𝐼(𝑔,𝑚)) ⩾ ⋀

𝑚∈𝑀
((𝑠(𝑔)→ 𝑙 𝐼(𝑔,𝑚))→ 𝑟

𝐼(𝑔,𝑚))

(†)

⩾ ⋀
𝑚∈𝑀

𝑠(𝑔) ⩾ 𝑠(𝑔) , where (†) relies on the first
claim of Theorem 6(3). The proof of 1𝐿𝑀 ⩽ 𝐻 ∘ 𝐾 uses the
dual machinery and the second claim of Theorem 6(3).

We emphasize immediately that Theorem 35 is an ana-
logue of the already obtained results of [38, Lemma 3] (for
𝐿 a complete residuated lattice) and of [40, Proposition 3.9]
(for 𝐿 a unital quantale) in the framework of fuzzy Galois
connections, which is different (more demanding) from the
setting of Galois connections of the current paper (see
additionally the remark after Theorem 42). There also exists
an extension of Theorem 35 to a more general context of
(commutative, right-distributive, complete) extended-order
algebras 𝐿 (whose multiplication in some cases need not be
associative) [62, Propositions 3.9, 5.5] and, additionally, to
even more general case, which involves relations instead of
maps (the so-called 𝐿-Galois triangles) [63].

Everything is now in hand, to define another lattice-
valued extension of formal contexts of FCA.

Definition 36. Given a variety L, which extends Quant, and
a subcategory S of L, S-FC𝐷𝑀𝑅 (notice that “DMR” stands
for “Denniston, Melton and Rodabaugh”) is the category,
concrete over the product category Set × Set𝑜𝑝, which
comprises the following data.

Objects. Lattice-valued formal contexts K (in the sense of
Definition 31) such that 𝐿 is an object of S.

Morphisms. K1

𝑓=(𝛼,𝛽)

󳨀󳨀󳨀󳨀󳨀󳨀→ K2 are Set × Set𝑜𝑝-morphisms

(𝐿
𝐺1

1
, 𝐿

𝑀1

1
)

(𝛼,𝛽)

󳨀󳨀󳨀→ (𝐿
𝐺2

2
, 𝐿

𝑀2

2
), which make the diagrams

𝐿
𝐺1
1

𝐿
𝐺1
1

𝐿
𝐺2
2

𝐿
𝐺2
2𝐿

𝑀1
1

𝐿
𝑀1
1

𝐿
𝑀2
2

𝐿
𝑀2
2

𝐻1 𝐻2 𝐾1 𝐾2

𝛼

𝛼𝛽𝑜𝑝

𝛽𝑜𝑝

(4)

commute.

It should be emphasized that Definition 36 is inspired by
the respective one of [29], which, in its turn, comes from the
definition of the category GAL of order-preserving Galois
connections of [32]. Moreover, two important features of the
category S-FC𝐷𝑀𝑅 are worth mentioning. Firstly, it never
depends on the morphisms of the category S, mentioned
at the beginning of its definition (S-objects, however, are
employed), which is reflected well enough in its truncated
ground category. Secondly, its underlying functor to the
ground category Set × Set𝑜𝑝 is defined on objects as |K| =

(𝐿
𝐺
, 𝐿

𝑀
), which is a huge difference from the already intro-

duced categories of formal contexts (based on the machinery
of topological systems), the underlying functor of which is
just |K| = (𝐺,𝑀, 𝐿).

By analogy with the already presented categories of
lattice-valued formal contexts, we introduce another version
of the category of Definition 36. Unlike the case of the
categories S-FC𝐶 and S-FC𝐺𝑊, where the change concerns
the direction of the algebraic part of their morphisms,
this time we change the set-theoretic morphism part and,
therefore, use the notation “(−)𝑎” (“alternative”) instead of
“(−)𝑚” (“modified”).

Definition 37. Given a variety L, which extends Quant, and
a subcategory S of L, S-FC𝐷𝑀𝑅

𝑎
is the category, concrete over

the product category Set×Set, which comprises the following
data.

Objects. Lattice-valued formal contexts K (in the sense of
Definition 31) such that 𝐿 is an object of S.

Morphisms. K1

𝑓=(𝛼,𝛽)

󳨀󳨀󳨀󳨀󳨀󳨀→ K2 are Set × Set-morphisms

(𝐿
𝐺1

1
, 𝐿

𝑀1

1
)

(𝛼,𝛽)

󳨀󳨀󳨀→ (𝐿
𝐺2

2
, 𝐿

𝑀2

2
), which make the diagrams

𝐿
𝐺1
1

𝐿
𝐺1
1

𝐿
𝐺2
2

𝐿
𝐺2
2

𝐿
𝑀1
1

𝐿
𝑀1
1

𝐿
𝑀2
2

𝐿
𝑀2
2

𝐻1 𝐾1 𝐾2

𝛼

𝛼

𝛽

𝛽

𝐻2 (5)

commute.

In the following, we adapt the technique of Theorem 28,
to single out the possible isomorphic subcategories of the
categories S-FC𝐷𝑀𝑅 and S-FC𝐷𝑀𝑅

𝑎
.
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Definition 38. S-FC𝐷𝑀𝑅

𝑖
(resp., S-FC𝐷𝑀𝑅

𝑎𝑖
) is the nonfull sub-

category of the category S-FC𝐷𝑀𝑅 (resp., S-FC𝐷𝑀𝑅

𝑎
), which

has the same objects and whose morphisms K1

𝑓

󳨀→ K2 are

such that𝐿𝑀2
2

𝛽
𝑜𝑝

󳨀󳨀→ 𝐿
𝑀1

1
(resp.,𝐿𝑀1

1

𝛽

󳨀→ 𝐿
𝑀2

2
) is an isomorphism

in Set, that is, bijective.

Theorem 39. There exists the isomorphism S-FC𝐷𝑀𝑅

𝑖

𝐹

󳨀→

S-FC𝐷𝑀𝑅

𝑎𝑖
, which is defined by the formula 𝐹(K1

𝑓

󳨀→ K2) =

K1

(𝛼,(𝛽
𝑜𝑝
)
−1
)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ K2.

The reader should be aware that the fixed-basis approach
(i.e., the case of S = S𝐿) will (in general) provide noniso-
morphic categories 𝐿-FC𝐷𝑀𝑅 and 𝐿-FC𝐷𝑀𝑅

𝑎
, since both of

them are not dependant on S-morphisms. More precisely, it
is possible to obtain the following result.

Theorem 40. Suppose that 𝐿 is not a singleton, and, addition-
ally, its quantale multiplication is not a constant map to ⊥𝐿.
Then the categories 𝐿-FC𝐷𝑀𝑅 and 𝐿-FC𝐷𝑀𝑅

𝑎
are nonisomor-

phic.

Proof. It is easy to see that the context K = (𝑋,𝑋, 𝐼), where
𝑋 is the empty set and 𝑋 × 𝑋

𝐼

󳨀→ 𝐿 is the unique possible
map, provides a terminal object in the category𝐿-FC𝐷𝑀𝑅

𝑎
.The

category 𝐿-FC𝐷𝑀𝑅, however, does not have a terminal object,
which can be shown as follows.

Suppose the context K𝑇 = (𝐺𝑇,𝑀𝑇, 𝐼𝑇) is terminal in
𝐿-FC𝐷𝑀𝑅. Define a context K󸀠

= (𝑋
󸀠
, 𝑋

󸀠
, 𝐼

󸀠
), where 𝑋󸀠 is

a nonempty set and 𝐼󸀠 = ⊤𝐿 (the constant map with value

⊤𝐿). One gets two equal constant maps 𝐿𝑋
󸀠 𝐻
󸀠
=𝐾
󸀠
=⊤𝐿

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 𝐿
𝑋
󸀠

.

Since there exists an 𝐿-FC𝐷𝑀𝑅-morphism K󸀠
𝑓=(𝛼,𝛽)

󳨀󳨀󳨀󳨀󳨀󳨀→ K𝑇,
the diagrams

𝐿𝑋
󳰀

𝐿𝑋
󳰀

𝐿𝑋
󳰀

𝐿𝑋
󳰀

𝐿𝑀𝑇

𝐿𝑀𝑇𝐿𝐺𝑇

𝐿𝐺𝑇

𝐻󳰀 𝐾󳰀𝐻𝑇
𝐾𝑇

𝛼

𝛼

𝛽𝑜𝑝

𝛽𝑜𝑝

(6)

commute. It follows that the map 𝐾𝑇 in the right-hand
diagram is constant (since 𝐾󸀠 has that property). Thus, if

𝐿
𝑀𝑇

𝛽
󸀠𝑜𝑝

󳨀󳨀󳨀→ 𝐿
𝑋
󸀠

maps everything to⊤𝐿, then every map 𝐿𝑋
󸀠 𝛼
󸀠

󳨀→

𝐿
𝐺𝑇 , taking ⊤𝐿 to the constant value of the map 𝐾𝑇, gives

another 𝐿-FC𝐷𝑀𝑅-morphism K󸀠
𝑓
󸀠

󳨀󳨀→ K𝑇. The uniqueness
of such morphism necessitates 𝐿𝐺𝑇 to be a singleton, and
then 𝐺𝑇 is the empty set (since 𝐿 is not a singleton). As
a consequence, we get that the map 𝐻𝑇 is constant as well
(with the value ⊤𝐿). Define now another context K󸀠󸀠

=

(𝑋
󸀠󸀠
, 𝑋

󸀠󸀠
, 𝐼

󸀠󸀠
), where𝑋󸀠󸀠 is a nonempty set and 𝐼󸀠󸀠 = ⊥𝐿. Since

the quantale multiplication of 𝐿 is not the constant map to
⊥𝐿, we get a nonconstant map𝐻󸀠󸀠 (𝐻󸀠󸀠

(⊥𝐿) = ⊤𝐿 ̸=𝐻
󸀠󸀠
(⊤𝐿)),

and, therefore, a contradiction, since the left-hand side of the
previous two diagrams factorizes then (with the help of some

𝐿-FC𝐷𝑀𝑅-morphismK󸀠󸀠
𝑓
󸀠󸀠

󳨀󳨀→ K𝑇) the nonconstant map𝐻󸀠󸀠

through the constant map𝐻𝑇.

The case when 𝐿 is a singleton clearly provides the
isomorphic categories 𝐿-FC𝐷𝑀𝑅 and 𝐿-FC𝐷𝑀𝑅

𝑎
. The case

when 𝐿 is equipped with the constant ⊥𝐿-valued quantale
multiplication results in all contextmaps𝐻,𝐾 being constant
(with the value ⊤𝐿, which should additionally be preserved
by the corresponding maps 𝛼 and 𝛽𝑜𝑝 (resp., 𝛽)), which does
not fit the machinery of Theorem 40, and will be treated in
our subsequent articles on lattice-valued FCA. We should
emphasize, however, immediately that the just mentioned
two cases are not that interesting (i.e., are usually skipped by
the researchers), and, therefore, we can rightly conclude that
the approaches of Definitions 36 and 37 are fundamentally
different, which provides a (partial) justification for our
alternative setting of the category 𝐿-FC𝐷𝑀𝑅

𝑎
.

The difference between the categories S-FC𝐷𝑀𝑅 and
S-FC𝐷𝑀𝑅

𝑎
is similar to that between the categories S-FC𝐶

and S-FC𝐺𝑊 (which served as our main motivation for
introducing the approach of S-FC𝐷𝑀𝑅

𝑎
, whichwasmentioned,

but never studied, in [29]).

4.4. Some Properties of Lattice-Valued Birkhoff Operators. It
is a well-known (and easy to establish) fact that all order-
reversing Galois connections between crisp powersets arise
from a pair of crisp Birkhoff operators of Example 34. In the
following, we show that the lattice-valued case destroys partly
this essential property (the reader is advised to recall the
notational remarks concerning particular maps of the pow-
erset algebras, mentioned at the beginning of Section 2.2).

Theorem 41. If L extends UQuant, then every lattice-valued
contextK satisfies the following.

(1) (𝐻(𝜒1𝐿
{𝑔}
))(𝑚) = (𝐾(𝜒

1𝐿

{𝑚}
))(𝑔) for every 𝑔 ∈ 𝐺 and

every𝑚 ∈ 𝑀.
(2) (𝐻(𝑎⊗𝜒1𝐿

{𝑔}
))(𝑚) = 𝑎→ 𝑙(𝐻(𝜒

1𝐿

{𝑔}
))(𝑚) for every 𝑔 ∈ 𝐺,

𝑚 ∈ 𝑀 and 𝑎 ∈ 𝐿.
(3) (𝐾(𝜒1𝐿

{𝑚}
⊗𝑎))(𝑔) = 𝑎→ 𝑟(𝐾(𝜒

1𝐿

{𝑚}
))(𝑔) for every 𝑔 ∈ 𝐺,

𝑚 ∈ 𝑀 and 𝑎 ∈ 𝐿.
The previously mentioned items are equivalent to the

following ones.

(a) (𝐻(𝑎⊗𝜒1𝐿
{𝑔}
))(𝑚) = 𝑎→ 𝑙(𝐾(𝜒

1𝐿

{𝑚}
))(𝑔) for every 𝑔 ∈ 𝐺,

𝑚 ∈ 𝑀 and 𝑎 ∈ 𝐿.
(b) (𝐾(𝜒1𝐿

{𝑚}
⊗𝑎))(𝑔) = 𝑎→ 𝑟(𝐻(𝜒

1𝐿

{𝑔}
))(𝑚) for every 𝑔 ∈ 𝐺,

𝑚 ∈ 𝑀 and 𝑎 ∈ 𝐿.

Proof. Ad (1). The item follows from the fact that
(𝐻(𝜒

1𝐿

{𝑔}
))(𝑚) = ⋀

𝑔󸀠∈𝐺
(𝜒

1𝐿

{𝑔}
(𝑔

󸀠
)→ 𝑙 𝐼(𝑔

󸀠
, 𝑚))

(†)

= 1𝐿→ 𝑙

𝐼(𝑔,𝑚) = 𝐼(𝑔,𝑚) = 1𝐿→ 𝑟 𝐼(𝑔,𝑚)
(†)

= ⋀
𝑚󸀠∈𝑀

(𝜒
1𝐿

{𝑚}
(𝑚

󸀠
)→ 𝑟

𝐼(𝑔,𝑚
󸀠
)) = (𝐾(𝜒

1𝐿

{𝑚}
))(𝑔), where (†) uses Theorem 6(2).
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Ad (2). (𝐻(𝑎 ⊗ 𝜒
1𝐿

{𝑔}
))(𝑚) = ⋀

𝑔󸀠∈𝐺
((𝑎 ⊗ 𝜒

1𝐿

{𝑔}
)(𝑔

󸀠
)→ 𝑙

𝐼(𝑔
󸀠
, 𝑚)) = ⋀

𝑔󸀠∈𝐺
((𝑎 ⊗ 𝜒

1𝐿

{𝑔}
(𝑔

󸀠
))→ 𝑙 𝐼(𝑔

󸀠
, 𝑚))

(†)

= ⋀
𝑔󸀠∈𝐺

(𝑎→ 𝑙

(𝜒
1𝐿

{𝑔}
(𝑔

󸀠
)→ 𝑙 𝐼(𝑔

󸀠
, 𝑚)))

(††)

= 𝑎→ 𝑙(⋀𝑔󸀠∈𝐺
(𝜒

1𝐿

{𝑔}
(𝑔

󸀠
)→ 𝑙

𝐼(𝑔
󸀠
, 𝑚))) = 𝑎→ 𝑙(𝐻(𝜒

1𝐿

{𝑔}
))(𝑚), where (†) (resp., (††))

uses item (4) (resp., item (1)) of Theorem 6.
Ad (3). (𝐾(𝜒1𝐿

{𝑚}
⊗ 𝑎))(𝑔) = ⋀

𝑚󸀠∈𝑀
((𝜒

1𝐿

{𝑚}
⊗ 𝑎)(𝑚

󸀠
)→ 𝑟

𝐼(𝑔,𝑚
󸀠
)) = ⋀

𝑚󸀠∈𝑀
((𝜒

1𝐿

{𝑚}
(𝑚

󸀠
) ⊗ 𝑎)→ 𝑟 𝐼(𝑔,𝑚

󸀠
))

(†)

=

⋀
𝑚󸀠∈𝑀

(𝑎→ 𝑟(𝜒
1𝐿

{𝑚}
(𝑚

󸀠
)→ 𝑟 𝐼(𝑔,𝑚

󸀠
)))

(††)

= 𝑎→ 𝑟

(⋀
𝑚󸀠∈𝑀

(𝜒
1𝐿

{𝑚}
(𝑚

󸀠
)→ 𝑟 𝐼(𝑔,𝑚

󸀠
))) = 𝑎→ 𝑟(𝐾(𝜒

1𝐿

{𝑚}
))(𝑔),

where (†) (resp., (††)) uses item (4) (resp., item (1)) of
Theorem 6.

Ad (1), (2), (3) ⇒ (𝑎), (𝑏). Use (1) in the right-hand side
of both (2) and (3).

Ad (𝑎), (𝑏) ⇒ (1), (2), (3). Put 𝑎 = 1𝐿 in any of (𝑎) or (𝑏)
and get (1). Now, use (1) in the right-hand side of both (𝑎)
and (𝑏), to get (2) and (3), respectively.

Theorem 41 paves the way for a partial generalization
of the previously mentioned result on generating order-
reversing Galois connections between powersets.

Theorem 42. Let 𝐺,𝑀 be sets and let 𝐿 be a unital quantale.
For every order-reversing Galois connection (𝐿𝐺, 𝛼, 𝛽, 𝐿𝑀), the
following statements are equivalent.

(1) There exists a map 𝐺 × 𝑀
𝐼

󳨀→ 𝐿 such that 𝛼 = 𝐻 and
𝛽 = 𝐾.

(2) (a) (𝛼(𝜒1𝐿
{𝑔}
))(𝑚) = (𝛽(𝜒

1𝐿

{𝑚}
))(𝑔) for every 𝑔 ∈ 𝐺 and

every𝑚 ∈ 𝑀.
(b) (𝛼(𝑎 ⊗ 𝜒

1𝐿

{𝑔}
))(𝑚) = 𝑎→ 𝑙(𝛼(𝜒

1𝐿

{𝑔}
))(𝑚) for every

𝑔 ∈ 𝐺,𝑚 ∈ 𝑀 and 𝑎 ∈ 𝐿.
(c) (𝛽(𝜒1𝐿

{𝑚}
⊗ 𝑎))(𝑔) = 𝑎→ 𝑟(𝛽(𝜒

1𝐿

{𝑚}
))(𝑔) for every

𝑔 ∈ 𝐺,𝑚 ∈ 𝑀 and 𝑎 ∈ 𝐿.
(3) (a) (𝛼(𝑎 ⊗ 𝜒

1𝐿

{𝑔}
))(𝑚) = 𝑎→ 𝑙(𝛽(𝜒

1𝐿

{𝑚}
))(𝑔) for every

𝑔 ∈ 𝐺,𝑚 ∈ 𝑀 and 𝑎 ∈ 𝐿.
(b) (𝛽(𝜒1𝐿

{𝑚}
⊗ 𝑎))(𝑔) = 𝑎→ 𝑟(𝛼(𝜒

1𝐿

{𝑔}
))(𝑚) for every

𝑔 ∈ 𝐺,𝑚 ∈ 𝑀 and 𝑎 ∈ 𝐿.

Proof. (1) ⇒ (2) and (2) ⇔ (3). It follows fromTheorem 41.
(2) ⇒ (1). Define the required map 𝐺 × 𝑀

𝐼

󳨀→ 𝐿 by
𝐼(𝑔,𝑚) = (𝛼(𝜒

1𝐿

{𝑔}
))(𝑚)

(𝑎)

= (𝛽(𝜒
1𝐿

{𝑚}
))(𝑔). Given 𝑠 ∈ 𝐿

𝐺 and
𝑚 ∈ 𝑀, it follows that (𝐻(𝑠))(𝑚) = ⋀

𝑔∈𝐺
(𝑠(𝑔)→ 𝑙 𝐼(𝑔,𝑚)) =

⋀
𝑔∈𝐺

(𝑠(𝑔)→ 𝑙(𝛼(𝜒
1𝐿

{𝑔}
))(𝑚))

(𝑏)

= ⋀
𝑔∈𝐺

(𝛼(𝑠(𝑔) ⊗ 𝜒
1𝐿

{𝑔}
))(𝑚)

(†)

=

(𝛼(⋁
𝑔∈𝐺

(𝑠(𝑔) ⊗ 𝜒
1𝐿

{𝑔}
)))(𝑚) = (𝛼(𝑠))(𝑚) (notice that

(⋁
𝑔∈𝐺

(𝑠(𝑔) ⊗ 𝜒
1𝐿

{𝑔}
))(𝑔

󸀠
) = ⋁

𝑔∈𝐺
(𝑠(𝑔)(𝑔

󸀠
) ⊗ 𝜒

1𝐿

{𝑔}
(𝑔

󸀠
)) = 𝑠(𝑔

󸀠
) ⊗

1𝐿 = 𝑠(𝑔
󸀠
) for every 𝑔󸀠 ∈ 𝐺), whereas, given 𝑡 ∈ 𝐿

𝑀 and
𝑔 ∈ 𝐺, it follows that (𝐾(𝑡))(𝑔) = ⋀

𝑚∈𝑀
(𝑡(𝑚)→ 𝑟 𝐼(𝑔,𝑚)) =

⋀
𝑚∈𝑀

(𝑡(𝑚)→ 𝑟(𝛽(𝜒
1𝐿

{𝑚}
))(𝑔))

(𝑐)

= ⋀
𝑚∈𝑀

(𝛽(𝜒
1𝐿

{𝑚}
⊗ 𝑡(𝑚)))(𝑔)

(†)

=

(𝛽(⋁
𝑚∈𝑀

(𝜒
1𝐿

{𝑚}
⊗ 𝑡(𝑚))))(𝑔) = (𝛽(𝑡))(𝑔), where (†) uses

Theorem 19(3).

Theorems 41 and 42 show that in the lattice-valued
setting, every map 𝐺 × 𝑀

𝐼

󳨀→ 𝐿 provides an order-reversing
Galois connection, whereas the converse way is possible
under certain restrictions only. As a simple counterexam-
ple, consider the case, when 𝐿 is the unit interval I =

([0, 1], ⋁,⋀, 1), and both 𝐺 and 𝑀 are singletons. We can,
therefore, assume that both I𝐺 and I𝑀 are the same as I. The
order-reversing involution map I

𝛼

󳨀→ I, 𝛼(𝑎) = 1 − 𝑎 is a part
of the order-reversing Galois connection (I, 𝛼, 𝛼, I). It is easy
to see that the condition of, for example, Theorem 42(3)(a)
amounts to 𝛼(𝑎) = 𝑎 → 𝛼(1) for every 𝑎 ∈ I (notice that the
quantale in question is commutative). However, for 𝑎 = 1/2,
we obtain that 𝛼(1/2) = 1/2 ̸= 0 = 1/2 → 0 = 1/2 → 𝛼(1).

We also would like to emphasize here that [40] uses a
different approach to Galois connections (called polarities of
certain types), which has the advantage of still preserving
the one-to-one correspondence between them and Birkhoff
operators even in the lattice-valued case [40, Theorem 3.11].
The underlying framework of such polarities, however, is
more demanding than that of this paper (e.g., requires
enriched categories) and, therefore, will be not considered
here. Also notice that [64, Proposition 7.1] provides an
analogue of Theorem 42 for the case of strictly two-sided
commutative quantales, considering, however, lattice-valued
versions of the powerset operators generated by a relation and
extending those given at the beginning of Section 2.2 and,
therefore, dealing with order-preserving Galois connections.
More precisely, in the notation of [64], every formal context
K = (𝐺,𝑀, 𝐿, 𝐼) (where 𝐿 is additionally assumed to
be a strictly two-sided commutative quantale) provides the
following generalizations of the standard powerset operators:

(1) 𝐿𝐺 𝐼
⊗

󳨀󳨀→ 𝐿
𝑀 given by (𝐼⊗(𝑠))(𝑚) = ⋁

𝑔∈𝐺
𝐼(𝑔,𝑚) ⊗ 𝑠(𝑔)

(forward powerset operator),

(2) 𝐿𝑀
𝐼
→

−

󳨀󳨀→ 𝐿
𝐺 given by (𝐼→

−
(𝑡))(𝑔) = ⋀

𝑚∈𝑀
𝐼(𝑔,𝑚) →

𝑡(𝑚) (backward powerset operator).

In particular, (𝐿𝐺, 𝐼⊗, 𝐼→
−
, 𝐿

𝑀
) is an order-preserving Galois

connection (recall Definition 18). It is the main purpose of
[64, Proposition 7.1] to clarify the conditions, when an order-
preserving Galois connection (𝐿𝐺, 𝛼, 𝛽, 𝐿𝑀) has the previous
form, that is, is generated by a map 𝐺 ×𝑀

𝐼

󳨀→ 𝐿.
We end the subsection with another simple (but useful)

property of lattice-valued Birkhoff operators.

Lemma43. Given a lattice-valued formal contextK such that
𝐼 = ⊤𝐿, it follows that 𝐻 = ⊤𝐿 and 𝐾 = ⊤𝐿. In particular, in
the crisp case,𝐻 = 𝑀 and 𝐾 = 𝐺.

Proof. It is enough to consider the case of𝐻 (that of𝐾 being
similar). Given 𝑠 ∈ 𝐿

𝐺, for every 𝑚 ∈ 𝑀, (𝐻(𝑠))(𝑚) =

⋀
𝑔∈𝐺

(𝑠(𝑔)→ 𝑙 𝐼(𝑔,𝑚)) = ⋀
𝑔∈𝐺

(𝑠(𝑔)→ 𝑙 ⊤𝐿) = ⋀
𝑔∈𝐺

⊤𝐿 =

⊤𝐿, that is,𝐻(𝑠) = ⊤𝐿.

4.5. Lattice-Valued Formal Concepts, Protoconcepts, and Pre-
concepts. In the developments of [29], Denniston et al. use
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lattice-valued extensions of the notions of formal concept,
protoconcept, and preconcept of, for example, [36]. In the
following, we recall their respective definitions and show
some of their properties in our more general framework,
which will be used later on in the paper.

Definition 44. Let K be a lattice-valued formal context and
let 𝑠 ∈ 𝐿𝐺, 𝑡 ∈ 𝐿𝑀. The pair (𝑠, 𝑡) is called a

(1) (lattice-valued) formal concept of K provided that
𝐻(𝑠) = 𝑡 and𝐾(𝑡) = 𝑠,

(2) (lattice-valued) formal protoconcept of K provided
that𝐾 ∘ 𝐻(𝑠) = 𝐾(𝑡) (equivalently,𝐻 ∘ 𝐾(𝑡) = 𝐻(𝑠)),

(3) (lattice-valued) formal preconcept ofK provided that
𝑠 ⩽ 𝐾(𝑡) (equivalently, 𝑡 ⩽ 𝐻(𝑠)).

Using the properties of Galois connections, mentioned
in Theorem 19, one can easily get that every concept is
a protoconcept, and every protoconcept is a preconcept,
whereas the converse implications, in general, are not true.
Moreover, the next result provides simple properties of the
notions of Definition 44 with respect to themorphisms of the
previously mentioned categories S-FC𝐷𝑀𝑅 and S-FC𝐷𝑀𝑅

𝑎
.

Theorem 45. Let K1

𝑓

󳨀→ K2 be a morphism of the category
S-FC𝐷𝑀𝑅 and let 𝑠1 ∈ 𝐿

𝐺1

1
, 𝑡2 ∈ 𝐿

𝑀2

2
.

(1) (𝑠1, 𝛽
𝑜𝑝
(𝑡2)) is a formal concept ofK1 and𝐻2∘𝐾2(𝑡2) =

𝑡2 iff (𝛼(𝑠1), 𝑡2) is a formal concept of K2 and 𝐾1 ∘

𝐻1(𝑠1) = 𝑠1.

(2) If both 𝐿
𝐺1

1

𝛼

󳨀→ 𝐿
𝐺2

2
and 𝐿

𝑀2

2

𝛽
𝑜𝑝

󳨀󳨀→ 𝐿
𝑀1

1
reflect fixed

points, that is,𝐾2 ∘𝐻2 ∘𝛼(𝑠) = 𝛼(𝑠) implies𝐾1 ∘𝐻1(𝑠) =

𝑠 for every 𝑠 ∈ 𝐿𝐺1
1
, and𝐻1 ∘𝐾1 ∘𝛽

𝑜𝑝
(𝑡) = 𝛽

𝑜𝑝
(𝑡) implies

𝐻2 ∘ 𝐾2(𝑡) = 𝑡 for every 𝑡 ∈ 𝐿
𝑀2

2
, then (𝑠1, 𝛽𝑜𝑝(𝑡2)) is a

formal concept of K1 iff (𝛼(𝑠1), 𝑡2) is a formal concept
ofK2.

(3) If both 𝐿𝐺1
1

𝛼

󳨀→ 𝐿
𝐺2

2
and 𝐿𝑀2

2

𝛽
𝑜𝑝

󳨀󳨀→ 𝐿
𝑀1

1
are injective, then

(𝑠1, 𝛽
𝑜𝑝
(𝑡2)) is a formal concept ofK1 iff (𝛼(𝑠1), 𝑡2) is a

formal concept ofK2.
(4) (𝑠1, 𝛽

𝑜𝑝
(𝑡2)) is a formal protoconcept of K1 iff

(𝛼(𝑠1), 𝑡2) is a formal protoconcept ofK2.

(5) If both 𝐿
𝐺1

1

𝛼

󳨀→ 𝐿
𝐺2

2
and 𝐿

𝑀2

2

𝛽
𝑜𝑝

󳨀󳨀→ 𝐿
𝑀1

1
are order-

preserving, then (𝑠1, 𝛽𝑜𝑝(𝑡2)) is a formal preconcept of
K1 iff (𝛼(𝑠1), 𝑡2) is a formal preconcept ofK2.

If 𝐿𝐺1
1

𝛼

󳨀→ 𝐿
𝐺2

2
(resp., 𝐿𝑀2

2

𝛽
𝑜𝑝

󳨀󳨀→ 𝐿
𝑀1

1
) is injective, then 𝛼

(resp., 𝛽) reflects fixed points in the sense of (2).

Proof. Ad (1). “⇒”: Since both 𝑠1 = 𝐾1 ∘ 𝛽
𝑜𝑝
(𝑡2) and𝐻1(𝑠1) =

𝛽
𝑜𝑝
(𝑡2), we get 𝛼(𝑠1) = 𝛼 ∘ 𝐾1 ∘ 𝛽

𝑜𝑝
(𝑡2) = 𝐾2(𝑡2),𝐻2 ∘ 𝛼(𝑠1) =

𝐻2 ∘ 𝛼 ∘ 𝐾1 ∘ 𝛽
𝑜𝑝
(𝑡2) = 𝐻2 ∘ 𝐾2(𝑡2) = 𝑡2, and, moreover,

𝐾1 ∘𝐻1(𝑠1) = 𝐾1 ∘𝛽
𝑜𝑝
(𝑡2) = 𝑠1. “⇐”: Since both𝐻2 ∘𝛼(𝑠1) = 𝑡2

and 𝛼(𝑠1) = 𝐾2(𝑡2), we get 𝛽
𝑜𝑝
(𝑡2) = 𝛽

𝑜𝑝
∘𝐻2 ∘𝛼(𝑠1) = 𝐻1(𝑠1),

𝐾1 ∘ 𝛽
𝑜𝑝
(𝑡2) = 𝐾1 ∘ 𝛽

𝑜𝑝
∘ 𝐻2 ∘ 𝛼(𝑠1) = 𝐾1 ∘ 𝐻1(𝑠1) = 𝑠1, and,

moreover,𝐻2 ∘ 𝐾2(𝑡2) = 𝐻2 ∘ 𝛼(𝑠1) = 𝑡2.

Ad (2). “⇒”:𝛽𝑜𝑝(𝑡2) = 𝐻1(𝑠1) yields𝐻1∘𝐾1∘𝛽
𝑜𝑝
(𝑡2) = 𝐻1∘

𝐾1 ∘ 𝐻1(𝑠1) = 𝐻1(𝑠1) = 𝛽
𝑜𝑝
(𝑡2), and, therefore,𝐻2 ∘ 𝐾2(𝑡2) =

𝑡2, since 𝛽
𝑜𝑝 reflects fixed points. Now, employ item (1). “⇐”:

𝐾2(𝑡2) = 𝛼(𝑠1) yields 𝐾2 ∘ 𝐻2 ∘ 𝛼(𝑠1) = 𝐾2 ∘ 𝐻2 ∘ 𝐾2(𝑡2) =

𝐾2(𝑡2) = 𝛼(𝑠1), and, therefore,𝐾1∘𝐻1(𝑠1) = 𝑠1, since𝛼 reflects
fixed points. Now, employ item (1).

Ad (3). It follows from (2) and the last claim of the
theorem.

Ad (4). “⇒”: Since 𝐾1 ∘ 𝐻1(𝑠1) = 𝐾1 ∘ 𝛽
𝑜𝑝
(𝑡2), we get

𝐾2 ∘ 𝐻2 ∘ 𝛼(𝑠1) = 𝛼 ∘ 𝐾1 ∘ 𝛽
𝑜𝑝
∘ 𝐻2 ∘ 𝛼(𝑠1) = 𝛼 ∘ 𝐾1 ∘ 𝐻1(𝑠1) =

𝛼 ∘𝐾1 ∘ 𝛽
𝑜𝑝
(𝑡2) = 𝐾2(𝑡2). “⇐”: Since𝐻2 ∘𝐾2(𝑡2) = 𝐻2 ∘ 𝛼(𝑠1),

we get𝐻1 ∘ 𝐾1 ∘ 𝛽
𝑜𝑝
(𝑡2) = 𝛽

𝑜𝑝
∘ 𝐻2 ∘ 𝛼 ∘ 𝐾1 ∘ 𝛽

𝑜𝑝
(𝑡2) = 𝛽

𝑜𝑝
∘

𝐻2 ∘ 𝐾2(𝑡2) = 𝛽
𝑜𝑝
∘ 𝐻2 ∘ 𝛼(𝑠1) = 𝐻1(𝑠1).

Ad (5). “⇒”: 𝑠1 ⩽ 𝐾1 ∘ 𝛽
𝑜𝑝
(𝑡2) implies 𝛼(𝑠1) ⩽ 𝛼 ∘ 𝐾1 ∘

𝛽
𝑜𝑝
(𝑡2) = 𝐾2(𝑡2) (𝛼 is order-preserving). “⇐”: 𝑡2 ⩽ 𝐻2 ∘ 𝛼(𝑠1)

yields 𝛽𝑜𝑝(𝑡2) ⩽ 𝛽
𝑜𝑝
∘ 𝐻2 ∘ 𝛼(𝑠1) = 𝐻1(𝑠1) (𝛽

𝑜𝑝 is order-
preserving).

For the last claim, notice that given 𝑠 ∈ 𝐿𝐺1
1
such that𝐾2 ∘

𝐻2 ∘𝛼(𝑠) = 𝛼(𝑠), it follows that 𝛼∘𝐾1 ∘𝐻1(𝑠) = 𝛼∘𝐾1 ∘𝛽
𝑜𝑝
∘𝐻2 ∘

𝛼(𝑠) = 𝐾2∘𝐻2∘𝛼(𝑠) = 𝛼(𝑠) and thus,𝐾1∘𝐻1(𝑠) = 𝑠 (injectivity
of 𝛼). Additionally, given 𝑡 ∈ 𝐿𝑀2

2
such that𝐻1 ∘ 𝐾1 ∘ 𝛽

𝑜𝑝
(𝑡) =

𝛽
𝑜𝑝
(𝑡), it follows that𝛽𝑜𝑝∘𝐻2∘𝐾2(𝑡) = 𝛽

𝑜𝑝
∘𝐻2∘𝛼∘𝐾1∘𝛽

𝑜𝑝
(𝑡) =

𝐻1 ∘ 𝐾1 ∘ 𝛽
𝑜𝑝
(𝑡) = 𝛽

𝑜𝑝
(𝑡) and thus,𝐻2 ∘ 𝐾2(𝑡) = 𝑡 (injectivity

of 𝛽𝑜𝑝).

Theorem 46. Let K1

𝑓

󳨀→ K2 be a morphism of the category
S-FC𝐷𝑀𝑅

𝑎
and let 𝑠1 ∈ 𝐿

𝐺1

1
, 𝑡1 ∈ 𝐿

𝑀1

1
.

(1) If both 𝐿𝐺1
1

𝛼

󳨀→ 𝐿
𝐺2

2
and 𝐿𝑀1

1

𝛽

󳨀→ 𝐿
𝑀2

2
are injective, then

(𝑠1, 𝑡1) is a formal concept of K1 iff (𝛼(𝑠1), 𝛽(𝑡1)) is a
formal concept ofK2.

(2) If one of 𝐿𝐺1
1

𝛼

󳨀→ 𝐿
𝐺2

2
, 𝐿𝑀1

1

𝛽

󳨀→ 𝐿
𝑀2

2
is injective, then

(𝑠1, 𝑡1) is a formal protoconcept ofK1 iff (𝛼(𝑠1), 𝛽(𝑡1))
is a formal protoconcept ofK2.

(3) If one of 𝐿𝐺1
1

𝛼

󳨀→ 𝐿
𝐺2

2
, 𝐿𝑀1

1

𝛽

󳨀→ 𝐿
𝑀2

2
is order-preserving

and, moreover, one of the maps is order-reflecting, then
(𝑠1, 𝑡1) is a formal preconcept ofK1 iff (𝛼(𝑠1), 𝛽(𝑡1)) is
a formal preconcept ofK2.

Proof. Ad (1). “⇒”: Since 𝐻1(𝑠1) = 𝑡1 and 𝐾1(𝑡1) = 𝑠1, 𝐻2 ∘

𝛼(𝑠1) = 𝛽 ∘𝐻1(𝑠1) = 𝛽(𝑡1) and𝐾2 ∘ 𝛽(𝑡1) = 𝛼 ∘𝐾1(𝑡1) = 𝛼(𝑠1)

(no injectivity condition is employed). “⇐”: Since𝐻2∘𝛼(𝑠1) =

𝛽(𝑡1) and 𝐾2 ∘ 𝛽(𝑡1) = 𝛼(𝑠1), 𝛽 ∘ 𝐻1(𝑠1) = 𝐻2 ∘ 𝛼(𝑠1) = 𝛽(𝑡1)

and 𝛼 ∘ 𝐾1(𝑡1) = 𝐾2 ∘ 𝛽(𝑡1) = 𝛼(𝑠1) imply 𝐻1(𝑠1) = 𝑡1 and
𝐾1(𝑡1) = 𝑠1, respectively (both 𝛼 and 𝛽 are injective).

Ad (2). “⇒”: Since𝐾1 ∘𝐻1(𝑠1) = 𝐾1(𝑡1),𝐾2 ∘𝐻2 ∘ 𝛼(𝑠1) =

𝐾2 ∘ 𝛽 ∘ 𝐻1(𝑠1) = 𝛼 ∘ 𝐾1 ∘ 𝐻1(𝑠1) = 𝛼 ∘ 𝐾1(𝑡1) = 𝐾2 ∘ 𝛽(𝑡1)

(no injectivity condition is employed). “⇐”: If 𝐿𝐺1
1

𝛼

󳨀→ 𝐿
𝐺2

2
is

injective, then 𝐾2 ∘ 𝐻2 ∘ 𝛼(𝑠1) = 𝐾2 ∘ 𝛽(𝑡1) implies 𝛼 ∘ 𝐾1 ∘

𝐻1(𝑠1) = 𝐾2 ∘ 𝛽 ∘ 𝐻1(𝑠1) = 𝐾2 ∘ 𝐻2 ∘ 𝛼(𝑠1) = 𝐾2 ∘ 𝛽(𝑡1) =

𝛼 ∘ 𝐾1(𝑡1) and thus, 𝐾1 ∘ 𝐻1(𝑠1) = 𝐾1(𝑡1). If 𝐿
𝑀1

1

𝛽

󳨀→ 𝐿
𝑀2

2
is

injective, then 𝐻2 ∘ 𝐾2 ∘ 𝛽(𝑡1) = 𝐻2 ∘ 𝛼(𝑠1) implies 𝛽 ∘ 𝐻1 ∘

𝐾1(𝑡1) = 𝐻2 ∘ 𝛼 ∘ 𝐾1(𝑡1) = 𝐻2 ∘ 𝐾2 ∘ 𝛽(𝑡1) = 𝐻2 ∘ 𝛼(𝑠1) =

𝛽 ∘ 𝐻1(𝑠1) and thus,𝐻1 ∘ 𝐾1(𝑡1) = 𝐻1(𝑠1).
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Ad (3). “⇒”: If 𝐿𝐺1
1

𝛼

󳨀→ 𝐿
𝐺2

2
is order-preserving, then 𝑠1 ⩽

𝐾1(𝑡1) implies 𝛼(𝑠1) ⩽ 𝛼∘𝐾1(𝑡1) = 𝐾2 ∘𝛽(𝑡1). If 𝐿
𝑀1

1

𝛽

󳨀→ 𝐿
𝑀2

2
is

order-preserving, then 𝑡1 ⩽ 𝐻1(𝑠1) yields 𝛽(𝑡1) ⩽ 𝛽∘𝐻1(𝑠1) =

𝐻2 ∘𝛼(𝑠1). “⇐”: If 𝐿𝐺1
1

𝛼

󳨀→ 𝐿
𝐺2

2
is order-reflecting, then 𝛼(𝑠1) ⩽

𝐾2 ∘ 𝛽(𝑡1) = 𝛼 ∘ 𝐾1(𝑡1) implies 𝑠1 ⩽ 𝐾1(𝑡1). If 𝐿
𝑀1

1

𝛽

󳨀→ 𝐿
𝑀2

2
is

order-reflecting, then 𝛽(𝑡1) ⩽ 𝐻2 ∘ 𝛼(𝑠1) = 𝛽 ∘ 𝐻1(𝑠1) yields
𝑡1 ⩽ 𝐻1(𝑠1).

The two previous theorems provide crucial tools for
defining certain functors between the categories of lattice-
valued formal contexts, which is the main topic of the next
section.

5. Functorial Relationships between
the Categories of
Lattice-Valued Formal Contexts

The previous section introduced several categories (partly
motivated by the respective ones of [29]), the objects of
which are lattice-valued formal contexts. It is the purpose of
this section to consider functorial relationships between the
new categories, the functors in question being again partly
inspired by the respective approach of [29]. As a result, we
not only extend (the change from commutative quantales
to noncommutative ones and the shift from fixed-basis to
variable-basis) and streamline the machinery of Denniston
et al., but also provide several new functors (induced by new
categories), thereby clarifying the relationships between dif-
ferent frameworks for doing lattice-valued FCA and bringing
to light their respective (dis)advantages.

5.1. S-FC𝐶 and S-FC𝐶

𝑚
versus S-FC𝐷𝑀𝑅 and S-FC𝐷𝑀𝑅

𝑎
. In this

subsection, we consider possible functorial links between the
categories S-FC𝐶 and S-FC𝐶

𝑚
, on one side, and the categories

S-FC𝐷𝑀𝑅 and S-FC𝐷𝑀𝑅

𝑎
, on the other.

5.1.1. From S-FC𝐶

𝑚
to S-FC𝐷𝑀𝑅

𝑎
. In this subsection, we con-

struct a functorial embedding of a particular subcategory of
the category S-FC𝐶

𝑚
into the category S-FC𝐷𝑀𝑅

𝑎
. We begin

with singling out the subcategory in question.

Definition 47. S-FC𝐶

𝑚∗
is the (nonfull) subcategory of the

category S-FC𝐶

𝑚
, with the same objects, whose morphisms

K1

𝑓

󳨀→ K2 are such that the maps 𝐺1

𝛼

󳨀→ 𝐺2, 𝑀2

𝛽
𝑜𝑝

󳨀󳨀→ 𝑀1

are surjective, whereas the S-morphism 𝐿1

𝜑

󳨀→ 𝐿2 preserves
⋀, → 𝑙 and → 𝑟.

Notice that the notation (−)∗ will usually be used for the
constructed subcategories in this paper, the scope of each (−)∗
being limited to its respective subsection. More important
constructions, however, will be distinguished, respectively.

With the category of Definition 47 in hand, we can
construct the following functor (the reader is advised to recall
our powerset operator notations from Section 2.2).

Theorem 48. There exists the functor S-FC𝐶

𝑚∗

𝐻𝐶𝑚𝐷𝑎
󳨀󳨀󳨀󳨀󳨀→

S-FC𝐷𝑀𝑅

𝑎
, which is defined by the formula 𝐻𝐶𝑚𝐷𝑎(K1

𝑓

󳨀→

K2) = K1

((𝛼,𝜑)
→
,(𝛽,𝜑)

←𝑜
)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ K2.

Proof. To show that the functor is correct on morphisms, we
verify commutativity of the diagrams

𝐿
𝐺1
1

𝐿
𝐺1
1

𝐿
𝐺2
2

𝐿
𝐺2
2𝐿

𝑀1
1

𝐿
𝑀1
1

𝐿
𝑀2
2

𝐿
𝑀2
2

(𝛼, 𝜑)→

(𝛼, 𝜑)→(𝛽, 𝜑)←𝑜

(𝛽, 𝜑)←𝑜

𝐻1 𝐻2 𝐾1 𝐾2 (7)

For the left-hand diagram, notice that given 𝑠 ∈ 𝐿
𝐺1

1
and

𝑚2 ∈ 𝑀2,

(𝐻2 ∘ (𝛼, 𝜑)
→
(𝑠)) (𝑚2)

= ⋀

𝑔2∈𝐺2

(((𝛼, 𝜑)
→
(𝑠)) (𝑔2) 󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))

= ⋀

𝑔2∈𝐺2

(𝜑( ⋁

𝛼(𝑔1)=𝑔2

𝑠 (𝑔1))󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))

= ⋀

𝑔2∈𝐺2

(( ⋁

𝛼(𝑔1)=𝑔2

𝜑 ∘ 𝑠 (𝑔1))󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))

(†)

= ⋀

𝑔2∈𝐺2

⋀

𝛼(𝑔1)=𝑔2

(𝜑 ∘ 𝑠 (𝑔1) 󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))

= ⋀

𝑔1∈𝐺1

(𝜑 ∘ 𝑠 (𝑔1) 󳨀→𝑙 𝐼2 (𝛼 (𝑔1) , 𝑚2))

(††)

= ⋀

𝑔1∈𝐺1

(𝜑 ∘ 𝑠 (𝑔1) 󳨀→𝑙 𝜑 ∘ 𝐼1 (𝑔1, 𝛽
𝑜𝑝
(𝑚2)))

(†††)

= 𝜑( ⋀

𝑔1∈𝐺1

(𝑠 (𝑔1) 󳨀→𝑙 𝐼1 (𝑔1, 𝛽
𝑜𝑝
(𝑚2))))

= 𝜑 ∘ (𝐻1 (𝑠)) (𝛽
𝑜𝑝
(𝑚2))

= ((𝛽, 𝜑)
←𝑜

∘ 𝐻1 (𝑠)) (𝑚2) ,

(8)

where (†) relies on Theorem 6(2), (††) uses the fact that
K1

𝑓

󳨀→ K2 is a morphism of S-FC𝐶

𝑚
, whereas (†††) employs

the definition of the category S-FC𝐶

𝑚∗
.
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For the right-hand diagram, notice that given 𝑡 ∈ 𝐿𝑀1
1

and
𝑔2 ∈ 𝐺2,

((𝛼, 𝜑)
→
∘ 𝐾1 (𝑡)) (𝑔2)

= 𝜑( ⋁

𝛼(𝑔1)=𝑔2

(𝐾1 (𝑡)) (𝑔1))

= 𝜑( ⋁

𝛼(𝑔1)=𝑔2

⋀

𝑚1∈𝑀1

(𝑡 (𝑚1)

󳨀→𝑟 𝐼1 (𝑔1, 𝑚1)))

(†)

= 𝜑( ⋁

𝛼(𝑔1)=𝑔2

⋀

𝑚2∈𝑀2

(𝑡 ∘ 𝛽
𝑜𝑝
(𝑚2)

󳨀→𝑟 𝐼1 (𝑔1, 𝛽
𝑜𝑝
(𝑚2))))

(††)

= ⋁

𝛼(𝑔1)=𝑔2

⋀

𝑚2∈𝑀2

(𝜑 ∘ 𝑡 ∘ 𝛽
𝑜𝑝
(𝑚2)

󳨀→𝑟 𝜑 ∘ 𝐼1 (𝑔1, 𝛽
𝑜𝑝
(𝑚2)))

(†††)

= ⋁

𝛼(𝑔1)=𝑔2

⋀

𝑚2∈𝑀2

(𝜑 ∘ 𝑡 ∘ 𝛽
𝑜𝑝
(𝑚2)

󳨀→𝑟 𝐼2 (𝛼 (𝑔1) , 𝑚2))

= ⋁

𝛼(𝑔1)=𝑔2

⋀

𝑚2∈𝑀2

(𝜑 ∘ 𝑡 ∘ 𝛽
𝑜𝑝
(𝑚2) 󳨀→𝑟 𝐼2 (𝑔2, 𝑚2))

(†)

= ⋀

𝑚2∈𝑀2

(𝜑 ∘ 𝑡 ∘ 𝛽
𝑜𝑝
(𝑚2) 󳨀→𝑟 𝐼2 (𝑔2, 𝑚2))

= (𝐾2 (𝜑 ∘ 𝑡 ∘ 𝛽
𝑜𝑝
)) (𝑔2) = (𝐾2 ∘ (𝛽, 𝜑)

←𝑜
(𝑡)) (𝑔2) ,

(9)

where (†), (††) use the definition of the category S-FC𝐶

𝑚∗
,

whereas (†††) employs the fact thatK1

𝑓

󳨀→ K2 is amorphism
of the category S-FC𝐶

𝑚
.

In the notation “𝐻𝐶𝑚𝐷𝑎”, “𝐶𝑚” shows its domain, and
“𝐷𝑎” (short for “𝐷𝑀𝑅𝑎”) stands for its codomain. Similar
notational conventions will be used in the remainder of this
paper but will not be mentioned explicitly again.

In the following, we make the new functor into an
embedding. The result depends on a particular subcategory
of its domain.

Definition 49. Suppose that the variety L, of which S is a
subcategory, extends the variety UQuant of unital quantales.
S-FC𝐶

𝑚∗∗
(resp., S-FC𝐶

𝑚∗∙
) is the full subcategory of the

category S-FC𝐶

𝑚∗
, whose objects K = (𝐺,𝑀, 𝐿, 𝐼) are such

that 𝐺 is nonempty (resp., 𝑀 is nonempty) and, moreover,
1𝐿 ̸= ⊥𝐿.

The notation (−)∗∗ (resp., (−)∗∙) will be used for many
of the subcategories constructed in this paper, the scope of
each being limited to its respective subsection. Additionally,
more important constructions will be distinguished in a
different way. It is also important to emphasize that the
algebra requirement of Definition 49 is satisfied by the crisp
case (see Definition 31(1)).

Theorem 50. The restriction 𝐻
∗

𝐶𝑚𝐷𝑎
(resp., 𝐻∙

𝐶𝑚𝐷𝑎
) of the

functor S-FC𝐶

𝑚∗

𝐻𝐶𝑚𝐷𝑎
󳨀󳨀󳨀󳨀󳨀→ S-FC𝐷𝑀𝑅

𝑎
to S-FC𝐶

𝑚∗∗
(resp., S-FC𝐶

𝑚∗∙
)

gives an (in general, nonfull) embedding of the latter category
into S-FC𝐷𝑀𝑅

𝑎
.

Proof. We consider the case of the functor 𝐻∗

𝐶𝑚𝐷𝑎
first and

show its faithfulness. Given K1

𝑓1

󴁂󴀱
𝑓2

K2 in S-FC𝐶

𝑚∗∗
with

𝐻
∗

𝐶𝑚𝐷𝑎
(𝑓1) = 𝐻

∗

𝐶𝑚𝐷𝑎
(𝑓2), it follows that (𝛼1, 𝜑1)

→
=

(𝛼2, 𝜑2)
→ , (𝛽1, 𝜑1)

←𝑜
= (𝛽2, 𝜑2)

←𝑜.
To show that 𝛼1 = 𝛼2 (which we will refer to as 𝛼), notice

that given 𝑔1 ∈ 𝐺1,

((𝛼1, 𝜑1)
→
(𝜒

1𝐿1

{𝑔1}
)) (𝑔2) = 𝜑1( ⋁

𝛼1(𝑔
󸀠

1)=𝑔2

𝜒
1𝐿1

{𝑔1}
(𝑔

󸀠

1
))

= 𝜑1 ({
1𝐿1

, 𝑔2 = 𝛼1 (𝑔1)

⊥𝐿1
, otherwise

)

= {
1𝐿2

, 𝑔2 = 𝛼1 (𝑔1)

⊥𝐿2
, otherwise

= 𝜒
1𝐿2

{𝛼1(𝑔1)}
(𝑔2) ,

(10)

for every 𝑔2 ∈ 𝐺2. As a consequence, we obtain that 𝜒
1𝐿2

{𝛼1(𝑔1)}
=

(𝛼1, 𝜑1)
→
(𝜒

1𝐿1

{𝑔1}
) = (𝛼2, 𝜑2)

→
(𝜒

1𝐿1

{𝑔1}
) = 𝜒

1𝐿2

{𝛼2(𝑔1)}
and, therefore,

𝛼1(𝑔1) = 𝛼2(𝑔1), by our assumption that 1𝐿2 ̸= ⊥𝐿2
.

To show that 𝛽𝑜𝑝
1
= 𝛽

𝑜𝑝

2
= 𝛽

𝑜𝑝, notice that given𝑚2 ∈ 𝑀2,
((𝛽1, 𝜑1)

←𝑜
(𝜒

1𝐿1

{𝛽
𝑜𝑝

1
(𝑚2)}

))(𝑚2) = 𝜑1 ∘ 𝜒
1𝐿1

{𝛽
𝑜𝑝

1
(𝑚2)}

∘ 𝛽
𝑜𝑝

1
(𝑚2) = 1𝐿2

.
Additionally,

((𝛽2, 𝜑2)
←𝑜

(𝜒
1𝐿1

{𝛽
𝑜𝑝

1 (𝑚2)}
)) (𝑚2)

= 𝜑2 ∘ 𝜒
1𝐿1

{𝛽
𝑜𝑝

1 (𝑚2)}
∘ 𝛽

𝑜𝑝

2
(𝑚2)

= {
1𝐿2

, 𝛽
𝑜𝑝

2
(𝑚2) = 𝛽

𝑜𝑝

1
(𝑚2)

⊥𝐿2
, otherwise.

(11)

Since ((𝛽1, 𝜑1)
←𝑜
(𝜒

1𝐿1

{𝛽
𝑜𝑝

1
(𝑚2)}

))(𝑚2) =

((𝛽2, 𝜑2)
←𝑜
(𝜒

1𝐿1

{𝛽
𝑜𝑝

1
(𝑚2)}

))(𝑚2), it immediately follows that

𝛽
𝑜𝑝

1
(𝑚2) = 𝛽

𝑜𝑝

2
(𝑚2), by our assumption that 1𝐿2 ̸= ⊥𝐿2

.
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To show that 𝜑1 = 𝜑2 = 𝜑, notice that given 𝑎1 ∈ 𝐿1,
we can choose some 𝑔1 ∈ 𝐺1 (𝐺1 is nonempty). Then
((𝛼, 𝜑1)

→
(𝑎1))(𝛼(𝑔1)) = 𝜑1(⋁𝛼(𝑔󸀠

1
)=𝛼(𝑔1)

𝑎1(𝑔
󸀠

1
)) =

𝜑1(𝑎1) implies 𝜑1(𝑎1) = ((𝛼, 𝜑1)
→
(𝑎1))(𝛼(𝑔1)) =

((𝛼, 𝜑2)
→
(𝑎1))(𝛼(𝑔1)) = 𝜑2(𝑎1).

Turning the attention to the functor 𝐻∙

𝐶𝑚𝐷𝑎
, one follows

the same steps to obtain 𝛼1 = 𝛼2 = 𝛼 and 𝛽𝑜𝑝
1
= 𝛽

𝑜𝑝

2
= 𝛽

𝑜𝑝.
The only difference is in the proof of 𝜑1 = 𝜑2 = 𝜑. Given
𝑎1 ∈ 𝐿1, we choose some 𝑚2 ∈ 𝑀2 (𝑀2 is nonempty). It
follows then that ((𝛽, 𝜑1)

←𝑜
(𝑎1))(𝑚2) = 𝜑1 ∘ 𝑎1 ∘ 𝛽

𝑜𝑝
(𝑚2) =

𝜑1(𝑎1) and, therefore, 𝜑1(𝑎1) = ((𝛽, 𝜑1)
←𝑜
(𝑎1))(𝑚2) =

((𝛽, 𝜑2)
←𝑜
(𝑎1))(𝑚2) = 𝜑2(𝑎1).

For the nonfullness claim, we restrict the setting to the
crisp case (L = CBAlg and S = S2) and consider the
context K = (𝐺,𝑀, 𝐼), where 𝐺 = 𝑀 = |2| and 𝐼 =

𝐺 ×𝑀. By Lemma 43, it follows thatP(𝐺)
𝐻=𝑀

󳨀󳨀󳨀󳨀→ P(𝑀) and

P(𝑀)
𝐾=𝐺

󳨀󳨀󳨀→ P(𝐺). We define a formal context morphism

K
𝑓

󳨀→ K of the category 2-FC𝐷𝑀𝑅

𝑎
byP(𝐺)

𝛼=𝐺

󳨀󳨀󳨀→ P(𝐺) and

P(𝑀)
𝛽=𝑀

󳨀󳨀󳨀󳨀→ P(𝑀). Since the setting fits both the functor
𝐻

∗

𝐶𝑚𝐷𝑎
and 𝐻∙

𝐶𝑚𝐷𝑎
, we consider the case of the former one.

Suppose there exists some K
𝑓
󸀠

󳨀󳨀→ K in 2-FC𝐶

𝑚∗∗
such that

𝐻
∗

𝐶𝑚𝐷𝑎
(𝑓

󸀠
) = 𝑓. If follows that 𝛼 = (𝛼

󸀠
)
→ (crisp forward

powerset operator) and, therefore, {𝛼󸀠(⊥)} = (𝛼
󸀠
)
→
({⊥}) =

𝛼({⊥}) = 𝐺, which is an obvious contradiction.

5.1.2. From S-FC𝐶

𝑚
to S-FC𝐷𝑀𝑅. In this subsection, we con-

struct a functorial embedding of a particular subcategory of
the category S-FC𝐶

𝑚
into the category S-FC𝐷𝑀𝑅. We begin

again with singling out the subcategory in question.

Definition 51. S-FC𝐶

𝑚∗
is the (nonfull) subcategory of the

category S-FC𝐶

𝑚
, with the same objects, whose morphisms

K1

𝑓

󳨀→ K2 are such that the maps 𝐺1

𝛼

󳨀→ 𝐺2, 𝑀2

𝛽
𝑜𝑝

󳨀󳨀→

𝑀1 are surjective, whereas the S-morphism 𝐿1

𝜑

󳨀→ 𝐿2 is an
isomorphism.

With the new definition in hand, we can construct the
following functor.

Theorem 52. There exists the functor S-FC𝐶

𝑚∗

𝐻𝐶𝑚𝐷
󳨀󳨀󳨀󳨀→

S-FC𝐷𝑀𝑅, which is given by 𝐻𝐶𝑚𝐷(K1

𝑓

󳨀→ K2) =

K1

((𝛼,𝜑)
→
,((𝛽,𝜑)

⊢[𝑜
)
𝑜𝑝
)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ K2.

Proof. To show that the functor is correct on morphisms, we
verify commutativity of the diagrams

𝐿
𝐺1
1

𝐿
𝐺1
1

𝐿
𝐺2
2

𝐿
𝐺2
2𝐿

𝑀1
1

𝐿
𝑀1
1

𝐿
𝑀2
2

𝐿
𝑀2
2

(𝛼, 𝜑)→

(𝛼, 𝜑)→(𝛽, 𝜑)⊢⇢𝑜

(𝛽, 𝜑)⊢⇢𝑜

𝐻1 𝐻2 𝐾1 𝐾2 (12)

For the left-hand diagram, notice that given 𝑠 ∈ 𝐿
𝐺1

1
and

𝑚1 ∈ 𝑀1,

((𝛽, 𝜑)
⊢[𝑜

∘ 𝐻2 ∘ (𝛼, 𝜑)
→
(𝑠)) (𝑚1)

= 𝜑
⊢
( ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

(𝐻2 ∘ (𝛼, 𝜑)
→
(𝑠)) (𝑚2))

= 𝜑
⊢
( ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

( ⋀

𝑔2∈𝐺2

(((𝛼, 𝜑)
→
(𝑠)) (𝑔2)

󳨀→𝑙 𝐼2 (𝑔2, 𝑚2) )))

= 𝜑
⊢
( ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

( ⋀

𝑔2∈𝐺2

(𝜑( ⋁

𝛼(𝑔1)=𝑔2

𝑠 (𝑔1))

󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))))

= 𝜑
⊢
( ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

( ⋀

𝑔2∈𝐺2

(( ⋁

𝛼(𝑔1)=𝑔2

𝜑 ∘ 𝑠 (𝑔1))

󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))))

= 𝜑
⊢
( ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

( ⋀

𝑔2∈𝐺2

( ⋀

𝛼(𝑔1)=𝑔2

(𝜑 ∘ 𝑠 (𝑔1)

󳨀→𝑙 𝐼2 (𝑔2, 𝑚2)))))

= 𝜑
⊢
( ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

( ⋀

𝑔1∈𝐺1

(𝜑 ∘ 𝑠 (𝑔1)

󳨀→𝑙 𝐼2 (𝛼 (𝑔1) , 𝑚2))))

(†)

= 𝜑
⊢
( ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

( ⋀

𝑔1∈𝐺1

(𝜑 ∘ 𝑠 (𝑔1)

󳨀→𝑙 𝜑 ∘ 𝐼1 (𝑔1, 𝛽
𝑜𝑝
(𝑚2)))))
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= 𝜑
⊢
( ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

( ⋀

𝑔1∈𝐺1

(𝜑 ∘ 𝑠 (𝑔1)

󳨀→𝑙 𝜑 ∘ 𝐼1 (𝑔1, 𝑚1))))

(††)

= 𝜑
⊢
( ⋀

𝑔1∈𝐺1

(𝜑 ∘ 𝑠 (𝑔1) 󳨀→𝑙 𝜑 ∘ 𝐼1 (𝑔1, 𝑚1)))

(††)

= 𝜑
⊢
∘ 𝜑( ⋀

𝑔1∈𝐺1

(𝑠 (𝑔1) 󳨀→𝑙 𝐼1 (𝑔1, 𝑚1)))

(††)

= ⋀

𝑔1∈𝐺1

(𝑠 (𝑔1) 󳨀→𝑙 𝐼1 (𝑔1, 𝑚1)) = (𝐻1 (𝑠)) (𝑚1) ,

(13)

where (†) relies on the fact that K1

𝑓

󳨀→ K2 is a morphism
of the category S-FC𝐶

𝑚
, whereas (††) employs the definition

of the category S-FC𝐶

𝑚∗
(notice that the inverse of 𝜑 is easily

seen to be 𝜑⊢).
For the right-hand diagram, notice that given 𝑡 ∈ 𝐿𝑀2

2
and

𝑔2 ∈ 𝐺2,

((𝛼, 𝜑)
→
∘ 𝐾1 ∘ (𝛽, 𝜑)

⊢[𝑜
(𝑡)) (𝑔2)

= 𝜑( ⋁

𝛼(𝑔1)=𝑔2

(𝐾1 ∘ (𝛽, 𝜑)
⊢[𝑜

(𝑡)) (𝑔1))

= 𝜑( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚1∈𝑀1

(((𝛽, 𝜑)
⊢[𝑜

(𝑡)) (𝑚1)

󳨀→𝑟 𝐼1 (𝑔1, 𝑚1))))

= 𝜑( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚1∈𝑀1

(𝜑
⊢
( ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

𝑡 (𝑚2))

󳨀→𝑟 𝐼1 (𝑔1, 𝑚1))))

= 𝜑( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚1∈𝑀1

(( ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

𝜑
⊢
∘ 𝑡 (𝑚2))

󳨀→𝑟 𝐼1 (𝑔1, 𝑚1))))

= 𝜑( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚1∈𝑀1

( ⋀

𝛽𝑜𝑝(𝑚2)=𝑚1

(𝜑
⊢
∘ 𝑡 (𝑚2)

󳨀→𝑟 𝐼1 (𝑔1, 𝑚1)))))

= 𝜑( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚2∈𝑀2

(𝜑
⊢
∘ 𝑡 (𝑚2)

󳨀→𝑟 𝐼1 (𝑔1, 𝛽
𝑜𝑝
(𝑚2)))))

(†)

= ⋁

𝛼(𝑔1)=𝑔2

⋀

𝑚2∈𝑀2

(𝜑 ∘ 𝜑
⊢
∘ 𝑡 (𝑚2)

󳨀→𝑟 𝜑 ∘ 𝐼1 (𝑔1, 𝛽
𝑜𝑝
(𝑚2)))

(††)

= ⋁

𝛼(𝑔1)=𝑔2

⋀

𝑚2∈𝑀2

(𝜑 ∘ 𝜑
⊢
∘ 𝑡 (𝑚2) 󳨀→𝑟 𝐼2 (𝛼 (𝑔1) , 𝑚2))

= ⋁

𝛼(𝑔1)=𝑔2

⋀

𝑚2∈𝑀2

(𝜑 ∘ 𝜑
⊢
∘ 𝑡 (𝑚2) 󳨀→𝑟 𝐼2 (𝑔2, 𝑚2))

(†)

= ⋀

𝑚2∈𝑀2

(𝜑 ∘ 𝜑
⊢
∘ 𝑡 (𝑚2) 󳨀→𝑟 𝐼2 (𝑔2, 𝑚2))

(†)

= ⋀

𝑚2∈𝑀2

(𝑡 (𝑚2) 󳨀→𝑟 𝐼2 (𝑔2, 𝑚2)) = (𝐾2 (𝑡)) (𝑔2) ,

(14)

where (†) uses the definition of the category S-FC𝐶

𝑚∗
, whereas

(††) relies on the fact that K1

𝑓

󳨀→ K2 is a morphism of the
category S-FC𝐶

𝑚
.

The category S-FC𝐶

𝑚∗∗
(resp., S-FC𝐶

𝑚∗∙
) of Definition 49

provides the following result.

Theorem 53. The restriction 𝐻
∗

𝐶𝑚𝐷
(resp., 𝐻∙

𝐶𝑚𝐷
) of the

functor S-FC𝐶

𝑚∗

𝐻𝐶𝑚𝐷
󳨀󳨀󳨀󳨀→ S-FC𝐷𝑀𝑅 to S-FC𝐶

𝑚∗∗
(resp., S-FC𝐶

𝑚∗∙
)

gives an (in general, nonfull) embedding of the latter category
into S-FC𝐷𝑀𝑅.

Proof. Follow the steps of the proof of Theorem 50, where
the backward powerset operator (𝛽, 𝜑)←𝑜 is substituted by the
forward powerset operator (𝛽, 𝜑)⊢[𝑜.

5.1.3. From S-FC𝐶 to S-FC𝐷𝑀𝑅

𝑎
. In this subsection, we con-

struct a functorial embedding of a particular subcategory of
the category S-FC𝐶 into the category S-FC𝐷𝑀𝑅

𝑎
. We start by

defining the subcategory in question.

Definition 54. S-FC𝐶

∗
is the (nonfull) subcategory of the

category S-FC𝐶, with the same objects, whose morphisms
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K1

𝑓

󳨀→ K2 are such that the maps 𝐺1

𝛼

󳨀→ 𝐺2,𝑀2

𝛽
𝑜𝑝

󳨀󳨀→ 𝑀1 are

surjective, whereas the S𝑜𝑝-morphism 𝐿2

𝜑
𝑜𝑝

󳨀󳨀→ 𝐿1 is injective,

and, moreover, |𝐿1|
𝜑
𝑜𝑝⊢

󳨀󳨀󳨀→ |𝐿2| preserves⋁, → 𝑙 and → 𝑟.

For the new category in hand, in the following, we
construct its respective functor.

Theorem 55. There exists the functor S-FC𝐶

∗

𝐻𝐶𝐷𝑎
󳨀󳨀󳨀󳨀→ S-FC𝐷𝑀𝑅

𝑎
,

which is given by𝐻𝐶𝐷𝑎(K1

𝑓

󳨀→ K2) = K1

((𝛼,𝜑)
⊢[

,((𝛽,𝜑)
⊢\𝑜

)
𝑜𝑝

)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→

K2.

Proof. To show that the functor is correct on morphisms, we
verify commutativity of the diagrams

𝐿
𝐺1
1

𝐿
𝐺1
1

𝐿
𝐺2
2

𝐿
𝐺2
2

𝐿
𝑀1
1

𝐿
𝑀1
1 𝐿

𝑀2

𝑀2

2

𝐿2

(𝛽, 𝜑)⊢⇠𝑜

(𝛽, 𝜑)⊢⇠𝑜

(𝛼, 𝜑)⊢⇢

𝐻1

(𝛼, 𝜑)⊢⇢

𝐻2 𝐾1 𝐾2 (15)

For the left-hand diagram, notice that given 𝑠 ∈ 𝐿
𝐺1

1
and

𝑚2 ∈ 𝑀2,

(𝐻2 ∘ (𝛼, 𝜑)
⊢[

(𝑠)) (𝑚2)

= ⋀

𝑔2∈𝐺2

(((𝛼, 𝜑)
⊢[

(𝑠)) (𝑔2) 󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))

= ⋀

𝑔2∈𝐺2

(𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

𝑠 (𝑔1))󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))

(†)

= ⋀

𝑔2∈𝐺2

(( ⋁

𝛼(𝑔1)=𝑔2

𝜑
𝑜𝑝⊢

∘ 𝑠 (𝑔1))󳨀→𝑙𝐼2 (𝑔2, 𝑚2))

= ⋀

𝑔2∈𝐺2

⋀

𝛼(𝑔1)=𝑔2

(𝜑
𝑜𝑝⊢

∘ 𝑠 (𝑔1) 󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))

= ⋀

𝑔1∈𝐺1

(𝜑
𝑜𝑝⊢

∘ 𝑠 (𝑔1) 󳨀→𝑙 𝐼2 (𝛼 (𝑔1) , 𝑚2))

(†)

= ⋀

𝑔1∈𝐺1

(𝜑
𝑜𝑝⊢

∘ 𝑠 (𝑔1) 󳨀→𝑙 𝜑
𝑜𝑝⊢

∘ 𝜑
𝑜𝑝
∘ 𝐼2 (𝛼 (𝑔1) , 𝑚2))

(†)

= 𝜑
𝑜𝑝⊢

( ⋀

𝑔1∈𝐺1

(𝑠 (𝑔1) 󳨀→𝑙 𝜑
𝑜𝑝
∘ 𝐼2 (𝛼 (𝑔1) , 𝑚2)))

(††)

= 𝜑
𝑜𝑝⊢

( ⋀

𝑔1∈𝐺1

(𝑠 (𝑔1) 󳨀→𝑙 𝐼1 (𝑔1, 𝛽
𝑜𝑝
(𝑚2))))

= (𝜑
𝑜𝑝⊢

∘ 𝐻1 (𝑠) ∘ 𝛽
𝑜𝑝
) (𝑚2)

= ((𝛽, 𝜑)
⊢\𝑜

∘ 𝐻1 (𝑠)) (𝑚2) ,

(16)

where (†) uses Definition 54 (notice that 𝜑𝑜𝑝⊢ is a left inverse

to 𝜑𝑜𝑝), whereas (††) relies on the fact that K1

𝑓

󳨀→ K2 is a
morphism of S-FC𝐶.

For the right-hand diagram, notice that given 𝑡 ∈ 𝐿𝑀1
1

and
𝑔2 ∈ 𝐺2,

((𝛼, 𝜑)
⊢[

∘ 𝐾1 (𝑡)) (𝑔2)

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

(𝐾1 (𝑡)) (𝑔1))

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚1∈𝑀1

(𝑡 (𝑚1) 󳨀→𝑟 𝐼1 (𝑔1, 𝑚1))))

(†)

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚2∈𝑀2

(𝑡 ∘ 𝛽
𝑜𝑝
(𝑚2)

󳨀→𝑟 𝐼1 (𝑔1, 𝛽
𝑜𝑝
(𝑚2)))))

(††)

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚2∈𝑀2

(𝑡 ∘ 𝛽
𝑜𝑝
(𝑚2)

󳨀→𝑟 𝜑
𝑜𝑝
∘ 𝐼2 (𝛼 (𝑔1) , 𝑚2))))

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚2∈𝑀2

(𝑡 ∘ 𝛽
𝑜𝑝
(𝑚2)

󳨀→𝑟 𝜑
𝑜𝑝
∘ 𝐼2 (𝑔2, 𝑚2))))

(†)

= 𝜑
𝑜𝑝⊢

( ⋀

𝑚2∈𝑀2

(𝑡 ∘ 𝛽
𝑜𝑝
(𝑚2) 󳨀→𝑟 𝜑

𝑜𝑝
∘ 𝐼2 (𝑔2, 𝑚2)))

(†)

= ⋀

𝑚2∈𝑀2

(𝜑
𝑜𝑝⊢

∘ 𝑡 ∘ 𝛽
𝑜𝑝
(𝑚2) 󳨀→𝑟 𝜑

𝑜𝑝⊢
∘ 𝜑

𝑜𝑝
∘ 𝐼2 (𝑔2, 𝑚2))

(†)

= ⋀

𝑚2∈𝑀2

(𝜑
𝑜𝑝⊢

∘ 𝑡 ∘ 𝛽
𝑜𝑝
(𝑚2) 󳨀→𝑟 𝐼2 (𝑔2, 𝑚2))

= (𝐾2 (𝜑
𝑜𝑝⊢

∘ 𝑡 ∘ 𝛽
𝑜𝑝
)) (𝑔2)

= (𝐾2 ∘ (𝛽, 𝜑)
⊢\𝑜

(𝑡)) (𝑔2) ,

(17)

where (†) uses Definition 54, whereas (††) relies on the fact
thatK1

𝑓

󳨀→ K2 is a morphism of S-FC𝐶.
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In the following, we make the new functor into an
embedding.

Definition 56. Suppose that the variety L, of which S is a
subcategory, extends UQuant. S-FC𝐶

∗∗
(resp., S-FC𝐶

∗∙
) is the

(nonfull) subcategory of the category S-FC𝐶

∗
, comprising the

following data.

Objects. S-FC𝐶

∗
-objectsK, for which𝐺 is nonempty (resp.,𝑀

is nonempty) and, moreover, 1𝐿 ̸= ⊥𝐿.

Morphisms. S-FC𝐶

∗
-morphisms K1

𝑓

󳨀→ K2, for which

|𝐿1|
𝜑
𝑜𝑝⊢

󳨀󳨀󳨀→ |𝐿2| is 1-preserving.

The reader should notice the essential difference in the
setting of Definition 49, namely, an additional condition on
the morphisms of the new category.

Theorem 57. The restriction𝐻∗

𝐶𝐷𝑎
(resp.,𝐻∙

𝐶𝐷𝑎
) of the functor

S-FC𝐶

∗

𝐻𝐶𝐷𝑎
󳨀󳨀󳨀󳨀→ S-FC𝐷𝑀𝑅

𝑎
to the category S-FC𝐶

∗∗
(resp., S-FC𝐶

∗∙
)

gives an (in general nonfull) embedding of the latter category
into S-FC𝐷𝑀𝑅

𝑎
.

Proof. Follow the proof of Theorem 50, with the respective
changes in the powerset operators.

5.1.4. From S-𝐹C𝐶 to S-FC𝐷𝑀𝑅. In this subsection, we con-
struct a functorial embedding of a particular subcategory of
the category S-FC𝐶 into the category S-FC𝐷𝑀𝑅. As before, we
begin with singling out the subcategory in question.

Definition 58. S-FC𝐶

∗
is the (nonfull) subcategory of the cat-

egory S-FC𝐶, with the same objects, and whose morphisms

K1

𝑓

󳨀→ K2 are such that the maps 𝐺1

𝛼

󳨀→ 𝐺2, 𝑀2

𝛽
𝑜𝑝

󳨀󳨀→ 𝑀1

are surjective, whereas the S𝑜𝑝-morphism 𝐿2

𝜑
𝑜𝑝

󳨀󳨀→ 𝐿1 is an
isomorphism.

With the new category in hand, we are ready to define a
new functor as follows.

Theorem 59. There exists the functor S-FC𝐶

∗

𝐻𝐶𝐷
󳨀󳨀󳨀→ S-FC𝐷𝑀𝑅,

which is given by 𝐻𝐶𝐷(K1

𝑓

󳨀→ K2) = K1

((𝛼,𝜑)
⊢[

,((𝛽,𝜑)
→𝑜

)
𝑜𝑝
)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→

K2.

Proof. To show that the functor is correct on morphisms, we
verify commutativity of the diagrams

𝐿
𝐺1
1

𝐿
𝐺1
1

𝐿
𝐺2
2

𝐿
𝐺2
2𝐿

𝑀1
1

𝐿
𝑀1
1

𝐿
𝑀2
2

𝐿2

(𝛼, 𝜑)⊢⇢

(𝛼, 𝜑)⊢⇢

(𝛽, 𝜑)→𝑜

(𝛽, 𝜑)→𝑜

𝐻1 𝐻2 𝐾1 𝐾2

𝑀2

(18)

For the left-hand diagram, notice that given 𝑠 ∈ 𝐿
𝐺1

1
and

𝑚1 ∈ 𝑀1,

((𝛽, 𝜑)
→𝑜

∘ 𝐻2 ∘ (𝛼, 𝜑)
⊢[

(𝑠)) (𝑚1)

= 𝜑
𝑜𝑝
( ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

(𝐻2 ∘ (𝛼, 𝜑)
⊢[

(𝑠)) (𝑚2))

= 𝜑
𝑜𝑝
( ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

( ⋀

𝑔2∈𝐺2

(((𝛼, 𝜑)
⊢[

(𝑠)) (𝑔2)

󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))))

= 𝜑
𝑜𝑝
( ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

( ⋀

𝑔2∈𝐺2

(𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

𝑠 (𝑔1))

󳨀→𝑙𝐼2 (𝑔2, 𝑚2))))

(†)

= 𝜑
𝑜𝑝
( ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

( ⋀

𝑔2∈𝐺2

(( ⋁

𝛼(𝑔1)=𝑔2

𝜑
𝑜𝑝⊢

∘ 𝑠 (𝑔1))

󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))))

= 𝜑
𝑜𝑝
( ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

(⋀

𝑔2∈𝐺2

( ⋀

𝛼(𝑔1)=𝑔2

(𝜑
𝑜𝑝⊢

∘ 𝑠 (𝑔1)

󳨀→𝑙 𝐼2 (𝑔2, 𝑚2) ))))

= 𝜑
𝑜𝑝
( ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

( ⋀

𝑔1∈𝐺1

(𝜑
𝑜𝑝⊢

∘ 𝑠 (𝑔1)

󳨀→𝑙 𝐼2 (𝛼 (𝑔1) , 𝑚2) )))

(†)

= ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

⋀

𝑔1∈𝐺1

(𝜑
𝑜𝑝
∘ 𝜑

𝑜𝑝⊢
∘ 𝑠 (𝑔1)

󳨀→𝑙 𝜑
𝑜𝑝
∘ 𝐼2 (𝛼 (𝑔1) , 𝑚2) )

(††)

= ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

⋀

𝑔1∈𝐺1

(𝜑
𝑜𝑝
∘𝜑

𝑜𝑝⊢
∘𝑠 (𝑔1)󳨀→𝑙 𝐼1 (𝑔1, 𝛽

𝑜𝑝
(𝑚2)))

(†)

= ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

⋀

𝑔1∈𝐺1

(𝑠 (𝑔1) 󳨀→𝑙 𝐼1 (𝑔1, 𝛽
𝑜𝑝
(𝑚2)))
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= ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

⋀

𝑔1∈𝐺1

(𝑠 (𝑔1) 󳨀→𝑙 𝐼1 (𝑔1, 𝑚1))

(†)

= ⋀

𝑔1∈𝐺1

(𝑠 (𝑔1) 󳨀→𝑙 𝐼1 (𝑔1, 𝑚1)) = (𝐻1 (𝑠)) (𝑚1) ,

(19)

where (†) uses Definition 58, whereas (††) relies on the fact
thatK1

𝑓

󳨀→ K2 is a morphism of S-FC𝐶.
For the right-hand diagram, notice that given 𝑡 ∈ 𝐿𝑀2

2
and

𝑔2 ∈ 𝐺2,

((𝛼, 𝜑)
⊢[

∘ 𝐾1 ∘ (𝛽, 𝜑)
→𝑜

(𝑡)) (𝑔2)

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

(𝐾1 ∘ (𝛽, 𝜑)
→𝑜

(𝑡)) (𝑔1))

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚1∈𝑀1

(((𝛽, 𝜑)
→𝑜

(𝑡)) (𝑚1)

󳨀→𝑟 𝐼1 (𝑔1, 𝑚1) )))

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚1∈𝑀1

(𝜑
𝑜𝑝
( ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

𝑡 (𝑚2))

󳨀→𝑟 𝐼1 (𝑔1, 𝑚1))))

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚1∈𝑀1

(( ⋁

𝛽𝑜𝑝(𝑚2)=𝑚1

𝜑
𝑜𝑝
∘ 𝑡 (𝑚2))

󳨀→𝑟 𝐼1 (𝑔1, 𝑚1))))

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚1∈𝑀1

( ⋀

𝛽𝑜𝑝(𝑚2)=𝑚1

(𝜑
𝑜𝑝
∘ 𝑡 (𝑚2)

󳨀→𝑟 𝐼1 (𝑔1, 𝑚1)))))

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚2∈𝑀2

(𝜑
𝑜𝑝
∘ 𝑡 (𝑚2)

󳨀→𝑟 𝐼1 (𝑔1, 𝛽
𝑜𝑝
(𝑚2)))))

(†)

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚2∈𝑀2

(𝜑
𝑜𝑝
∘ 𝑡 (𝑚2)

󳨀→𝑟 𝜑
𝑜𝑝
∘ 𝐼2 (𝛼 (𝑔1) , 𝑚2))))

(††)

= 𝜑
𝑜𝑝⊢

∘𝜑
𝑜𝑝
( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚2∈𝑀2

(𝑡 (𝑚2)

󳨀→𝑟 𝐼2 (𝛼 (𝑔1) , 𝑚2))))

(††)

= ⋁

𝛼(𝑔1)=𝑔2

⋀

𝑚2∈𝑀2

(𝑡 (𝑚2) 󳨀→𝑟 𝐼2 (𝛼 (𝑔1) , 𝑚2))

= ⋁

𝛼(𝑔1)=𝑔2

⋀

𝑚2∈𝑀2

(𝑡 (𝑚2) 󳨀→𝑟 𝐼2 (𝑔2, 𝑚2))

(††)

= ⋀

𝑚2∈𝑀2

(𝑡 (𝑚2) 󳨀→𝑟 𝐼2 (𝑔2, 𝑚2)) = (𝐾2 (𝑡)) (𝑔2) ,

(20)

where (†) uses the fact that K1

𝑓

󳨀→ K2 is a morphism of
S-FC𝐶, whereas (††) employs Definition 58.

Similar to Definition 49, one obtains the categories
S-FC𝐶

∗∗
and S-FC𝐶

∗∙
. Moreover, similar to Theorem 50, one

gets the following result.

Theorem 60. The restriction 𝐻∗

𝐶𝐷
(resp., 𝐻∙

𝐶𝐷
) of the functor

S-FC𝐶

∗

𝐻𝐶𝐷
󳨀󳨀󳨀→ S-FC𝐷𝑀𝑅 to S-FC𝐶

∗∗
(resp., S-FC𝐶

∗∙
) gives an

(in general nonfull) embedding of the latter category into
S-FC𝐷𝑀𝑅.

5.1.5. From S-FC𝐷𝑀𝑅 to S-FC𝐶. In this subsection, we con-
struct functorial embeddings of several subcategories of the
category S-FC𝐷𝑀𝑅 into the category S-FC𝐶 (most of them
are motivated by [29]). We begin with defining the first
subcategory in question. The reader should note that all the
subcategories constructed in this subsection are fixed-basis.

Definition 61. Given an L-algebra 𝐿, 𝐿-FC𝐷𝑀𝑅

i is the (nonfull)
subcategory of the category 𝐿-FC𝐷𝑀𝑅, with the same objects,

whose morphisms K1

𝑓

󳨀→ K2 have the property that the

maps 𝐿𝐺1 𝛼

󳨀→ 𝐿
𝐺2 , 𝐿𝑀2

𝛽
𝑜𝑝

󳨀󳨀→ 𝐿
𝑀1 are injective.

The reader should notice that “i” in 𝐿-FC𝐷𝑀𝑅

i stands for
“injective.”
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Theorem 62. There exists the functor 𝐿-FC𝐷𝑀𝑅

i

𝐻
i
𝐷𝐶

󳨀󳨀󳨀→ S-FC𝐶,

which is given by𝐻i
𝐷𝐶
(K1

𝑓

󳨀→ K2) = (𝐿
𝐺1 , 𝐿

𝑀1 , 𝐿, 𝐼̂1)
(𝛼,𝛽,1𝐿)

󳨀󳨀󳨀󳨀󳨀󳨀→

(𝐿
𝐺2 , 𝐿

𝑀2 , 𝐿, 𝐼̂2), where

𝐼̂𝑗 (𝑠, 𝑡) = {
⊤𝐿, (𝑠, 𝑡) is a formal concept ofK𝑗

⊥𝐿, otherwise.
(21)

Proof. We have to show that the functor is correct on
morphisms. Given 𝑠1 ∈ 𝐿

𝐺1 and 𝑡2 ∈ 𝐿
𝑀2 , it follows that

𝐼̂1(𝑠1, 𝛽
𝑜𝑝
(𝑡2)) = ⊤𝐿 iff (𝑠1, 𝛽

𝑜𝑝
(𝑡2)) is a formal concept ofK1

iff (𝛼(𝑠1), 𝑡2) is a formal concept of K2 iff 𝐼̂2(𝛼(𝑠1), 𝑡2) = ⊤𝐿,
where the second “iff” uses Theorem 45(3).

In the following, we make the functor ofTheorem 62 into
an embedding. To achieve the goal, we impose a restriction
on the chosen L-algebra 𝐿.

Definition 63. An L-algebra 𝐿 is called quasistrictly right-
sided (qsrs-algebra, for short) provided that 𝑎 ⩽ (⊤𝐿→ 𝑙𝑎) ⊗

⊤𝐿 for every 𝑎 ∈ 𝐿.

Since every quantale𝑄has the property (⊤𝑄→ 𝑙𝑞) ⊗ ⊤𝑄 ⩽

𝑞 for every 𝑞 ∈ 𝑄 (use Example 21(2)), every qsrs-algebra 𝐿
satisfies (⊤𝐿→ 𝑙𝑎)⊗⊤𝐿 = 𝑎 for every 𝑎 ∈ 𝐿. Additionally, if𝑄
is a strictly right-sided quantale (recall Definition 9), then, for
every 𝑞 ∈ 𝑄, ⊤𝐿→ 𝑙𝑞 = 𝑞 yields (⊤𝐿→ 𝑙𝑞) ⊗ ⊤𝐿 = ⊤𝐿→ 𝑙𝑞 =

𝑞. As a result, every L-algebra 𝐿 extending a strictly right-
sided quantale 𝑄 is a qsrs-algebra, but not vice versa.

Theorem 64. For every qsrs-algebra 𝐿, the functor

𝐿-FC𝐷𝑀𝑅

i

𝐻
i
𝐷𝐶

󳨀󳨀󳨀→ S-FC𝐶 is a nonfull embedding.

Proof. It will be enough to show that the functor 𝐻
i
𝐷𝐶

is injective on objects. Given K1, K2 in 𝐿-FC𝐷𝑀𝑅

i

such that 𝐻
i
𝐷𝐶
(K1) = 𝐻

i
𝐷𝐶
(K2), it follows that

(𝐿
𝐺1 , 𝐿

𝑀1 , 𝐿, 𝐼̂1) = (𝐿
𝐺2 , 𝐿

𝑀2 , 𝐿, 𝐼̂2) and, therefore,
𝐺1 = 𝐺2 = 𝐺, 𝑀1 = 𝑀2 = 𝑀 and 𝐼̂1 = 𝐼̂2. To show that
𝐼1 = 𝐼2, we assume that 𝐼1 ̸= 𝐼2. Then there exist some 𝑔 ∈ 𝐺

and𝑚 ∈ 𝑀 such that 𝐼1(𝑔,𝑚) 󳠠 𝐼2(𝑔,𝑚). As a consequence,
we obtain that ⊥𝐿 ̸= ⊤𝐿. The properties of Galois connections
of Theorem 19 imply that 𝐻1 ∘ 𝐾1 ∘ 𝐻1(𝜒

⊤𝐿

{𝑔}
) = 𝐻1(𝜒

⊤𝐿

{𝑔}
),

and, therefore, (𝐾1 ∘ 𝐻1(𝜒
⊤𝐿

{𝑔}
),𝐻1(𝜒

⊤𝐿

{𝑔}
)) is a formal concept

of K1. As a consequence, 𝐼̂1(𝐾1 ∘ 𝐻1(𝜒
⊤𝐿

{𝑔}
),𝐻1(𝜒

⊤𝐿

{𝑔}
)) = ⊤𝐿

and, thus, 𝐼̂2(𝐾1 ∘ 𝐻1(𝜒
⊤𝐿

{𝑔}
),𝐻1(𝜒

⊤𝐿

{𝑔}
)) = ⊤𝐿; that is, (𝐾1 ∘

𝐻1(𝜒
⊤𝐿

{𝑔}
),𝐻1(𝜒

⊤𝐿

{𝑔}
)) is a formal concept of K2. It follows

that 𝜒
⊤𝐿

{𝑔}
⩽ 𝐾1 ∘ 𝐻1(𝜒

⊤𝐿

{𝑔}
) = 𝐾2 ∘ 𝐻1(𝜒

⊤𝐿

{𝑔}
) and,

therefore, ⊤𝐿 = 𝜒
⊤𝐿

{𝑔}
(𝑔) ⩽ (𝐾1 ∘ 𝐻1(𝜒

⊤𝐿

{𝑔}
))(𝑔) = (𝐾2 ∘

𝐻1(𝜒
⊤𝐿

{𝑔}
))(𝑔) = ⋀

𝑚󸀠∈𝑀
((𝐻1(𝜒

⊤𝐿

{𝑔}
))(𝑚

󸀠
)→ 𝑟𝐼2(𝑔,𝑚

󸀠
)) =

⋀
𝑚󸀠∈𝑀

((⋀
𝑔󸀠∈𝐺

(𝜒
⊤𝐿

{𝑔}
(𝑔

󸀠
)→ 𝑙𝐼1(𝑔

󸀠
, 𝑚

󸀠
)))→ 𝑟𝐼2(𝑔,𝑚

󸀠
)) =

⋀
𝑚󸀠∈𝑀

((⊤𝐿→ 𝑙𝐼1(𝑔,𝑚
󸀠
))→ 𝑟𝐼2(𝑔,𝑚

󸀠
))⩽ (⊤𝐿→ 𝑙𝐼1(𝑔,𝑚))→ 𝑟

𝐼2(𝑔,𝑚). As a result, 𝐼1(𝑔,𝑚)
(†)

⩽ (⊤𝐿→ 𝑙𝐼1(𝑔,𝑚)) ⊗ ⊤𝐿 ⩽

𝐼2(𝑔,𝑚), where (†) uses the definition of qsrs-algebras,
and, therefore, 𝐼1(𝑔,𝑚) ⩽ 𝐼2(𝑔,𝑚), which contradicts our
assumption 𝐼1(𝑔,𝑚) 󳠠 𝐼2(𝑔,𝑚).

To show that the functor is nonfull, we let L = Quant
and 𝐿 = ([0, 1], ⋁,⋀), that is, taking the unit interval [0, 1],
with its standard lattice-theoretic structure. Since 𝐿 is clearly
strictly two-sided, it is quasistrictly right-sided. Define a map
|𝐿|

𝜑

󳨀→ |𝐿| by

𝜑 (𝑎) =

{{

{{

{

3

2
⋅ 𝑎, 𝑎 ∈ [0,

1

2
] ,

1

2
⋅ 𝑎 +

1

2
, 𝑎 ∈ (

1

2
, 1] .

(22)

It follows that 𝐿
𝜑

󳨀→ 𝐿 is an STSQuant-isomorphism, which is
different from 1𝐿. Define now a lattice-valued formal context
K as 𝐺 = 𝑀 = {∗} and 𝐼 = ⊤𝐿. It is easy to see that

𝐻
i
𝐷𝐶
(K)

𝑓=(1
𝐿
𝐺 ,1𝐿𝑀

,𝜑
𝑜𝑝
)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 𝐻
i
𝐷𝐶
(K) is an S-FC𝐶-morphism,

since 𝜑(𝑎) = ⊤𝐿 (resp., 𝜑(𝑎) = ⊥𝐿) iff 𝑎 = ⊤𝐿 (resp., 𝑎 = ⊥𝐿).
Additionally, the morphism is clearly not in the image of the
functor𝐻i

𝐷𝐶
.

To continue, we provide the second of the claimed
embeddings. As usual, we begin by singling out a particular
fixed-basis subcategory of the category S-FC𝐷𝑀𝑅.

Definition 65. Given anL-algebra𝐿,𝐿-FC𝐷𝑀𝑅

𝑜𝑟𝑝
is the (nonfull)

subcategory of the category 𝐿-FC𝐷𝑀𝑅, with the same objects,

whose morphisms K1

𝑓

󳨀→ K2 satisfy the property that the

maps 𝐿𝐺1 𝛼

󳨀→ 𝐿
𝐺2 , 𝐿𝑀2

𝛽
𝑜𝑝

󳨀󳨀→ 𝐿
𝑀1 are order-preserving.

The reader should notice that “𝑜𝑟𝑝” in 𝐿-FC𝐷𝑀𝑅

𝑜𝑟𝑝
stands

for “order-preserving.”

Theorem 66. There exists the functor 𝐿-FC𝐷𝑀𝑅

𝑜𝑟𝑝

𝐻
𝑜𝑟𝑝

𝐷𝐶

󳨀󳨀󳨀→ S-FC𝐶,

which is given by𝐻𝑜𝑟𝑝

𝐷𝐶
(K1

𝑓

󳨀→ K2) = (𝐿
𝐺1 , 𝐿

𝑀1 , 𝐿, 𝐼̂1)
(𝛼,𝛽,1𝐿)

󳨀󳨀󳨀󳨀󳨀󳨀→

(𝐿
𝐺2 , 𝐿

𝑀2 , 𝐿, 𝐼̂2), where

𝐼̂𝑗 (𝑠, 𝑡) = {
⊤𝐿, (𝑠, 𝑡) is a formal preconcept ofK𝑗

⊥𝐿, otherwise.
(23)

Proof. We have to show that the functor is correct on
morphisms. Given 𝑠1 ∈ 𝐿

𝐺1 and 𝑡2 ∈ 𝐿
𝑀2 , it fol-

lows that 𝐼̂1(𝑠1, 𝛽
𝑜𝑝
(𝑡1)) = ⊤𝐿 iff (𝑠1, 𝛽

𝑜𝑝
(𝑡1)) is a formal

preconcept of K1 iff (𝛼(𝑠1), 𝑡2) is a formal preconcept of
K2 iff 𝐼̂2(𝛼(𝑠1), 𝑡2) = ⊤𝐿, where the second “iff” uses
Theorem 45(5).

The machinery of Theorem 64 does well enough in this
modified case as well.

Theorem 67. For every qsrs-algebra 𝐿, the functor

𝐿-FC𝐷𝑀𝑅

𝑜𝑟𝑝

𝐻
𝑜𝑟𝑝

𝐷𝐶

󳨀󳨀󳨀→ S-FC𝐶 is a nonfull embedding.

Proof. The proof starts precisely as that of Theorem 64. To
show that 𝐼1 = 𝐼2, we again assume the existence of some 𝑔 ∈
𝐺 and𝑚 ∈ 𝑀 such that 𝐼1(𝑔,𝑚) 󳠠 𝐼2(𝑔,𝑚).The properties of
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Galois connections (Theorem 19) provide𝜒⊤𝐿
{𝑔}

⩽ 𝐾1∘𝐻1(𝜒
⊤𝐿

{𝑔}
),

which implies that (𝜒⊤𝐿
{𝑔}
, 𝐻1(𝜒

⊤𝐿

{𝑔}
)) is a formal preconcept of

K1. It follows that 𝐼̂1(𝜒
⊤𝐿

{𝑔}
, 𝐻1(𝜒

⊤𝐿

{𝑔}
)) = ⊤𝐿 and, therefore,

𝐼̂2(𝜒
⊤𝐿

{𝑔}
, 𝐻1(𝜒

⊤𝐿

{𝑔}
)) = ⊤𝐿; that is, (𝜒

⊤𝐿

{𝑔}
, 𝐻1(𝜒

⊤𝐿

{𝑔}
)) is a formal

preconcept ofK2, and, as a result,𝜒
⊤𝐿

{𝑔}
⩽ 𝐾2∘𝐻1(𝜒

⊤𝐿

{𝑔}
). Similar

to the proof of Theorem 64, one obtains that 𝐼1(𝑔,𝑚) ⩽

𝐼2(𝑔,𝑚), thereby getting a contradiction with the assumption
𝐼1(𝑔,𝑚) 󳠠 𝐼2(𝑔,𝑚).

The nonfullness part follows the steps of the proof of
Theorem 64.

To continue, we show yet another one of the claimed
embeddings, which never requires singling out a particular
subcategory of the category 𝐿-FC𝐷𝑀𝑅 (but is still fixed-basis).

Theorem 68. There exists the functor 𝐿-FC𝐷𝑀𝑅
𝐻𝐷𝐶
󳨀󳨀󳨀→ S-FC𝐶,

which is given by𝐻𝐷𝐶(K1

𝑓

󳨀→ K2) = (𝐿
𝐺1 , 𝐿

𝑀1 , 𝐿, 𝐼̂1)
(𝛼,𝛽,1𝐿)

󳨀󳨀󳨀󳨀󳨀󳨀→

(𝐿
𝐺2 , 𝐿

𝑀2 , 𝐿, 𝐼̂2), where

𝐼̂𝑗 (𝑠, 𝑡) = {
⊤𝐿, (𝑠, 𝑡) is a formal protoconcept ofK𝑗

⊥𝐿, otherwise.
(24)

Proof. We have to show that the functor is correct on
morphisms. Given 𝑠1 ∈ 𝐿

𝐺1 and 𝑡2 ∈ L𝑀2 , it follows
that 𝐼̂1(𝑠1, 𝛽

𝑜𝑝
(𝑡1)) = ⊤𝐿 iff (𝑠1, 𝛽

𝑜𝑝
(𝑡1)) is a formal pro-

toconcept of K1 iff (𝛼(𝑠1), 𝑡2) is a formal protoconcept of
K2 iff 𝐼̂2(𝛼(𝑠1), 𝑡2) = ⊤𝐿, where the second “iff” uses
Theorem 45(4).

The machinery of Theorem 64 does well even in this
extended setting.

Theorem 69. For every qsrs-algebra 𝐿, the functor
𝐿-FC𝐷𝑀𝑅

𝐻𝐷𝐶
󳨀󳨀󳨀→ S-FC𝐶 is a nonfull embedding.

Proof. The proof starts precisely as that of Theorem 64. To
show that 𝐼1 = 𝐼2, we again assume the existence of some
𝑔 ∈ 𝐺 and 𝑚 ∈ 𝑀 such that 𝐼1(𝑔,𝑚) 󳠠 𝐼2(𝑔,𝑚). Since
𝐾1 ∘ 𝐻1(𝜒

⊤𝐿

{𝑔}
) = 𝐾1 ∘ 𝐻1(𝜒

⊤𝐿

{𝑔}
), (𝜒⊤𝐿

{𝑔}
, 𝐻1(𝜒

⊤𝐿

{𝑔}
)) is a formal

protoconcept of K1. It follows that 𝐼̂1(𝜒
⊤𝐿

{𝑔}
, 𝐻1(𝜒

⊤𝐿

{𝑔}
)) = ⊤𝐿

and, therefore, 𝐼̂2(𝜒
⊤𝐿

{𝑔}
, 𝐻1(𝜒

⊤𝐿

{𝑔}
)) = ⊤𝐿, that is, (𝜒

⊤𝐿

{𝑔}
, 𝐻1(𝜒

⊤𝐿

{𝑔}
))

is a formal protoconcept of K2, and, as a result, 𝜒
⊤𝐿

{𝑔}
⩽ 𝐾2 ∘

𝐻2(𝜒
⊤𝐿

{𝑔}
) = 𝐾2 ∘𝐻1(𝜒

⊤𝐿

{𝑔}
). Similar to the proof ofTheorem 64,

one obtains that 𝐼1(𝑔,𝑚) ⩽ 𝐼2(𝑔,𝑚), thereby getting a
contradiction with the assumption 𝐼1(𝑔,𝑚) 󳠠 𝐼2(𝑔,𝑚).

The nonfullness part follows the steps of the proof of
Theorem 64.

Theorems 71 and 72 show the last of the claimed embed-
dings; this embedding does require a particular subcategory
of 𝐿-FC𝐷𝑀𝑅.

Definition 70. Given an L-algebra 𝐿, 𝐿-FC𝐷𝑀𝑅

𝑟𝑓𝑝
is the (non-

full) subcategory of the category 𝐿-FC𝐷𝑀𝑅, with the same

objects, whose morphisms K1

𝑓

󳨀→ K2 satisfy the property

that the maps 𝐿𝐺1 𝛼

󳨀→ 𝐿
𝐺2 , 𝐿𝑀2

𝛽
𝑜𝑝

󳨀󳨀→ 𝐿
𝑀1 reflect fixed points.

The reader should notice that “𝑟𝑓𝑝” in 𝐿-FC𝐷𝑀𝑅

𝑟𝑓𝑝
stands

for “reflect fixed points.”

Theorem 71. There exists the functor 𝐿-FC𝐷𝑀𝑅

𝑟𝑓𝑝

𝐻
𝑟𝑓𝑝

𝐷𝐶

󳨀󳨀󳨀→ S-FC𝐶,

which is given by𝐻𝑟𝑓𝑝

𝐷𝐶
(K1

𝑓

󳨀→ K2) = (𝐿
𝐺1 , 𝐿

𝑀1 , 𝐿, 𝐼̂1)
(𝛼,𝛽,1𝐿)

󳨀󳨀󳨀󳨀󳨀󳨀→

(𝐿
𝐺2 , 𝐿

𝑀2 , 𝐿, 𝐼̂2), where

𝐼̂𝑗 (𝑠, 𝑡) = {
⊤𝐿, (𝑠, 𝑡) is a formal concept ofK𝑗

⊥𝐿, otherwise.
(25)

Proof. We have to show that the functor is correct on
morphisms. Given 𝑠1 ∈ 𝐿

𝐺1 and 𝑡2 ∈ 𝐿
𝑀2 , it follows that

𝐼̂1(𝑠1, 𝛽
𝑜𝑝
(𝑡1)) = ⊤𝐿 iff (𝑠1, 𝛽

𝑜𝑝
(𝑡1)) is a formal concept ofK1

iff (𝛼(𝑠1), 𝑡2) is a formal concept of K2 iff 𝐼̂2(𝛼(𝑠1), 𝑡2) = ⊤𝐿,
where the second “iff” uses Theorem 45(2).

The embedding property of the just introduced functor is
easy to get.

Theorem 72. For every qsrs-algebra 𝐿, the functor

𝐿-FC𝐷𝑀𝑅

𝑟𝑓𝑝

𝐻
𝑟𝑓𝑝

𝐷𝐶

󳨀󳨀󳨀→ S-FC𝐶 is a nonfull embedding.

Proof. The proof follows the steps of that ofTheorem 64.

In view of the last claim of Theorem 45, the category
𝐿-FC𝐷𝑀𝑅

i is a (nonfull) subcategory of the category𝐿-FC𝐷𝑀𝑅

𝑟𝑓𝑝
.

Thus, the functor𝐻i
𝐷𝑀

is the restriction of the functor𝐻𝑟𝑓𝑝

𝐷𝑀

to the category 𝐿-FC𝐷𝑀𝑅

i .
As a last remark, we notice that in every unital quantale

𝑄, (1𝑄→ 𝑙𝑞)⊗1𝑄 = 1𝑄→ 𝑙𝑞 = 𝑞 for every 𝑞 ∈ 𝑄. In particular,
all the results in this subsection can be done in a more
simple way, assuming that L extends the variety UQuant of
unital quantales and then making use of the unit 1𝐿 instead
of the top element ⊤𝐿 of the given L-algebra 𝐿. In view
of the previously mentioned property of unital quantales,
the respective functors are then embeddings, without any
additional requirement on the L-algebra 𝐿.

5.1.6. From S-FC𝐷𝑀𝑅 to S-FC𝐶

𝑚
. The reader can easily show

(as a simple exercise) that the functors from the previous
subsection can be used in case of the categories S-FC𝐷𝑀𝑅 and
S-FC𝐶

𝑚
as well, providing similar results. In particular, all the

nonfullness examples work also in the new setting.

5.2. S-FC𝐺𝑊 and S-FC𝐺𝑊

𝑚
versus S-FC𝐷𝑀𝑅 and S-FC𝐷𝑀𝑅

𝑎
. In

this subsection, we consider possible functorial links between
the categories S-FC𝐺𝑊 and S-FC𝐺𝑊

𝑚
, on one side, and the

categories S-FC𝐷𝑀𝑅 and S-FC𝐷𝑀𝑅

𝑎
, on the other.Theobtained

functors can be easily made into embeddings, employing
the machinery of Section 5.1 related to the functors from
the constructed subcategories of the category S-FC𝐶(resp.,
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S-FC𝐶

𝑚
) to the category S-FC𝐷𝑀𝑅 (resp., S-FC𝐷𝑀𝑅

𝑎
). In

particular, assuming that L extends the variety UQuant of
unital quantales, whereas S-FC𝐺𝑊

†∗
is the domain of the newly

constructed functor (see the results of following subsections),
where † is ether “” or “𝑚,” we can define the following two
subcategories.

Definition 73. S-FC𝐺𝑊

†∗∗
(resp., S-FC𝐺𝑊

†∗∙
) is the full subcat-

egory of the category S-FC𝐺𝑊

†∗
, whose objects K are such

that 𝐺 is nonempty (resp., 𝑀 is nonempty) and, moreover,
1𝐿 ̸= ⊥𝐿.

Employing the technique of Section 5.1, we can easily
get that the restriction of the respective constructed functor
to the previously mentioned two categories provides two
embeddings. To save the space, therefore, wewill notmention
the just discussed developments explicitly.

5.2.1. From S-FC𝐺𝑊

𝑚
to S-FC𝐷𝑀𝑅

𝑎
. In this subsection, we

construct a functor from a particular subcategory of the
category S-FC𝐺𝑊

𝑚
to the category S-FC𝐷𝑀𝑅

𝑎
. To begin with,

we provide the definition of the subcategory in question.

Definition 74. S-FC𝐺𝑊

𝑚∗
is the (nonfull) subcategory of the

category S-FC𝐺𝑊

𝑚
, with the same objects, whose morphisms

K1

𝑓

󳨀→ K2 are such that the maps 𝐺1

𝛼

󳨀→ 𝐺2 and𝑀1

𝛽

󳨀→ 𝑀2

are surjective, whereas the S-morphism 𝐿1

𝜑

󳨀→ 𝐿2 preserves
⋀, → 𝑙 and → 𝑟.

For the new category in hand, we can construct the
following functor.

Theorem 75. There exists the functor S-FC𝐺𝑊

𝑚∗

𝐻𝐺𝑚𝐷𝑎
󳨀󳨀󳨀󳨀󳨀→

S-FC𝐷𝑀𝑅

𝑎
, which is defined by the formula 𝐻𝐺𝑚𝐷𝑎(K1

𝑓

󳨀→

K2) = K1

((𝛼,𝜑)
→
,(𝛽,𝜑)

→
)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ K2.

Proof. To show that the functor is correct on morphisms, we
verify commutativity of the diagrams

𝐿
𝐺1
1

𝐿
𝐺1
1

𝐿
𝐺2
2

𝐿
𝐺2
2𝐿

𝑀1
1

𝐿
𝑀1
1

𝐿
𝑀2
2

𝐿
𝑀2
2

𝐻1

(𝛽, 𝜑)→

(𝛽, 𝜑)→

(𝛼, 𝜑)→

(𝛼, 𝜑)→

𝐻2 𝐾1 𝐾2 (26)

For the left-hand diagram, notice that given 𝑠 ∈ 𝐿
𝐺1

1
and

𝑚2 ∈ 𝑀2,

((𝛽, 𝜑)
→
∘ 𝐻1 (𝑠)) (𝑚2)

= 𝜑( ⋁

𝛽(𝑚1)=𝑚2

(𝐻1 (𝑠)) (𝑚1))

= 𝜑( ⋁

𝛽(𝑚1)=𝑚2

( ⋀

𝑔1∈𝐺1

(𝑠 (𝑔1) 󳨀→𝑙 𝐼1 (𝑔1, 𝑚1))))

(†)

= ⋁

𝛽(𝑚1)=𝑚2

⋀

𝑔1∈𝐺1

(𝜑 ∘ 𝑠 (𝑔1) 󳨀→𝑙 𝜑 ∘ 𝐼1 (𝑔1, 𝑚1))

(††)

= ⋁

𝛽(𝑚1)=𝑚2

⋀

𝑔1∈𝐺1

(𝜑 ∘ 𝑠 (𝑔1) 󳨀→𝑙 𝐼2 (𝛼 (𝑔1) , 𝛽 (𝑚1)))

= ⋁

𝛽(𝑚1)=𝑚2

⋀

𝑔1∈𝐺1

(𝜑 ∘ 𝑠 (𝑔1) 󳨀→𝑙 𝐼2 (𝛼 (𝑔1) , 𝑚2))

(†)

= ⋀

𝑔1∈𝐺1

(𝜑 ∘ 𝑠 (𝑔1) 󳨀→𝑙 𝐼2 (𝛼 (𝑔1) , 𝑚2))

= ⋀

𝑔2∈𝐺2

⋀

𝛼(𝑔1)=𝑔2

(𝜑 ∘ 𝑠 (𝑔1) 󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))

= ⋀

𝑔2∈𝐺2

(( ⋁

𝛼(𝑔1)=𝑔2

𝜑 ∘ 𝑠 (𝑔1))󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))

= ⋀

𝑔2∈𝐺2

(𝜑( ⋁

𝛼(𝑔1)=𝑔2

𝑠 (𝑔1))󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))

= ⋀

𝑔2∈𝐺2

(((𝛼, 𝜑)
→
(𝑠)) (𝑔2) 󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))

= (𝐻2 ∘ (𝛼, 𝜑)
→
(𝑠)) (𝑚2) ,

(27)

where (†) uses Definition 74, whereas (††) employs the fact

thatK1

𝑓

󳨀→ K2 is a morphism of S-FC𝐺𝑊

𝑚
.

For the right-hand diagram, notice that given 𝑡 ∈ 𝐿𝑀1
1

and
𝑔2 ∈ 𝐺2,

(𝐾2 ∘ (𝛽, 𝜑)
→
(𝑡)) (𝑔2)

= ⋀

𝑚2∈𝑀2

(((𝛽, 𝜑)
→
(𝑡)) (𝑚2) 󳨀→𝑟 𝐼2 (𝑔2, 𝑚2))

= ⋀

𝑚2∈𝑀2

(𝜑( ⋁

𝛽(𝑚1)=𝑚2

𝑡 (𝑚1))󳨀→𝑟 𝐼2 (𝑔2, 𝑚2))

= ⋀

𝑚2∈𝑀2

(( ⋁

𝛽(𝑚1)=𝑚2

𝜑 ∘ 𝑡 (𝑚1))󳨀→𝑟 𝐼2 (𝑔2, 𝑚2))

= ⋀

𝑚2∈𝑀2

⋀

𝛽(𝑚1)=𝑚2

(𝜑 ∘ 𝑡 (𝑚1) 󳨀→𝑟 𝐼2 (𝑔2, 𝑚2))
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= ⋀

𝑚1∈𝑀1

(𝜑 ∘ 𝑡 (𝑚1) 󳨀→𝑟 𝐼2 (𝑔2, 𝛽 (𝑚1)))

(†)

= ⋁

𝛼(𝑔1)=𝑔2

⋀

𝑚1∈𝑀1

(𝜑 ∘ 𝑡 (𝑚1) 󳨀→𝑟 𝐼2 (𝛼 (𝑔1) , 𝛽 (𝑚1)))

(††)

= ⋁

𝛼(𝑔1)=𝑔2

⋀

𝑚1∈𝑀1

(𝜑 ∘ 𝑡 (𝑚1) 󳨀→𝑟 𝜑 ∘ 𝐼1 (𝑔1, 𝑚1))

(†)

= 𝜑( ⋁

𝛼(𝑔1)=𝑔2

⋀

𝑚1∈𝑀1

(𝑡 (𝑚1) 󳨀→𝑟 𝐼1 (𝑔1, 𝑚1)))

= 𝜑( ⋁

𝛼(𝑔1)=𝑔2

(𝐾1 (𝑡)) (𝑔1))

= ((𝛼, 𝜑)
→
∘ 𝐾1 (𝑡)) (𝑔2) ,

(28)

where (†) uses Definition 74, whereas (††) employs the fact

thatK1

𝑓

󳨀→ K2 is a morphism of S-FC𝐺𝑊

𝑎
.

5.2.2. From S-FC𝐺𝑊

𝑚
to S-FC𝐷𝑀𝑅. In this subsection, we

construct a functor from a particular subcategory of the
category S-FC𝐺𝑊

𝑚
to the category S-FC𝐷𝑀𝑅. To begin with,

we provide the definition of the subcategory in question.

Definition 76. S-FC𝐺𝑊

𝑚∗
is the (nonfull) subcategory of the

category S-FC𝐺𝑊

𝑚
, with the same objects, whose morphisms

K1

𝑓

󳨀→ K2 are such that the maps 𝐺1

𝛼

󳨀→ 𝐺2 and 𝑀1

𝛽

󳨀→

𝑀2 are surjective, whereas the S-morphism 𝐿1

𝜑

󳨀→ 𝐿2 is an
isomorphism.

Theorem 77. There exists the functor S-FC𝐺𝑊

𝑚∗

𝐻𝐺𝑚𝐷
󳨀󳨀󳨀󳨀→

S-FC𝐷𝑀𝑅, which is defined by the formula 𝐻𝐺𝑚𝐷(K1

𝑓

󳨀→

K2) = K1

((𝛼,𝜑)
→
,((𝛽,𝜑)

⊢\
)
𝑜𝑝

)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ K2.

Proof. To show that the functor is correct on morphisms, we
verify commutativity of the diagrams

𝐿
𝐺1
1 𝐿

𝐺2
2

𝐿
𝐺1
1 𝐿

𝐺2
2𝐿

𝑀1
1

𝐿
𝑀1
1

𝐿
𝑀2
2

𝐿
𝑀2
2

(𝛽, 𝜑)⊢⇠

(𝛽, 𝜑)⊢⇠

𝐻1 𝐻2 𝐾1 𝐾2

(𝛼, 𝜑)→

(𝛼, 𝜑)→

(29)

For the left-hand diagram, notice that given 𝑠 ∈ 𝐿
𝐺1

1
and

𝑚1 ∈ 𝑀1,

((𝛽, 𝜑)
⊢\

∘ 𝐻2 ∘ (𝛼, 𝜑)
→
(𝑠)) (𝑚1)

= 𝜑
⊢
∘ (𝐻2 ((𝛼, 𝜑)

→
(𝑠))) ∘ 𝛽 (𝑚1)

= 𝜑
⊢
(⋀

𝑔2∈𝐺2

(((𝛼, 𝜑)
→
(𝑠)) (𝑔2)󳨀→𝑙 𝐼2 (𝑔2, 𝛽 (𝑚1))))

= 𝜑
⊢
(⋀

𝑔2∈𝐺2

(𝜑( ⋁

𝛼(𝑔1)=𝑔2

𝑠 (𝑔1))󳨀→𝑙 𝐼2 (𝑔2, 𝛽 (𝑚1))))

=𝜑
⊢
(⋀

𝑔2∈𝐺2

(( ⋁

𝛼(𝑔1)=𝑔2

𝜑 ∘ 𝑠 (𝑔1))󳨀→𝑙 𝐼2 (𝑔2, 𝛽 (𝑚1))))

= 𝜑
⊢
(⋀

𝑔2∈𝐺2

( ⋀

𝛼(𝑔1)=𝑔2

(𝜑 ∘ 𝑠 (𝑔1)󳨀→𝑙 𝐼2 (𝑔2, 𝛽 (𝑚1)))))

= 𝜑
⊢
( ⋀

𝑔1∈𝐺1

(𝜑 ∘ 𝑠 (𝑔1) 󳨀→𝑙 𝐼2 (𝛼 (𝑔1) , 𝛽 (𝑚1))))

(†)

= 𝜑
⊢
( ⋀

𝑔1∈𝐺1

(𝜑 ∘ 𝑠 (𝑔1) 󳨀→𝑙 𝜑 ∘ 𝐼1 (𝑔1, 𝑚1)))

(††)

= 𝜑
⊢
∘ 𝜑( ⋀

𝑔1∈𝐺1

(𝑠 (𝑔1) 󳨀→𝑙 𝐼1 (𝑔1, 𝑚1)))

(††)

= ⋀

𝑔1∈𝐺1

(𝑠 (𝑔1) 󳨀→𝑙 𝐼1 (𝑔1, 𝑚1))

= (𝐻1 (𝑠)) (𝑚1) ,

(30)

where (†) uses the fact that K1

𝑓

󳨀→ K2 is a morphism of
S-FC𝐺𝑊

𝑚
, whereas (††) employs Definition 76.

For the right-hand diagram, notice that given 𝑡 ∈ 𝐿𝑀2
2

and
𝑔2 ∈ 𝐺2,

((𝛼, 𝜑)
→
∘ 𝐾1 ∘ (𝛽, 𝜑)

⊢\
(𝑡)) (𝑔2)

= ((𝛼, 𝜑)
→
∘ (𝐾1 (𝜑

⊢
∘ 𝑡 ∘ 𝛽))) (𝑔2)

= 𝜑( ⋁

𝛼(𝑔1)=𝑔2

(𝐾1 (𝜑
⊢
∘ 𝑡 ∘ 𝛽)) (𝑔1))

= 𝜑( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚1∈𝑀1

(𝜑
⊢
∘ 𝑡 ∘ 𝛽 (𝑚1)󳨀→𝑟 𝐼1 (𝑔1, 𝑚1))))

(†)

= ⋁

𝛼(𝑔1)=𝑔2

⋀

𝑚1∈𝑀1

(𝜑 ∘ 𝜑
⊢
∘ 𝑡 ∘ 𝛽 (𝑚1) 󳨀→𝑟 𝜑 ∘ 𝐼1 (𝑔1, 𝑚1))

(††)

= ⋁

𝛼(𝑔1)=𝑔2

⋀

𝑚1∈𝑀1

(𝜑∘𝜑
⊢
∘𝑡∘𝛽 (𝑚1)󳨀→𝑟 𝐼2 (𝛼 (𝑔1), 𝛽 (𝑚1)))

(†)

= ⋁

𝛼(𝑔1)=𝑔2

⋀

𝑚1∈𝑀1

(𝑡 ∘ 𝛽 (𝑚1) 󳨀→𝑟 𝐼2 (𝛼 (𝑔1) , 𝛽 (𝑚1)))
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= ⋁

𝛼(𝑔1)=𝑔2

⋀

𝑚1∈𝑀1

(𝑡 ∘ 𝛽 (𝑚1) 󳨀→𝑟 𝐼2 (𝑔2, 𝛽 (𝑚1)))

(†)

= ⋀

𝑚1∈𝑀1

(𝑡 ∘ 𝛽 (𝑚1) 󳨀→𝑟 𝐼2 (𝑔2, 𝛽 (𝑚1)))

(†)

= ⋀

𝑚2∈𝑀2

(𝑡 (𝑚2) 󳨀→𝑟 𝐼2 (𝑔2, 𝑚2))

= (𝐾2 (𝑡)) (𝑔2) ,

(31)

where (†) uses Definition 76, whereas (††) uses the fact that
K1

𝑓

󳨀→ K2 is a morphism of S-FC𝐺𝑊

𝑚
.

5.2.3. From S-FC𝐺𝑊 to S-FC𝐷𝑀𝑅

𝑎
. In this subsection, we

construct a functor from a particular subcategory of the
category S-FC𝐺𝑊 to the category S-FC𝐷𝑀𝑅

𝑎
. As before, we

start with singling out the subcategory in question.

Definition 78. S-FC𝐺𝑊

∗
is the (nonfull) subcategory of the

category S-FC𝐺𝑊, with the same objects, whose morphisms

K1

𝑓

󳨀→ K2 are such that the maps 𝐺1

𝛼

󳨀→ 𝐺2,𝑀1

𝛽

󳨀→ 𝑀2 are

surjective, whereas the S𝑜𝑝-morphism 𝐿2

𝜑
𝑜𝑝

󳨀󳨀→ 𝐿1 is injective

and, moreover, the map |𝐿1|
𝜑
𝑜𝑝⊢

󳨀󳨀󳨀→ |𝐿2| preserves ⋁, → 𝑙 and
→ 𝑟.

Theorem 79. There exists the functor S-FC𝐺𝑊

∗

𝐻𝐺𝐷𝑎
󳨀󳨀󳨀󳨀→

S-FC𝐷𝑀𝑅

𝑎
, which is defined by 𝐻𝐺𝐷𝑎(K1

𝑓

󳨀→ K2) =

K1

((𝛼,𝜑)
⊢[

,(𝛽,𝜑)
⊢[

)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ K2.

Proof. To show that the functor is correct on morphisms, we
verify commutativity of the diagrams

𝐿
𝐺1
1

𝐿
𝐺1
1

𝐿
𝐺2
2

𝐿
𝐺2
2

𝐿1

𝐿
𝑀1
1

𝐿
𝑀2
2

𝐿
𝑀2
2

𝐻1 𝐻2 𝐾1 𝐾2

(𝛼, 𝜑)⊢⇢

(𝛼, 𝜑)⊢⇢

(𝛽, 𝜑)⊢⇢

(𝛽, 𝜑)⊢⇢

𝑀1

(32)

For the left-hand diagram, notice that given 𝑠 ∈ 𝐿
𝐺1

1
and

𝑚2 ∈ 𝑀2,

((𝛽, 𝜑)
⊢[

∘ 𝐻1 (𝑠)) (𝑚2)

= 𝜑
𝑜𝑝⊢

( ⋁

𝛽(𝑚1)=𝑚2

(𝐻1 (𝑠)) (𝑚1))

= 𝜑
𝑜𝑝⊢

( ⋁

𝛽(𝑚1)=𝑚2

( ⋀

𝑔1∈𝐺1

(𝑠 (𝑔1) 󳨀→𝑙 𝐼1 (𝑔1, 𝑚1))))

(†)

= 𝜑
𝑜𝑝⊢

( ⋁

𝛽(𝑚1)=𝑚2

( ⋀

𝑔1∈𝐺1

(𝑠 (𝑔1) 󳨀→𝑙 𝜑
𝑜𝑝

∘𝐼2 (𝛼 (𝑔1) , 𝛽 (𝑚1)))))

= 𝜑
𝑜𝑝⊢

( ⋁

𝛽(𝑚1)=𝑚2

( ⋀

𝑔1∈𝐺1

(𝑠 (𝑔1) 󳨀→𝑙 𝜑
𝑜𝑝

∘𝐼2 (𝛼 (𝑔1) , 𝑚2))))

(††)

= 𝜑
𝑜𝑝⊢

( ⋀

𝑔1∈𝐺1

(𝑠 (𝑔1) 󳨀→𝑙 𝜑
𝑜𝑝
∘ 𝐼2 (𝛼 (𝑔1) , 𝑚2)))

(††)

= ⋀

𝑔1∈𝐺1

(𝜑
𝑜𝑝⊢

∘ 𝑠 (𝑔1)󳨀→𝑙 𝜑
𝑜𝑝⊢

∘ 𝜑
𝑜𝑝
∘ 𝐼2 (𝛼 (𝑔1) , 𝑚2))

(††)

= ⋀

𝑔1∈𝐺1

(𝜑
𝑜𝑝⊢

∘ 𝑠 (𝑔1) 󳨀→𝑙 𝐼2 (𝛼 (𝑔1) , 𝑚2))

= ⋀

𝑔2∈𝐺2

⋀

𝛼(𝑔1)=𝑔2

(𝜑
𝑜𝑝⊢

∘ 𝑠 (𝑔1) 󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))

= ⋀

𝑔2∈𝐺2

(( ⋁

𝛼(𝑔1)=𝑔2

𝜑
𝑜𝑝⊢

∘ 𝑠 (𝑔1))󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))

(††)

= ⋀

𝑔2∈𝐺2

(𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

𝑠 (𝑔1))󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))

= ⋀

𝑔2∈𝐺2

(((𝛼, 𝜑)
⊢[

(𝑠)) (𝑔2) 󳨀→𝑙 𝐼2 (𝑔2, 𝑚2))

= ((𝐻2 ∘ (𝛼, 𝜑)
⊢[
) (𝑠)) (𝑚2) ,

(33)

where (†) uses the fact that K1

𝑓

󳨀→ K2 is a morphism of
S-FC𝐺𝑊, whereas (††) employs Definition 78.

For the right-hand diagram, notice that given 𝑡 ∈ 𝐿𝑀1
1

and
𝑔2 ∈ 𝐺2,

(𝐾2 ∘ (𝛽, 𝜑)
⊢[

(𝑡)) (𝑔2)

= ⋀

𝑚2∈𝑀2

(((𝛽, 𝜑)
⊢[

(𝑡)) (𝑚2) 󳨀→𝑟𝐼2 (𝑔2, 𝑚2))

= ⋀

𝑚2∈𝑀2

(𝜑
𝑜𝑝⊢

( ⋁

𝛽(𝑚1)=𝑚2

𝑡 (𝑚1))󳨀→𝑟 𝐼2 (𝑔2, 𝑚2))
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(†)

= ⋀

𝑚2∈𝑀2

(( ⋁

𝛽(𝑚1)=𝑚2

𝜑
𝑜𝑝⊢

∘ 𝑡 (𝑚1) 󳨀→𝑟 𝐼2 (𝑔2, 𝑚2)))

= ⋀

𝑚2∈𝑀2

⋀

𝛽(𝑚1)=𝑚2

(𝜑
𝑜𝑝⊢

∘ 𝑡 (𝑚1) 󳨀→𝑟 𝐼2 (𝑔2, 𝑚2))

= ⋀

𝑚1∈𝑀1

(𝜑
𝑜𝑝⊢

∘ 𝑡 (𝑚1) 󳨀→𝑟 𝐼2 (𝑔2, 𝛽 (𝑚1)))

(†)

= ⋀

𝑚1∈𝑀1

(𝜑
𝑜𝑝⊢

∘ 𝑡 (𝑚1) 󳨀→𝑟 𝜑
𝑜𝑝⊢

∘ 𝜑
𝑜𝑝
∘ 𝐼2 (𝑔2, 𝛽 (𝑚1)))

(†)

= 𝜑
𝑜𝑝⊢

( ⋀

𝑚1∈𝑀1

(𝑡 (𝑚1) 󳨀→𝑟 𝜑
𝑜𝑝
∘ 𝐼2 (𝑔2, 𝛽 (𝑚1))))

(†)

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚1∈𝑀1

(𝑡 (𝑚1) 󳨀→𝑟 𝜑
𝑜𝑝

∘𝐼2 (𝑔2, 𝛽 (𝑚1)))))

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚1∈𝑀1

(𝑡 (𝑚1) 󳨀→𝑟 𝜑
𝑜𝑝

∘𝐼2 (𝛼 (𝑔1) , 𝛽 (𝑚1)))))

(††)

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚1∈𝑀1

(𝑡 (𝑚1) 󳨀→𝑟 𝐼1 (𝑔1, 𝑚1))))

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

(𝐾1 (𝑡)) (𝑔1))

= ((𝛼, 𝜑)
⊢[

∘ 𝐾1 (𝑡)) (𝑔2) ,

(34)

where (†) uses Definition 78, whereas (††) employs the fact

thatK1

𝑓

󳨀→ K2 is a morphism of S-FC𝐺𝑊.

5.2.4. From S-FC𝐺𝑊 to S-FC𝐷𝑀𝑅. In this subsection, we
construct a functor from a particular subcategory of the
category S-FC𝐺𝑊 to the category S-FC𝐷𝑀𝑅. As before, we
begin with singling out the subcategory in question.

Definition 80. S-FC𝐺𝑊

∗
is the (nonfull) subcategory of the

category S-FC𝐺𝑊, with the same objects, whose morphisms

K1

𝑓

󳨀→ K2 are such that the maps 𝐺1

𝛼

󳨀→ 𝐺2, 𝑀1

𝛽

󳨀→ 𝑀2

are surjective, whereas the S𝑜𝑝-morphism 𝐿2

𝜑
𝑜𝑝

󳨀󳨀→ 𝐿1 is an
isomorphism.

Theorem 81. There exists the functor S-FC𝐺𝑊

∗

𝐻𝐺𝐷
󳨀󳨀󳨀→

S-FC𝐷𝑀𝑅, which is defined by 𝐻𝐺𝐷(K1

𝑓

󳨀→ K2) =

K1

((𝛼,𝜑)
⊢[

,((𝛽,𝜑)
←
)
𝑜𝑝
)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ K2.

Proof. To show that the functor is correct on morphisms, we
verify commutativity of the diagrams

𝐿
𝐺1
1

𝐿
𝐺1
1

𝐿
𝐺2
2

𝐿
𝐺2
2𝐿

𝑀1
1

𝐿
𝑀1
1

𝐿
𝑀2
2

𝐿
𝑀2
2

𝐻1 𝐻2 𝐾1 𝐾2

(𝛼, 𝜑)⊢⇢

(𝛼, 𝜑)⊢⇢(𝛽, 𝜑)←

(𝛽, 𝜑)←

(35)

For the left-hand diagram, notice that given 𝑠 ∈ 𝐿
𝐺1

1
and

𝑚1 ∈ 𝑀1,

((𝛽, 𝜑)
←
∘ 𝐻2 ∘ (𝛼, 𝜑)

⊢[
(𝑠)) (𝑚1)

= 𝜑
𝑜𝑝
∘ (𝐻2 ((𝛼, 𝜑)

⊢[
(𝑠))) ∘ 𝛽 (𝑚1)

= 𝜑
𝑜𝑝
( ⋀

𝑔2∈𝐺2

(((𝛼, 𝜑)
⊢[

(𝑠)) (𝑔2) 󳨀→𝑙 𝐼2 (𝑔2, 𝛽 (𝑚1))))

= 𝜑
𝑜𝑝
( ⋀

𝑔2∈𝐺2

(𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

𝑠 (𝑔1))

󳨀→𝑙 𝐼2 (𝑔2, 𝛽 (𝑚1))))

(†)

= 𝜑
𝑜𝑝
( ⋀

𝑔2∈𝐺2

( ⋀

𝛼(𝑔1)=𝑔2

(𝜑
𝑜𝑝⊢

∘ 𝑠 (𝑔1)

󳨀→𝑙 𝐼2 (𝑔2, 𝛽 (𝑚1)) )))

= 𝜑
𝑜𝑝
( ⋀

𝑔1∈𝐺1

(𝜑
𝑜𝑝⊢

∘ 𝑠 (𝑔1)󳨀→𝑙 𝐼2 (𝛼 (𝑔1) , 𝛽 (𝑚1))))

(†)

= ⋀

𝑔1∈𝐺1

(𝜑
𝑜𝑝
∘ 𝜑

𝑜𝑝⊢
∘ 𝑠 (𝑔1) 󳨀→𝑙 𝜑

𝑜𝑝
∘ 𝐼2 (𝛼 (𝑔1) , 𝛽 (𝑚1)))

(†)

= ⋀

𝑔1∈𝐺1

(𝑠 (𝑔1) 󳨀→𝑙 𝜑
𝑜𝑝
∘ 𝐼2 (𝛼 (𝑔1) , 𝛽 (𝑚1)))

(††)

= ⋀

𝑔1∈𝐺1

(𝑠 (𝑔1) 󳨀→𝑙 𝐼1 (𝑔1, 𝑚1)) = (𝐻1 (𝑠)) (𝑚1) ,

(36)

where (†) uses Definition 80, whereas (††) employs the fact

thatK1

𝑓

󳨀→ K2 is a morphism of S-FC𝐺𝑊.
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For the right-hand diagram, notice that given 𝑡 ∈ 𝐿𝑀2
2

and
𝑔2 ∈ 𝐺2,

((𝛼, 𝜑)
⊢[

∘ 𝐾1 ∘ (𝛽, 𝜑)
←
(𝑡)) (𝑔2)

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

(𝐾1 ∘ (𝛽, 𝜑)
←
(𝑡)) (𝑔1))

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚1∈𝑀1

(((𝛽, 𝜑)
←
(𝑡)) (𝑚1)

󳨀→𝑟 𝐼1 (𝑔1, 𝑚1) )))

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚1∈𝑀1

(𝜑
𝑜𝑝
∘ 𝑡 ∘ 𝛽 (𝑚1)

󳨀→𝑟 𝐼1 (𝑔1, 𝑚1))))

(†)

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚1∈𝑀1

(𝜑
𝑜𝑝
∘ 𝑡 ∘ 𝛽 (𝑚1) 󳨀→𝑟 𝜑

𝑜𝑝

∘𝐼2 (𝛼 (𝑔1) , 𝛽 (𝑚1)))))

= 𝜑
𝑜𝑝⊢

( ⋁

𝛼(𝑔1)=𝑔2

( ⋀

𝑚1∈𝑀1

(𝜑
𝑜𝑝
∘ 𝑡 ∘ 𝛽 (𝑚1) 󳨀→𝑟 𝜑

𝑜𝑝

∘𝐼2 (𝑔2, 𝛽 (𝑚1)))))

(††)

= 𝜑
𝑜𝑝⊢

( ⋀

𝑚1∈𝑀1

(𝜑
𝑜𝑝
∘ 𝑡 ∘ 𝛽 (𝑚1) 󳨀→𝑟𝜑

𝑜𝑝

∘𝐼2 (𝑔2, 𝛽 (𝑚1))))

(††)

= 𝜑
𝑜𝑝⊢

( ⋀

𝑚2∈𝑀2

(𝜑
𝑜𝑝
∘ 𝑡 (𝑚2) 󳨀→𝑟 𝜑

𝑜𝑝
∘ 𝐼2 (𝑔2, 𝑚2)))

(††)

= ⋀

𝑚2∈𝑀2

(𝜑
𝑜𝑝⊢

∘ 𝜑
𝑜𝑝
∘ 𝑡 (𝑚2)󳨀→𝑟 𝜑

𝑜𝑝⊢
∘ 𝜑

𝑜𝑝
∘ 𝐼2 (𝑔2, 𝑚2))

(††)

= ⋀

𝑚2∈𝑀2

(𝑡 (𝑚2) 󳨀→𝑟 𝐼2 (𝑔2, 𝑚2)) = (𝐾2 (𝑡)) (𝑔2) ,

(37)

where (†) uses the fact that K1

𝑓

󳨀→ K2 is a morphism of
S-FC𝐺𝑊, whereas (††) employs Definition 80.

5.2.5. From S-FC𝐷𝑀𝑅

𝑎
to S-FC𝐺𝑊

𝑚
. In this subsection, we

construct functorial embeddings of several subcategories
of the category S-FC𝐷𝑀𝑅

𝑎
into the category S-FC𝐺𝑊

𝑚
. We

begin with singling out the first subcategory in question.
The reader should notice that similar to Section 5.1.5, all the
subcategories constructed in the current one are fixed-basis.

Definition 82. Given anL-algebra𝐿,𝐿-FC𝐷𝑀𝑅

𝑎i is the (nonfull)
subcategory of the category 𝐿-FC𝐷𝑀𝑅

𝑎
, with the same objects,

whose morphisms K1

𝑓

󳨀→ K2 have the property that the

maps 𝐿𝐺1 𝛼

󳨀→ 𝐿
𝐺2 , 𝐿𝑀1

𝛽

󳨀→ 𝐿
𝑀2 are injective.

Theorem 83. There exists the functor 𝐿-FC𝐷𝑀𝑅

𝑎i

𝐻
i
𝐷𝑎𝐺𝑚

󳨀󳨀󳨀󳨀󳨀→

S-FC𝐺𝑊

𝑚
, which is defined by the formula 𝐻

i
𝐷𝑎𝐺𝑚

(K1

𝑓

󳨀→

K2) = (𝐿
𝐺1 , 𝐿

𝑀1 , 𝐿, 𝐼̂1)
(𝛼,𝛽,1𝐿)

󳨀󳨀󳨀󳨀󳨀󳨀→ (𝐿
𝐺2 , 𝐿

𝑀2 , 𝐿, 𝐼̂2), where

𝐼̂𝑗 (𝑠, 𝑡) = {
⊤𝐿, (𝑠, 𝑡) is a formal concept of K𝑗

⊥𝐿, otherwise.
(38)

Proof. We have to show that the functor is correct on
morphisms. Given 𝑠1 ∈ 𝐿

𝐺1 and 𝑡1 ∈ 𝐿
𝑀1 , it follows that

𝐼̂1(𝑠1, 𝑡1) = ⊤𝐿 iff (𝑠1, 𝑡1) is a formal concept of K1 iff
(𝛼(𝑠1), 𝛽(𝑡1)) is a formal concept of K2 iff 𝐼̂2(𝛼(𝑠1), 𝛽(𝑡1)) =
⊤𝐿, where the second “iff” uses Theorem 46(1).

To make the functor into an embedding, one uses the
machinery of Theorem 64.

Theorem 84. For every qsrs-algebra 𝐿, the functor

𝐿-FC𝐷𝑀𝑅

𝑎i

𝐻
i
𝐷𝑎𝐺𝑚

󳨀󳨀󳨀󳨀󳨀→ S-FC𝐺𝑊

𝑚
is a nonfull embedding.

Proof. Follow the steps of the proof of Theorem 64.

To continue, we provide the second of the claimed
embeddings. We begin with singling out the subcategory of
the category S-FC𝐷𝑀𝑅

𝑎
, which is suitable for the occasion.

Definition 85. Given an L-algebra 𝐿, 𝐿-FC𝐷𝑀𝑅

𝑎i𝛼 (resp.,
𝐿-FC𝐷𝑀𝑅

𝑎i𝛽 ) is the (nonfull) subcategory of the category

𝐿-FC𝐷𝑀𝑅

𝑎
, with the same objects, whose morphisms K1

𝑓

󳨀→

K2 have the property that the map 𝐿𝐺1 𝛼

󳨀→ 𝐿
𝐺2 (resp., 𝐿𝑀1

𝛽

󳨀→

𝐿
𝑀2) is injective.

Theorem 86. Let † be either 𝛼 or 𝛽. There exists the functor

𝐿-FC𝐷𝑀𝑅

𝑎i†

𝐻
i†
𝐷𝑎𝐺𝑚

󳨀󳨀󳨀󳨀󳨀→ S-FC𝐺𝑊

𝑚
, which is given by 𝐻i†

𝐷𝑎𝐺𝑚
(K1

𝑓

󳨀→

K2) = (𝐿
𝐺1 , 𝐿

𝑀1 , 𝐿, 𝐼̂1)
(𝛼,𝛽,1𝐿)

󳨀󳨀󳨀󳨀󳨀󳨀→ (𝐿
𝐺2 , 𝐿

𝑀2 , 𝐿, 𝐼̂2), where

𝐼̂𝑗 (𝑠, 𝑡) = {
⊤𝐿, (𝑠, 𝑡) is a formal protoconcept of K𝑗

⊥𝐿, otherwise.
(39)

Proof. We have to show that the functor is correct on
morphisms. Given 𝑠1 ∈ 𝐿

𝐺1 and 𝑡1 ∈ 𝐿
𝑀1 , it follows

that 𝐼̂1(𝑠1, 𝑡1) = ⊤𝐿 iff (𝑠1, 𝑡1) is a formal protoconcept
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of K1 iff (𝛼(𝑠1), 𝛽(𝑡1)) is a formal protoconcept of K2

iff 𝐼̂2(𝛼(𝑠1), 𝛽(𝑡1)) = ⊤𝐿, where the second “iff” uses
Theorem 46(2).

Theorem 87. Let † be either 𝛼 or 𝛽. For every qsrs-algebra 𝐿,

the functor 𝐿-FC𝐷𝑀𝑅

𝑎i†

𝐻
i†
𝐷𝑎𝐺𝑚

󳨀󳨀󳨀󳨀󳨀→ S-FC𝐺𝑊

𝑚
is a nonfull embedding.

Proof. Follow the steps of the proof of Theorem 64.

To continue, we show the last one of the claimed embed-
dings.

Definition 88. Given an L-algebra 𝐿, 𝐿-FC𝐷𝑀𝑅

𝑎𝑜𝑒𝛼
(resp.,

𝐿-FC𝐷𝑀𝑅

𝑎𝑜𝑒𝛽
) is the (nonfull) subcategory of the category

𝐿-FC𝐷𝑀𝑅

𝑎
, with the same objects, whose morphisms K1

𝑓

󳨀→

K2 have the property that the map 𝐿𝐺1 𝛼

󳨀→ 𝐿
𝐺2 (resp., 𝐿𝑀1

𝛽

󳨀→

𝐿
𝑀2) is an order embedding (i.e., both order-preserving and

order-reflecting).

Theorem 89. Let † be either 𝛼 or 𝛽. There exists the functor

𝐿-FC𝐷𝑀𝑅

𝑎𝑜𝑒†

𝐻
𝑜𝑒†

𝐷𝑎𝐺𝑚

󳨀󳨀󳨀󳨀󳨀→ S-FC𝐺𝑊

𝑚
, which is given by 𝐻𝑜𝑒†

𝐷𝑎𝐺𝑚
(K1

𝑓

󳨀→

K2) = (𝐿
𝐺1 , 𝐿

𝑀1 , 𝐿, 𝐼̂1)
(𝛼,𝛽,1𝐿)

󳨀󳨀󳨀󳨀󳨀󳨀→ (𝐿
𝐺2 , 𝐿

𝑀2 , 𝐿, 𝐼̂2), where

𝐼̂𝑗 (𝑠, 𝑡) = {
⊤𝐿, (𝑠, 𝑡) is a formal preconcept of K𝑗

⊥𝐿, otherwise.
(40)

Proof. We have to show that the functor is correct on
morphisms. Given 𝑠1 ∈ 𝐿

𝐺1 and 𝑡1 ∈ 𝐿
𝑀1 , it follows

that 𝐼̂1(𝑠1, 𝑡1) = ⊤𝐿 iff (s1, 𝑡1) is a formal preconcept
of K1 iff (𝛼(𝑠1), 𝛽(𝑡1)) is a formal preconcept of K2

iff 𝐼̂2(𝛼(𝑠1), 𝛽(𝑡1)) = ⊤𝐿, where the second “iff” uses
Theorem 46(3).

Theorem 90. Let † be either 𝛼 or 𝛽. For every qsrs-algebra 𝐿,

the functor 𝐿-FC𝐷𝑀𝑅

𝑎𝑜𝑒†

𝐻
𝑜𝑒†

𝐷𝑎𝐺𝑚

󳨀󳨀󳨀󳨀󳨀→ S-FC𝐺𝑊

𝑚
is a nonfull embedding.

Proof. Follow the steps of the proof of Theorem 64.

As a last remark, we notice that the case of L extending the
variety UQuant simplifies the previously mentioned results
(see the remark at the end of Section 5.1.5).

5.3. S-FC𝐺𝑊 and S-FC𝐺𝑊

𝑚
versus S-FC𝐶 and S-FC𝐶

𝑚
. In this

subsection, we consider possible functorial links between
the categories S-FC𝐺𝑊 and S-FC𝐺𝑊

𝑚
, on one side, and the

categories S-FC𝐶 and S-FC𝐶

𝑚
, on the other.

5.3.1. From S-FC𝐺𝑊

𝑚
to S-FC𝐶

𝑚
. In this subsection, we con-

struct a functorial isomorphism between particular subcat-
egories of the categories S-FC𝐺𝑊

𝑚
and S-FC𝐶

𝑚
, respectively.

Definition 91. S-FC𝐺𝑊

𝑚∗
(resp., S-FC𝐶

𝑚∗
) is the (nonfull) sub-

category of the category S-FC𝐺𝑊

𝑚
(resp., S-FC𝐶

𝑚
), with the

same objects, whose morphisms K1

𝑓

󳨀→ K2 have the

property that the map 𝑀1

𝛽

󳨀→ 𝑀2 (resp., 𝑀2

𝛽
𝑜𝑝

󳨀󳨀→ 𝑀1) is
bijective.

The categories of Definition 91 give rise to the following
functors.

Theorem 92. There exist two functors

(1) S-FC𝐺𝑊

𝑚∗

𝐻𝐺𝑚𝐶𝑚
󳨀󳨀󳨀󳨀󳨀→ S-FC𝐶

𝑚∗
, which is given by

𝐻𝐺𝑚𝐶𝑚(K1

𝑓

󳨀→ K2) = K1

(𝛼,(𝛽
−1
)
𝑜𝑝
,𝜑)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ K2,

(2) S-FC𝐶

𝑚∗

𝐻𝐶𝑚𝐺𝑚
󳨀󳨀󳨀󳨀󳨀→ S-FC𝐺𝑊

𝑚∗
, which is given by

𝐻𝐶𝑚𝐺𝑚(K1

𝑓

󳨀→ K2) = K1

(𝛼,(𝛽
𝑜𝑝
)
−1
,𝜑)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ K2,

for which𝐻𝐺𝑚𝐶𝑚 ∘ 𝐻𝐶𝑚𝐺𝑚 = 1S-FC𝐶
𝑚∗

and𝐻𝐶𝑚𝐺𝑚 ∘ 𝐻𝐺𝑚𝐶𝑚 =

1S-FC𝐺𝑊
𝑚∗
.

Proof. To show that the functor 𝐻𝐺𝑚𝐶𝑚 is correct on mor-
phisms, notice that given𝑔1 ∈ 𝐺1 and𝑚2 ∈ 𝑀2, it follows that
𝜑 ∘ 𝐼1(𝑔1, 𝛽

−1
(𝑚2)) = 𝐼2(𝛼(𝑔1), 𝛽 ∘ 𝛽

−1
(𝑚2)) = 𝐼2(𝛼(𝑔1), 𝑚2).

Additionally, to show that the functor 𝐻𝐶𝑚𝐺𝑚 is correct on
morphisms, notice that given𝑔1 ∈ 𝐺1 and𝑚1 ∈ 𝑀1, it follows
that 𝜑 ∘ 𝐼1(𝑔1, 𝑚1) = 𝜑 ∘ 𝐼1(𝑔1, 𝛽

𝑜𝑝
(𝑚2)) = 𝐼2(𝛼(𝑔1), 𝑚2) =

𝐼2(𝛼(𝑔1), (𝛽
𝑜𝑝
)
−1
(𝑚1)).

5.3.2. From S-FC𝐺𝑊 to S-FC𝐶. In this subsection, we con-
struct an isomorphism between particular subcategories of
the categories S-FC𝐺𝑊 and S-FC𝐶, respectively.

Definition 93. S-FC𝐺𝑊

∗
(resp., S-FC𝐶

∗
) is the (nonfull) subcat-

egory of the category S-FC𝐺𝑊 (resp., S-FC𝐶), with the same

objects, whose morphismsK1

𝑓

󳨀→ K2 have the property that

the map𝑀1

𝛽

󳨀→ 𝑀2 (resp.,𝑀2

𝛽
𝑜𝑝

󳨀󳨀→ 𝑀1) is bijective.

The categories of Definition 93 give rise to the following
functors.

Theorem 94. There exist two functors

(1) S-FC𝐺𝑊

∗

𝐻𝐺𝐶
󳨀󳨀󳨀→ S-FC𝐶

∗
, which is given by 𝐻𝐺𝐶(K1

𝑓

󳨀→

K2) = K1

(𝛼,(𝛽
−1
)
𝑜𝑝
,𝜑)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ K2,

(2) S-FC𝐶

∗

𝐻𝐶𝐺
󳨀󳨀󳨀→ S-FC𝐺𝑊

∗
, which is given by 𝐻𝐶𝐺(K1

𝑓

󳨀→

K2) = K1

(𝛼,(𝛽
𝑜𝑝
)
−1
,𝜑)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ K2,

for which𝐻𝐺𝐶 ∘ 𝐻𝐶𝐺 = 1S-FC𝐶
∗
and𝐻𝐶𝐺 ∘ 𝐻𝐺𝐶 = 1S-FC𝐺𝑊

∗
.

Proof. To show that the functor𝐻𝐺𝐶 is correct onmorphisms,
notice that given 𝑔1 ∈ 𝐺1 and 𝑚2 ∈ 𝑀2, it follows that
𝐼1(𝑔1, 𝛽

−1
(𝑚2)) = 𝜑

𝑜𝑝
∘ 𝐼2(𝛼(𝑔1), 𝛽 ∘ 𝛽

−1
(𝑚2)) = 𝜑

𝑜𝑝
∘

𝐼2(𝛼(𝑔1), 𝑚2). Additionally, to show that the functor 𝐻𝐶𝐺

is correct on morphisms, notice that given 𝑔1 ∈ 𝐺1 and
𝑚1 ∈ 𝑀1, it follows that 𝐼1(𝑔1, 𝑚1) = 𝐼1(𝑔1, 𝛽

𝑜𝑝
(𝑚2)) =

𝜑
𝑜𝑝
∘ 𝐼2(𝛼(𝑔1), 𝑚2) = 𝐼2(𝛼(𝑔1), (𝛽

𝑜𝑝
)
−1
(𝑚1)).
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5.4. 𝐿-FC𝐶 versus 𝐿-FC𝐷𝑀𝑅. In this subsection, we make
our framework closer to that of Denniston et al. [29], that
is, consider a fixed-basis approach to lattice-valued FCA.
We construct several functors between the categories 𝐿-FC𝐶

and 𝐿-FC𝐷𝑀𝑅 and show that they fail to provide an adjoint
situation between the categories in question.

5.4.1. From 𝐿-FC𝐶 to 𝐿-FC𝐷𝑀𝑅. This subsection provides a
functor from the category 𝐿-FC𝐶 to the category 𝐿-FC𝐷𝑀R.
More precisely, Theorems 52 and 53 (or, also, Theorems 59
and 60) give rise to the following result.

Definition 95. Given an L-algebra 𝐿, 𝐿-FC𝐶

∗
is the (nonfull)

subcategory of the category 𝐿-FC𝐶, with the same objects and

with morphisms K1

𝑓

󳨀→ K2 such that the maps 𝐺1

𝛼

󳨀→ 𝐺2,

𝑀2

𝛽
𝑜𝑝

󳨀󳨀→ 𝑀1 are surjective.

Theorem 96. There exists the functor 𝐿-FC𝐶

∗

𝐻𝐿𝐶𝐿𝐷
󳨀󳨀󳨀󳨀→

𝐿-FC𝐷𝑀𝑅, which is given by 𝐻𝐿𝐶𝐿𝐷(K1

𝑓

󳨀→ K2) =

K1

(𝛼
→

𝐿
,((𝛽
𝑜𝑝
)
→

𝐿
)
𝑜𝑝
)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ K2. If ⊤𝐿 ̸= ⊥𝐿, then 𝐻𝐿𝐶𝐿𝐷 is a
nonfull embedding.

Proof. It is enough to show that the functor is faithful (we do
not require 𝐿 to have the unit).

Given some 𝐿-FC𝐶-morphisms K1

𝑓1

󴁂󴀱
𝑓2

K2 such that

𝐻𝐿𝐶𝐿𝐷(𝑓1) = 𝐻𝐿𝐶𝐿𝐷(𝑓2), it follows that (𝛼1
→

𝐿
, ((𝛽

𝑜𝑝

1
)
→

𝐿
)
𝑜𝑝
) =

(𝛼2
→

𝐿
, ((𝛽

𝑜𝑝

2
)
→

𝐿
)
𝑜𝑝
) and, therefore, 𝛼1

→

𝐿
= 𝛼2

→

𝐿
, (𝛽𝑜𝑝

1
)
→

𝐿
=

(𝛽
𝑜𝑝

2
)
→

𝐿
. To show that 𝛼1 = 𝛼2, notice that given 𝑔1 ∈ 𝐺1,

(𝛼1
→

𝐿
(𝜒

⊤𝐿

{𝑔1}
)) (𝑔2) = ⋁

𝛼1(𝑔
󸀠

1)=𝑔2

𝜒
⊤𝐿

{𝑔1}
(𝑔

󸀠

1
)

= {
⊤𝐿, 𝑔2 = 𝛼1 (𝑔1)

⊥𝐿, otherwise
= 𝜒

⊤𝐿

{𝛼1(𝑔1)}
(𝑔2)

(41)

for every 𝑔2 ∈ 𝐺2. As a consequence, 𝜒
⊤𝐿

{𝛼1(𝑔1)}
= 𝛼1

→

𝐿
(𝜒

⊤𝐿

{𝑔1}
) =

𝛼2
→

𝐿
(𝜒

⊤𝐿

{𝑔1}
) = 𝜒

⊤𝐿

{𝛼2(𝑔1)}
. The assumption ⊤𝐿 ̸= ⊥𝐿 then gives

𝛼1(𝑔1) = 𝛼2(𝑔1). Similar technique can be employed to show
that 𝛽𝑜𝑝

1
= 𝛽

𝑜𝑝

2
.

5.4.2. From 𝐿-FC𝐷𝑀𝑅 to 𝐿-FC𝐶. This subsection shows func-
torial embeddings of some subcategories of the category
𝐿-FC𝐷𝑀𝑅 into the category 𝐿-FC𝐶.The results of Section 5.1.5
(with their respective notations) suggest the following.

Theorem 97. Every qsrs-algebra 𝐿 provides the following
nonfull embeddings.

(1) 𝐿-FC𝐷𝑀𝑅

i

𝐻
i
𝐿𝐷𝐿𝐶

󳨀󳨀󳨀󳨀→ 𝐿-FC𝐶 given by 𝐻
i
𝐿𝐷𝐿𝐶

(K1

𝑓

󳨀→

K2) = (𝐿
𝐺1 , 𝐿

𝑀1 , 𝐼̂1)
(𝛼,𝛽)

󳨀󳨀󳨀→ (𝐿
𝐺2 , 𝐿

𝑀2 , 𝐼̂2), where

𝐼̂𝑗 (𝑠, 𝑡) = {
⊤𝐿, (𝑠, 𝑡) is a formal concept ofK𝑗

⊥𝐿, otherwise.
(42)

(2) 𝐿-FC𝐷𝑀𝑅

𝑟𝑓𝑝

𝐻
𝑟𝑓𝑝

𝐿𝐷𝐿𝐶

󳨀󳨀󳨀󳨀→ 𝐿-FC𝐶 given by 𝐻
𝑟𝑓𝑝

𝐿𝐷𝐿𝐶
(K1

𝑓

󳨀→

K2) = (𝐿
𝐺1 , 𝐿

𝑀1 , 𝐼̂1)
(𝛼,𝛽)

󳨀󳨀󳨀→ (𝐿
𝐺2 , 𝐿

𝑀2 , 𝐼̂2), where

𝐼̂𝑗 (𝑠, 𝑡) = {
⊤𝐿, (𝑠, 𝑡) is a formal concept ofK𝑗

⊥𝐿, otherwise.
(43)

(3) 𝐿-FC𝐷𝑀𝑅

𝑜𝑟𝑝

𝐻
𝑜𝑟𝑝

𝐿𝐷𝐿𝐶

󳨀󳨀󳨀󳨀→ 𝐿-FC𝐶 given by 𝐻
𝑜𝑟𝑝

𝐿𝐷𝐿𝐶
(K1

𝑓

󳨀→

K2) = (𝐿
𝐺1 , 𝐿

𝑀1 , 𝐼̂1)
(𝛼,𝛽)

󳨀󳨀󳨀→ (𝐿
𝐺2 , 𝐿

𝑀2 , 𝐼̂2), where

𝐼̂𝑗 (𝑠, 𝑡) = {
⊤𝐿, (𝑠, 𝑡) is a formal preconcept ofK𝑗

⊥𝐿, otherwise.
(44)

(4) 𝐿-FC𝐷𝑀𝑅
𝐻𝐿𝐷𝐿𝐶
󳨀󳨀󳨀󳨀→ 𝐿-FC𝐶 given by 𝐻𝐿𝐷𝐿𝐶(K1

𝑓

󳨀→

K2) = (𝐿
𝐺1 , 𝐿

𝑀1 , 𝐼̂1)
(𝛼,𝛽)

󳨀󳨀󳨀→ (𝐿
𝐺2 , 𝐿

𝑀2 , 𝐼̂2), where

𝐼̂𝑗 (𝑠, 𝑡) = {
⊤𝐿, (𝑠, 𝑡) is a formal protoconcept ofK𝑗

⊥𝐿, otherwise.
(45)

Proof. The only thing that requires verification is nonfullness
of the embeddings. We provide the explicit proof for the last
item, which can be easily adapted for each of the remaining
ones.

Consider the crisp case L = CBAlg, 𝐿 = 2, and let
𝐺 = 𝑀 = |𝐿|, 𝐼 = 𝐺 × 𝑀. We define (cf. Lemma 43) the
𝐿-FC𝐷𝑀𝑅-object K = (𝐺,𝑀, 𝐼) where 𝐼 = ⊤𝐿, and thus,
𝐻 = ⊤𝐿 and 𝐾 = ⊤𝐿. For every 𝑆 ∈ P(𝐺) and every
𝑇 ∈ P(𝑀), 𝐻 ∘ 𝐾(𝑇) = 𝑀 = 𝐻(𝑆) and thus, (𝑆, 𝑇) is
a formal protoconcept of K. Thus, 𝐼̂ = ⊤𝐿, and, therefore,

every pair of mapsP(𝐺)
𝛼

󳨀→ P(𝐺),P(𝑀)
𝛽
𝑜𝑝

󳨀󳨀→ P(𝑀) is then

an 𝐿-FC𝐶-morphism (𝐻𝐿𝐷𝐿𝐶(K) = (P(𝐺),P(𝑀), 𝐼̂))
(𝛼,𝛽)

󳨀󳨀󳨀→

𝐻𝐿𝐷𝐿𝐶(K). Define now P(𝐺)
𝛼

󳨀→ P(𝐺) = P(𝐺)

1P(𝐺)

󳨀󳨀󳨀󳨀→

P(𝐺), P(𝑀)
𝛽
𝑜𝑝

󳨀󳨀→ P(𝑀) = P(𝑀)
0

󳨀→ P(𝑀), and get

an 𝐿-FC𝐶-morphism𝐻𝐿𝐷𝐿𝐶(K)
(𝛼,𝛽)

󳨀󳨀󳨀→ 𝐻𝐿𝐷𝐿𝐶(K). However,
𝛽
𝑜𝑝
∘ 𝐻 ∘ 𝛼(𝐺) = 𝛽

𝑜𝑝
∘ 𝐻(𝐺) = 𝛽

𝑜𝑝
(𝑀) = 0 ̸=𝑀 = 𝐻(𝐺) and,

therefore, |K|
(𝛼,𝛽)

󳨀󳨀󳨀→ |K| is not an 𝐿-FC𝐷𝑀𝑅-morphism.

5.4.3. 𝐿-FC𝐶 versus 𝐿-FC𝐷𝑀𝑅. The previous two subsections
gave the functors 𝐿-FC𝐶

∗

𝐻𝐿𝐶𝐿𝐷
󳨀󳨀󳨀󳨀→ 𝐿-FC𝐷𝑀𝑅, 𝐿-FC𝐷𝑀𝑅

𝐻𝐿𝐷𝐿𝐶
󳨀󳨀󳨀󳨀→

𝐿-FC𝐶.

Definition 98. Given an L-algebra 𝐿, 𝐿-FC𝐷𝑀𝑅

∗
is the (non-

full) subcategory of the category 𝐿-FC𝐷𝑀𝑅, with the same
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objects, whose morphismsK1

𝑓

󳨀→ K2 have the property that

the maps 𝐿𝐺1 𝛼

󳨀→ 𝐿
𝐺2 , 𝐿𝑀2

𝛽
𝑜𝑝

󳨀󳨀→ 𝐿
𝑀1 are surjective.

It is easy to see that there exist the restrictions

𝐿-FC𝐶

∗

𝐻
∗

𝐿𝐶𝐿𝐷

󳨀󳨀󳨀󳨀→ 𝐿-FC𝐷𝑀𝑅

∗
, 𝐿-FC𝐷𝑀𝑅

∗

𝐻
∗

𝐿𝐷𝐿𝐶

󳨀󳨀󳨀󳨀→ 𝐿-FC𝐶

∗
of the

previously mentioned two functors. A natural question could
be whether the pair makes an adjoint situation.The following
result, however, provides a negative answer.

Theorem 99. In general, 𝐻∗

𝐿𝐶𝐿𝐷
(resp., 𝐻∗

𝐿𝐷𝐿𝐶
) is not a left

adjoint to𝐻∗

𝐿𝐷𝐿𝐶
(resp.,𝐻∗

𝐿𝐶𝐿𝐷
).

Proof. Suppose that 𝐻∗

𝐿𝐶𝐿𝐷
is a left adjoint to 𝐻∗

𝐿𝐷𝐿𝐶
. Then

every object K of 𝐿-FC𝐶

∗
has an 𝐻∗

𝐿𝐷𝐿𝐶
-universal map, that

is, an 𝐿-FC𝐶

∗
-morphism K

𝜂=(𝛼,𝛽)

󳨀󳨀󳨀󳨀󳨀→ (𝐻
∗

𝐿𝐷𝐿𝐶
∘ 𝐻

∗

𝐿𝐶𝐿𝐷
(K) =

(𝐿
𝐺
, 𝐿

𝑀
, 𝐼̂)) and, therefore, 𝐼(𝑔, 𝛽𝑜𝑝(𝑡)) = 𝐼̂(𝛼(𝑔), 𝑡) for every

𝑔 ∈ 𝐺 and every 𝑡 ∈ 𝐿
𝑀. It follows that 𝐼(𝑔, 𝛽𝑜𝑝(𝑡)) ∈

{⊥𝐿, ⊤𝐿}. Define 𝐺 = {𝑔}, 𝑀 = {𝑚}, 𝐿 = ([0, 1], ⋁,⋀) (the
unit interval, with the standard lattice-theoretic structure)
and 𝐼 = 1/2. There exists then a unique map 𝐿

𝑀 !

󳨀→

𝑀, and, moreover, one obtains that 1/2 = 𝐼(𝑔, !(1/2)) =

𝐼̂(𝛼(𝑔), 1/2) ∈ {0, 1}, which is an obvious contradiction.
Suppose that𝐻∗

𝐿𝐷𝐿𝐶
is a left adjoint to𝐻∗

𝐿𝐶𝐿𝐷
. Then every

object K of 𝐿-FC𝐷𝑀𝑅

∗
has an 𝐻∗

𝐿𝐶𝐿𝐷
-universal map, that is,

an 𝐿-FC𝐷𝑀𝑅

∗
-morphism K

𝜂=(𝛼,𝛽)

󳨀󳨀󳨀󳨀󳨀→ (𝐻
∗

𝐿𝐶𝐿𝐷
∘ 𝐻

∗

𝐿𝐷𝐿𝐶
(K) =

(𝐿
𝐺
, 𝐿

𝑀
, 𝐼̂)) and thus, 𝐼(𝑔, 𝛽𝑜𝑝(𝑡)) = 𝐼̂(𝛼(𝑔), 𝑡) for every 𝑔 ∈ 𝐺

and every 𝑡 ∈ 𝐿
𝑀. Similar to the aforementioned, we get a

contradiction.

5.5. 𝐿-FC𝐶 versus 𝐿-FC𝐷𝑀𝑅

𝑎
. The reader should notice that

the results of Section 5.1 can be easily restricted to the case
of the category 𝐿-FC𝐷𝑀𝑅

𝑎
. In particular, each of Theorems 48

and 55 provides the following result.

Definition 100. Given an L-algebra 𝐿, 𝐿-FC𝐶

∗
is the (nonfull)

subcategory of the category 𝐿-FC𝐶, with the same objects and

with morphisms K1

𝑓

󳨀→ K2 such that the maps 𝐺1

𝛼

󳨀→ 𝐺2,

𝑀2

𝛽
𝑜𝑝

󳨀󳨀→ 𝑀1 are surjective.

Theorem 101. There exists the functor 𝐿-FC𝐶

∗

𝐻𝐿𝐶𝐿𝐷𝑎
󳨀󳨀󳨀󳨀󳨀→

𝐿-FC𝐷𝑀𝑅

𝑎
, which is defined by the formula 𝐻𝐿𝐶𝐿𝐷𝑎(K1

𝑓

󳨀→

K2) = K1

(𝛼
→

𝐿
,(𝛽
𝑜𝑝
)
←

𝐿
)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ K2.

Due to the already considerable size of the paper, the
respective fixed-basis restrictions of the variable-basis setting
of the previous subsections are left to the reader.

6. Conclusion: Open Problems

In this paper, we provided different approaches to a possible
lattice-valued generalization of Formal Concept Analysis
(FCA) of Ganter and Wille [31], motivated by the recent

study of Denniston et al. [29] on this topic. In particular, we
have constructed several categories, whose objects are lattice-
valued extensions of formal contexts of FCA and whose
morphisms reflect the crisp setting of Pratt [13], the lattice-
valued setting of Denniston et al. [29], and the many-valued
setting of Ganter and Wille [31] themselves. In the next step,
we considered many possible functors between the newly
defined categories. As a consequence, we embedded each of
the constructed categories into its respective counterparts.
The crucial difference of this paper from the motivating one
of Denniston et al. [29] can be briefly formulated as follows.

(i) The underlying lattices of lattice-valued formal con-
texts are extensions of quantales, instead of restricted
to precisely commutative quantales as in [29].

(ii) All the categories of lattice-valued formal contexts
and almost all of their respective functors are made
variable-basis (in the sense of [4]), instead of being
fixed-basis as in [29].

(iii) Unlike [29], we consider the setting of many-valued
formal contexts of Ganter and Wille [31].

In the wake of the constructed functors of this paper,
we can single out the following important properties of the
approach of Denniston et al. [29], which is based on the
category of Galois connections of [32].

Firstly, their approach falls rather out of the standard
settings of Pratt as well as Ganter and Wille. On one hand,
there exists an obvious isomorphism between the subcate-
gory 2-PGAL of the categoryGAL [32] of Galois connections
on crisp powersets and the crisp category 2-FC𝐷𝑀𝑅

𝑎
(cf.

Definitions 31(1) and 37) of this paper (essentially due toDen-
niston et al. [29]).On the other hand, the result ofTheorem 42
shows that given a unital quantale 𝐿, the categories 𝐿-PGAL
and 𝐿-FC𝐷𝑀𝑅

𝑎
are, in general, nonisomorphic. The variable-

basis approach complicates the case even more. Speaking
metamathematically, while the notion of formal concept
of FCA does involve an order-reversing Galois connection
between the respective powersets in its definition, its main
essence appears to come from a binary relation on two sets,
that is, the set of objects (𝐺) and the set of their respective
attributes (𝑀), which says whether a given object 𝑔 ∈ 𝐺

has a given property 𝑚 ∈ 𝑀. Thus, these are not the Galois
connections, but their generating relations, which seem to
play the main role. Moreover, Theorem 99 of the paper states
that while a particular subcategory of the category of lattice-
valued formal contexts in the sense of Pratt is isomorphic to a
nonfull subcategory of the category ofDenniston et al., it does
not provide a (co)reflective subcategory of the latter category
with respect to the constructed functors (at the moment
though, we do not know whether one can define different
functors, which do give rise to a (co)reflective subcategory in
question).

Secondly, the category of lattice-valued formal contexts,
based on the category of Galois connections, tends to have
the nature of a fixed-basis category. More precisely, while
making the setting of Denniston et al. variable-basis in the
current paper, we were unable to involve the morphisms of
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the underlying algebras of lattice-valued formal contexts in its
definition, thereby providing a quasi-variable-basis setting.

We would like to end the section with several open
problems related to the setting of this paper.

6.1. Proper Way of Building Lattice-Valued FCA. The previ-
ously mentioned discussion on the difference between the
settings of binary relations and Galois connections in the
lattice-valued case motivates the following open problem.

Problem 1. Is it possible to build a lattice-valued approach to
FCA, which is based on order-reversing Galois connections
on lattice-valued powersets, which are not generated by
lattice-valued relations on their respective sets of objects and
their attributes?

This problem seems especially important becausewe have
established that using order-reversing Galois connections is
more general than using relations. It may even seem that
using order-reversing Galois connections with the corre-
sponding Birkhoff operators is more robust and better than
using relations. Therefore, it seems important to be able
to understand how to use the Birkhoff operators when a
corresponding relation may not exist. The answer may not
depend on defining a relation. The answer may depend on
being able to do formal concept analysis without relations.

Notice that although the notions of formal concept,
protoconcept, andpreconcept (cf.Definition 44) can be easily
defined with the help of just a Galois connection in hand, it is
their respective interpretation that poses the main problem.
More precisely, what will be then in place of the crucial
term “an object 𝑔 has an attribute 𝑚”? It is our opinion
that such an approach can still be developed, substituting
the required single lattice-valued relation 𝐺 × 𝑀

𝐼

󳨀→ 𝐿 by a
pair of lattice-valued relations 𝐼1(𝑔,𝑚) = (𝛼(𝜒

1𝐿

{𝑔}
))(𝑚) and

𝐼2(𝑔,𝑚) = (𝛽(𝜒
1𝐿

{𝑚}
))(𝑔), where 𝐿𝐺

𝛼

󴀘󴀯
𝛽

𝐿
𝑀 is a given order-

reversing Galois connection, which violates the conditions of
Theorem 42 (notice that the case of a commutative quantale,
i.e., ⋅→ 𝑙⋅ = ⋅→ 𝑟⋅, simplifies, but does not save the situation).
In view of the discussion, a particular instance of Problem 1
is as follows.

Problem 2. What is the interpretation of the relations 𝐼1 and
𝐼2 and what kind of lattice-valued FCA can be developed
through them?

An ad hoc approach could be to read 𝐼1(𝑔,𝑚) as the
degree to which “an object 𝑔 has an attribute 𝑚” and to read
𝐼2(𝑔,𝑚) as the degree to which “an attribute 𝑚 is shared by
an object 𝑔,” that is, distinguishing between the classically
indistinguishable expressions “to have an attribute” and “an
attribute is being shared.”

6.2. Adjoint Situations between Possible Approaches to Lattice-
Valued FCA. In the paper, we have constructed functorial
embeddings of several categories of lattice-valued formal
contexts into each other. However, we failed to construct

a single adjoint situation between the categories in question,
being able just to obtain a negative result in this respect
(Theorem 99). In view of the discussion, our next problem
could be formulated as follows.

Problem 3. Construct (if possible) an adjoint situation
between the categories of lattice-valued formal contexts
introduced in this paper.

Notice that the problem has a close relation to the
discussion of the previous subsection. More precisely, an
adjoint situation between the categories of lattice-valued
formal contexts in the sense of Pratt and Denniston et al.,
respectively, can provide a partial answer to the problem of
dispensing with binary relations in lattice-valued FCA and
substituting them by order-reversing Galois connections.

6.3. Proper Morphisms of Lattice-Valued Formal Contexts.
In the paper, we have dealt with both lattice-valued formal
contexts and their respectivemorphisms.Whereas the former
have already been treated in the fuzzy literature, the case
of the latter is still not sufficiently clear. In particular, we
have provided three possible approaches to (lattice-valued)
formal context morphisms, that is, that of Pratt, that of
Denniston et al., and that of Ganter and Wille. Taking apart
the metamathematical discussion on the fruitfulness of any
of the previously mentioned approaches, the last problem of
the paper can be stated then as follows.

Problem 4. What is the most suitable (if any) way of defining
the morphisms of lattice-valued FCA?

All the previously mentioned open problems will be
addressed in our subsequent articles on the topic of lattice-
valued FCA. An interested reader is kindly invited to share
the effort.
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