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We consider certain subclasses of analytic functions with bounded radius and bounded boundary rotation and study the mapping

properties of these classes under certain integral operators.

1. Introduction

Let o/ be the class of all functions of the following form:

f@=z+) a7 (1)

k=2
which are analytic in the open unit disc
U={zeC:|z] < 1}. (2)

A function f € 4/ is said to be spiral-like if there exists a
real number A (|A] < 7/2) such that

Re{ei’\%} >0 (zeU). 3)

The class of all spiral-like functions was introduced by Spacek
[1] in 1933 and we denote it by ). Later in 1969, Robertson
[2] considered the class &) of analytic functions in U for
which zf’(z) €S,

Let 9:’2 (p) be the class of functions p(z) analytic in U with
p(0) = 1and

2
JO

where k > 2,0 < p < 1, A is real with [A| < 77/2.
For A = 0, this class was introduced in [3] and for p = 0,

see [4]. For k = 2,1 = 0 and p = 0, the class 92(;}) reduces

Re ei’\p (z) —pcosh

do < kmcosd, z=re, (4)
l-p

to the class 2 of functions p(z) analytic in U with p(0) = 1
and whose real part is positive.

The following definition of fractional derivative by Owa
[5] (also by Srivastava and Owa [6]) will be required in our
investigation.

The fractional derivative of order y is defined, for a
function f, by

1 4 (" f@®
(l—y)EL (z—E)ydE

where the function f is analytic in a simply connected
region of the complex z-plane containing the origin, and the
multiplicity of (z — &) is removed by requiring log(z — &) to
be real when z — &€ > 0.

It readily follows from (5) that

Dlf @)= ; (0<y<1), )

F(k+ 1) k—y

Dl =
T Tlk+1-y)°

(0<y<lke N={1,2..1}).
(6)

Using D! f, Owa and Srivastava [7] introduced the
operator Q7 : o/ — &, which is known as an extension
of fractional derivative and fractional integral, as follows:

Q'f(z)=T(2-y)2z'Dlf (2)

FLEeOIE-y), i 2

aiz
= F(k+1-1y)



Note that

Q'f(2) = f(2). (8)

In [8], Al-Oboudi and Al-Amoudi defined the linear mul-
tiplier fractional differential operator (namely, generalized
Al-Oboudi differential operator) DZ’V as follows:

D°f (2) = f (2),
DY f(2) = (1-8) Q' f (2) + 02(Q' f (2))
=Dy (f(2), 620,0<y<],

©
D" f(2) = D} (D3 f (2)),

D} f(2) =D} (Di M f(2)), meN.

If f is given by (1), then by (7) and (9), we see that

[ee]
D f(z)=z+ Z‘}’k,n (y,0) 2", neNy=NuU{0},

k=2
(10)
where
B I(k+1r(2-y) "
Vi (1:6) = m(lﬂk—l)& . (1)

Remark 1. (i) When y = 0, we get Al-Oboudi differential
operator [9].

(ii) When y = 0 and § = 1, we get Silagean differential
operator [10].

(iii) Whenn = 1 and § = 0, we get Owa-Srivastava
fractional differential operator [7].

Definition 2. A function f € ¢ is said to belong to the class
%Q(p, b;n,y, ) if and only if

Y
1 <Z(Da /@)

_ A
b Dg»]’f (Z) 1> € '@k (P)’ (12)

where k > 2,0 < p < 1, A is real with |A| < 71/2,b € C - {0}
and D is the generalized Al-Oboudi differential operator.

Definition 3. A function f € & is said to belong to the class

?/Q(p, b;n,y,9d) if and only if

12(D}f )

E% € 7 (p), (13)
(D"f (@)

where k > 2,0 < p < 1, A is real with |A| < 7/2,b € C - {0}
and D is the generalized Al-Oboudi differential operator.

1+

Remark 4. (i) Lettingy = 0 and b = 1 in Definition 2, we have
the class 72(1), d, n) introduced by Dileep and Latha [11].
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(ii) For n = 0 and b = 1, we obtain the classes %é(p)

and 7/%( p), respectively, introduced and studied by Noor
et al. [12] and Moulis [13].

(iii) For A = 0 and n = 0, we have the classes Z,.(p, b) and
71 (p, b), respectively, introduced and studied by Noor et al.
[14].

(iv) For k = 2, A = 0 and n = 0, we have the classes &;(b)
and %p(b), respectively, introduced by Frasin [15].

Definition 5. Letn € Ny, I = (I},...,1,) € Ng', and k; >
0 (I < j < m). One defines the integral operator I, :
A" — ol as

In,m,l,k (fl""’fm) =F’ (14)

z Dll’yf (t) ky
Dg’VF(z):J < [ tl >

0
(15)

o f o\
<5+> dt (zeU),

where f,..., f,, € o and D is the generalized Al-Oboudi
differential operator.

Remark 6. The integral operator Dg’yF generalizes many

operators which were introduced and studied recently.

(i) For y = 0, we have the integral operator

2 ll kl lm km
DgF(z)=J <—D5f1(t)> ...<D_5im(t)> dt (16)

0 t

introduced by Bulut [16]. Here D is the Al-Oboudi differen-
tial operator.

(ii)) Forn =0,y =0and/, = --- =1, =1 € N, we have
the integral operator

N ky ! Ko
F(z)=J <—D‘5f1(t)> ...<D_5ftm(t)> e (17)

0 t

introduced by Bulut [17]. Here D is the Al-Oboudi differen-
tial operator.
(iii) For y = 0 and A = 1, we have the integral operator

2 I, ky 1 ki
D”F(z)=J (M) <w) g (18)

0

introduced by Breaz et al. [18]. Here D is the Salagean
differential operator.

(iv) Forn = 0and Dy f, = Dy°f = f, e (1< j <
m), we have the integral operator

Fa@= [ (m)k (@)kmdf (19)

t

introduced by D. Breaz and N. Breaz [19].



Journal of Mathematics

(v)Forn =0,m=1,k; =k € [0,1],ky = --- =k, =
0 and Dg,y fi = Dy f , = f € & (consists of functions
that are analytic, univalent and starlike), we have the integral
operator

z t k
Fe@ = | (&) dt (20)
0 t
studied by Miller et al. [20].
(vi) Forn = 0,m = 1,k; = 1,k, = -+ = k,, = 0 and
Dg’y fi= D(l)’0 f1 = f € o, we have the integral operator of
Alexander

Flz) = LZ @dt 1)

introduced by Alexander [21].
Definition 7. Letn € Ny, I = (Iy,...,1,) € Ng', and k; >

0 (I < j < m). One defines the integral operator J, ., :
A" — d as

]n,m,l,k (fl’ ’fm) = G’ (22)

”Vc<z>—j [( ”fl(r))]k
(23)

. [(Dfs'“’yfl (t))’]kmdt (z € U),

where f,..., f,, € & and D is the generalized Al-Oboudi
differential operator.

Remark 8. The integral operator Dy'G generalizes many
operators which were introduced and studied recently.

(i) Forn = 0and Dy"f; = Dy’ f; = f; e o (1< j <
m), we have the integral operator

G@=| (£ o) (f,0)da @
0

introduced by Breaz et al. [22].

(ii)) Forn =0,m =1,k =k e Ck, = - =k, =
and Dg’y f, =Dy f, = f € o, we have the integral
operator

Gy (2) = Lz (f (t))kdt (25)

introduced by Pfaltzgraft [23] (see also Pascu and
Pescar [24]).

In this paper, we investigate some propeties of the above
integral operators D" F and D" G for the classes

Ry (P y,8), Vi (pbin,y,0). (26)

2. Main Results

Theorem 9. Let f; € @ﬁ(pj,b;n,y,S)forl < j < mwith
0< pj < 1,b € C - {0}. Also let A be real with |A| < 71/2,kj >
0(1<j<m)lIf

0s1+ij(pj—1)<1, (27)

then the integral operator F defined by (15) is in the class
7, bsn, y, &) with

n=1+k;(p;=1)- (28)
Proof. Since f; € o/ (1 < j < m), by (10), we have

1,y
D/ f.(2) %
& =1+ Z\Pk’lj ()/, 6) ak)jzk_l,

k=2 (29)

Disj’yfj (2)

z

+0

for all z € U. By (15), we get

(P R@ (D @\
(Dy'F(2)) = == o 2o m
z z

(30)
This equality implies that
ll,}/ lm’y
! D z D z
In(Dj"F (2)) =k, In —2—1— 51( N + Ky In == /@)
z
(1)
or equivalently
7, ! 1)
In(D}'F(2)) =k, [1nD6 "f,(2) —1nz] o
32
+ -+ k, [lan"’yfm (z) - lnz] .
By differentiating the above equality, we get
DIE w | (DSf(2)
(Z) Y s Jj 1 (33)
7, 1;;
(Dy'F (z)) =i D" f;@) Z
Hence, we obtain from this equality that
n 'V
(DVF@) o [ ADif@)
(D5 ) = Yk; ! 1], 39



Then by multiplying the above relation with 1/b, we have

lz(Dg’VF (z))”
b (DyF (@)

~ ik 1 (Dg’yfj (z)) X
S\ b (39)
lj,y
YA (D‘S fj(z)> - Sk,
AP\ DY@ =

or equivalently

e,.A(le(Dz’vwa)")

b (oyr)

S il
(-3

Z<Dg)yfj (Z)>,

1,y -1
Dtsj fj(Z)

1
+Ekje 1+E

Subtracting and adding cos A Z;":l k;p; on the left hand side
and then taking real part, we have

PR
Re 'A<1+lw> 7 cos A
b (D} @)
D”f()
D”f() I

Il
M=z

-
Il
—_

; €os A
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where 7 is given by (28). Integrating (37) and then using (28),
we have

D"
Re ')‘<1+lm —ncosi
? (D' )
1 Z<Di§’yfj (Z))
| —

[’
0 D(sj ij (2)

do

-1

—pjcosA | do.

(38)

Since f ; € %Q(pj,b;n,y,(S) (1 < j<m), weget

R 1
o N 1 z(D(;ij (z))
J Red4e |1+ ——— 2 1

0 b Dg’yfj (2)
(39)

—pjcosA r|do < (1 - pj)kncos}t
for 1 < j < m. Using (39) in (38), we obtain
2 . z(DYVF (2)
J Re {e| 1+ % u —ncos A
° (05'F @)

< kﬂcosAikj (1 —pj).
=1

do

(40)

Hence, we obtain F € 7} (7, by, p, 8) with 7 is given by (28).
O

Bysettingn =0,y =0,b= 1,1, = --- =, = l in Theorem

9, we obtain the following.

Corollary 10 (see [11, Theorem 1]). Let fj € WQ(pj,& n)
Jor1 < j<mwith0 < p; < 1. Also let A be real with |A| <
m/2,k; >0 (1< j<m).If

0<1+)ki(p;-1)<1, (41)

then the integral operator F(z) defined by (17) is in the class
7\ .
() with

q=1+ij(pj—l). (42)
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Remark 11. Letting p; = p, = --- = p,, = p in Corollary 10,

then we have [12, Theorem 3.1].

By settingn = 0, A = 0 and DOV Dy? in Theorem 9, we
obtain the following.

Corollary 12. Let f; € Ry (p;,b) for 1 < j < mwith 0 <
p; < 1,be (C—{O}.Alsoletkj >0(l<j<m)If

m

0<1+Yyki(p;-1)<1, (43)
j=1

then the integral operator F,,(z) defined by (19) is in the class
7' 1(n,b) with

n=1+3ki(p;=1). (44)

Remark 13. In Corollary 12, letting

(i) py =p, = -+ = p,, = p» we have [14, Theorem 2.1],

(ii) k = 2, we have [25, Theorem 1].

Theorem 14. Let f; € Wﬁ(pj,b;n,y,(S)forl < j < mwith
0< pj< 1,b € C - {0}. Also let A be real with |A| < n/2,kj >
0(l<j<m).lIf

0<1+yki(p-1)<1, (45)

then the integral operator G defined by (23) is in the class
Wﬁ(‘u, b;n,y,8) with

=1+ ki (p;=1). (46)
=1
Proof. By (23), we get
(P76 (=)
’ kl ’ km (47)
= [(Dg’yfl (z)) ] . [(Df;"’yf1 (z)) ]
This equality implies that
(DG @)
1.,y "
m Mk Ds” f;(2)
=1 (D(S]’yfj (z)) (48)

[CHEDIE

=

+

)

N

r

Thus by using (47) and (48), we obtain

L "
ikjm‘ (49)
= (D;j)yfj (Z))

D ”G@D
(0’6 @)

Then by multiplying the above relation with 1/b, we have

z(Dg’yG (z))”

1
b (06 @)

UL
= ki ' (50)

_ _ < ) il
(3

Subtracting and adding cos A ZT:1 k;p; on the left hand side
and then taking real part, we have

DY
Re {e| 1+ l( G(Z)) —pcosA
* (077G @)

I "

m ‘ 1z<D§’yfj(z))

:ijRe e 1+E% - pjcosir,
7= (Dsj’yfj (Z)>

(52)



where y is given by (46). Integrating (52) and then using (46),
we have

Reqe 1+—

: MCREID)

l., "
2m i 1Z<D5Jyfj (Z)>

2 . DG (z)
J i ( — | —pcosAp|dO

Re 1+
~ 0 I, ' (53)
J=1 (Da’ ij (z))
—pjcosA r|db.
Since f; € “Wz(pj,b;n,y,é) (1 <j<m), weget
l" "
n i 1 Z<D5] ij (z)>
J Re qe 1+E—' —pjcosAr|do
0 L,
(077, @)
< (1 —pj)kncos)t
(54)
for 1 < j < m. Using (54) in (53), we obtain
2 A z(DYYG (z '
J Re{e| 1+ é(é—()), —ucosA¢|do
0 D”)YG

< kﬂcos/\ikj(l —pj).
j=1

Hence, we obtain G € 7/£(y, b;n,y,6) with u given by (46).
O

By settingn = 0, A = 0 and DOV Dy” in Theorem 14,

we obtain the following.

Corollary 15. Let f; € 7(p;,b) for 1 < j < mwith 0 <
p; < 1,be (C—{O}.Alsoletkj >0(l<j<m)If

0<1+yki(p-1)<1, (56)

then the integral operator G(z) defined by (24) is in the class
7' 1.(u, b) with

=1+ k;(p;-1). (57)

Remark 16. In Corollary 15, letting

(i) py =p, = -+ = p,, = p» we have [14, Theorem 2.5],

(ii) k = 2, we have [25, Theorem 3].
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