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Let (𝑅,m) be a commutative Noetherian local ring and let𝑀 be a finitely generated 𝑅-module of dimension 𝑑. Then the following
statements hold: (a) if width (𝐻𝑖m (𝑀)) ≥ 𝑖−1 for all 𝑖with 2 ≤ 𝑖 < 𝑑, then𝐻𝑑m (𝑀) is co-Cohen-Macaulay of Noetherian dimension
𝑑; (b) if𝑀 is an unmixed 𝑅-module and depth𝑀 ≥ 𝑑 − 1, then𝐻𝑑m (𝑀) is co-Cohen-Macaulay of Noetherian dimension 𝑑 if and
only if 𝐻𝑑−1m (𝑀) is either zero or co-Cohen-Macaulay of Noetherian dimension 𝑑 − 2. As consequence, if 𝐻𝑖m (𝑀) is co-Cohen-
Macaulay of Noetherian dimension 𝑖 for all 𝑖 with 0 ≤ 𝑖 < 𝑑, then𝐻𝑑m (𝑀) is co-Cohen-Macaulay of Noetherian dimension 𝑑.

1. Introduction

Throughout this paper, let (𝑅,m) be a commutative Noethe-
rian local ring and let𝑀 be a finitely generated 𝑅-module of
dimension 𝑑. We denote the ith local cohomology module of
𝑀with respect tom by𝐻𝑖m(𝑀). It is well known that𝐻𝑖m(𝑀)

is Artinian for all 𝑖 (cf. [1]).
The Noetherian dimension of an Artinian 𝑅-module 𝐴,

denoted by𝑁-dim𝐴, is defined inductively as follows: when
𝐴 = 0, put𝑁-dim𝐴 = −1. Then by induction, for any integer
𝑟 ≥ 0, put 𝑁-dim𝐴 = 𝑟 if 𝑁-dim𝐴 < 𝑟 is false, and for
any ascending chain 𝐴

0
⊆ 𝐴
1
⊆ 𝐴
2
⊆ ⋅ ⋅ ⋅ of submodules

of 𝐴 there exists an integer 𝑛
0
such that 𝑁-dim(𝐴

𝑛+1
/𝐴
𝑛
) <

𝑟 for all 𝑛 > 𝑛
0
. Therefore 𝑁-dim𝐴 = 0 if and only

if 𝐴 is a nonzero Noetherian module. Moreover, if 0 →

𝐴󸀠 → 𝐴 → 𝐴󸀠󸀠 → 0 is an exact sequence of Artinian
modules, then 𝑁-dim𝐴 = max{𝑁-dim𝐴󸀠, 𝑁-dim𝐴󸀠󸀠}. Let
𝑥
1
, . . . , 𝑥

𝑛
∈ m. 𝑥

1
, . . . , 𝑥

𝑛
is an 𝐴-coregular sequence if

0:
𝐴
(𝑥
1
, . . . , 𝑥

𝑖−1
)𝑅
𝑥𝑖

󳨀→ 0:
𝐴
(𝑥
1
, . . . , 𝑥

𝑖−1
)𝑅 is surjective for 𝑖 =

1, . . . , 𝑛 and 0:
𝐴
(𝑥
1
, . . . , 𝑥

𝑛
)𝑅 ̸= 0. The width of 𝐴, denoted by

width (𝐴), is the length of anymaximal𝐴-coregular sequence
in m. For any 𝐴-coregular element 𝑥 ∈ m, we have that
𝑁-dim(0:

𝐴
𝑥) = 𝑁-dim𝐴−1 and width(0:

𝐴
𝑥) = width𝐴−1.

Details about𝑁-dim𝐴 and width𝐴 can be found in Roberts
[2], Kirby [3], and Ooishi [4]; there is a general fact: for
any Artinian 𝑅-module 𝐴width𝐴 ≤ 𝑁-dim𝐴 < ∞ holds

and 𝐴 is co-Cohen-Macaulay if and only if width𝐴 =

𝑁-dim𝐴 holds (cf. [5–7]). Tang [8] has shown that if either
𝑑 ≤ 2 or 𝑀 is Cohen-Macaulay, then 𝐻

𝑑

m(𝑀) is co-Cohen-
Macaulay (see also [9]). FollowingNagata [10],𝑀 is unmixed
if dim(𝑅̂/p) = 𝑑 for all p ∈ Ass

𝑅̂
𝑀̂.

The main aim of this paper is to prove the following
theorem.

Theorem 1. The following statements are true.

(a) If width (𝐻𝑖m(𝑀)) ≥ 𝑖 − 1 for all 𝑖 with 2 ≤ 𝑖 <

𝑑, then 𝐻𝑑m(𝑀) is co-Cohen-Macaulay of Noetherian
dimension 𝑑.

(b) If 𝑀 is an unmixed 𝑅-module and depth 𝑀 ≥ 𝑑 −

1, then 𝐻𝑑m(𝑀) is co-Cohen-Macaulay of Noetherian
dimension 𝑑 if and only if 𝐻𝑑−1m (𝑀) is either zero or
co-Cohen-Macaulay of Noetherian dimension 𝑑 − 2.

2. The Results

Following Macdonald [11], every Artinian 𝑅-module 𝐴 has
minimal secondary representation 𝐴 = 𝐴

1
+ ⋅ ⋅ ⋅ + 𝐴

𝑛
, where

𝐴
𝑖
is p
𝑖
secondary. The set {𝑝

1
, . . . , 𝑝

𝑛
} is independent of the

choice of the minimal secondary representation of 𝐴. This
set is called the set of attached prime ideals of 𝐴 and denoted
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by Att𝐴. The set of all minimal elements of Att 𝐴 is exactly
the set of all minimal elements of Var(Ann𝐴). A sequence
(𝑥
1
, . . . , 𝑥

𝑛
) of elements inm is called a strict f-sequence of𝑀

if 𝑥
𝑗+1

∉ p for all p ∈ ∪
𝑑−𝑗

𝑖=1
Att(𝐻𝑖m(𝑀/(𝑥

1
, . . . , 𝑥

𝑗
)𝑀) \ {m}

for all 𝑗 = 0, 1, . . . , 𝑛 − 1. This notion was introduced in [12].

Lemma 2 (see [9]). For all integer 0 ≤ 𝑖 < 𝑑, one has
𝑁-dim (𝐻𝑖m(𝑀)) ≤ 𝑖 and𝑁-dim (𝐻𝑑m(𝑀)) = 𝑑.

Lemma 3. Let 𝑥 ∈ m be a strict 𝑓-sequence of 𝑀. Then the
following statements are true.

(i) Suppose that 𝑑 ≥ 3 and𝐻𝑑m(𝑀) is co-Cohen-Macaulay
of Noetherian dimension 𝑑. Then𝐻𝑑−1m (𝑀/𝑥𝑀) is also
co-Cohen-Macaulay of Noetherian dimension 𝑑 − 1.

(ii) Suppose that 𝐻𝑑−1m (𝑀/𝑥𝑀) is co-Cohen-Macaulay of
Noetherian dimension 𝑑 − 1 and width (𝐻𝑑m(𝑀)) ≥

3. Then 𝐻𝑑m(𝑀) is co-Cohen-Macaulay of Noetherian
dimension 𝑑.

Proof. (i) By our hypothesis and using [1, Exercise 11.3.9], we
have ℓ(0:

𝑀
𝑥) < ∞. Hence from the exact sequences

0 󳨀→ (0:
𝑀
𝑥) 󳨀→ 𝑀 󳨀→

𝑀

0:
𝑀
𝑥
󳨀→ 0,

0 󳨀→
𝑀

(0:
𝑀
𝑥)

𝑥

󳨀→ 𝑀 󳨀→
𝑀

𝑥𝑀
󳨀→ 0,

(1)

we get the exact sequence

0 󳨀→
𝐻𝑖m (𝑀)

𝑥𝐻𝑖m (𝑀)
󳨀→ 𝐻

𝑖

m (
𝑀

𝑥𝑀
) 󳨀→ (0:

𝐻
𝑖+1

m (𝑀)
𝑥) 󳨀→ 0 (†) ,

(2)

for all 𝑖 = 1, 2, . . . , 𝑑 − 1. Thus in case 𝑖 = 𝑑 − 1 we
have that (0:

𝐻
𝑑

m(𝑀)
𝑥) is co-Cohen-Macaulay of Noetherian

dimension 𝑑 − 1. By the choice of 𝑥 ∈ m the module
𝐻𝑑−1m (𝑀)/𝑥𝐻𝑑−1m (𝑀) is an 𝑅-module of finite length. More-
over, since width (𝐻𝑑−1m (𝑀/𝑥𝑀)) ≥ min{2, 𝑑 − 1} > 0 by
[8, Proposition 2.4], we have𝐻m

0
(𝐻
𝑑−1

m (𝑀/𝑥𝑀)) = 0 by [13,
Theorem 4.11]. Thus, by [13, Corollary 3.7], the long exact
local homology sequence with respect to 𝑖 = 𝑑 − 1 over
the exact sequence (†) provides 𝐻𝑑−1m (𝑀)/𝑥𝐻𝑑−1m (𝑀) = 0.
Hence there is an isomorphism 𝐻𝑑−1m (𝑀/𝑥𝑀) ≅ (0:

𝐻
𝑑

m(𝑀)
𝑥)

and so 𝐻𝑑−1m (𝑀/𝑥𝑀) is a co-Cohen-Macaulay module of
Noetherian dimension 𝑑 − 1.

The proof of (ii) follows by the same arguments as in the
proof of (i).

Brodmann and Sharp [14], for all integer 𝑖 ≥ 0, defined the
set {p ∈ Spec(𝑅) : 𝐻𝑖−dim𝑅/pp𝑅p

(𝑀p) ̸= 0}, the ith pseudo support
of𝑀, and denoted by Psupp𝑖(𝑀). Note that if 𝑅 is complete
with respect to m-adic topology, then by [15, Theorem 3.1]
Var(Ann (𝐻𝑖m(𝑀))) = Psupp𝑖(𝑀). The module 𝑀 satisfies
Serre’s condition 𝑆

𝑛
, where 𝑛 is nonnegative integer, provided

depth𝑀p ≥ min{𝑛, dim𝑀p} for all p ∈ Supp(𝑀). Note that

𝑀 satisfies the condition Serre 𝑆
1
if and only if 𝑀 has no

imbedded primes, that is, Ass𝑀 = min Ass𝑀 is unmixed.

Lemma 4. Let 𝑀 be unmixed and 𝑑 ≤ 2. Then 𝐻𝑑−1m (𝑀) is
either zero or co-Cohen-Macaulay of Noetherian dimension 𝑑−
2.

Proof. When 𝑑 = 0, it is trivial. We assume that 𝑑 = 1.
Since 𝑀 is unmixed then depth𝑀 ≥ 1 and so we have
𝐻
0

m(𝑀) = 0. Thus the result has been proved in this case.
Nowassume that𝑑 = 2 and𝐻1m(𝑀) ̸= 0. By using [6,Theorem
1.4], we can assume that 𝑅 is complete with respect to m-
adic topology. Let p ∈ Psupp1(𝑀). Then𝐻1−dim𝑅/pp𝑅p

(𝑀p) ̸= 0.
Therefore 1 ≤ depth𝑀p ≤ 1 − dim𝑅/p and so dim𝑅/p =

0. Hence Psupp1(𝑀) = {m} and so by [15, Theorem 3.1]
Att(𝐻1m(𝑀)) ⊆ {m}. This implies that 𝐻1m(𝑀) is of finite
length (see [1, Corollary 7.2.12]). Hence𝐻1m(𝑀) is co-Cohen-
Macaulay of Noetherian dimension zero.

Theorem 5. Let 𝑀 be an unmixed 𝑅-module. If depth𝑀 ≥

𝑑 − 1, then the following statements are equivalent:

(i) the module𝐻𝑑m(𝑀) is co-Cohen-Macaulay of Noethe-
rian dimension 𝑑;

(ii) the module 𝐻
𝑑−1

m (𝑀) is either zero or co-Cohen-
Macaulay of Noetherian dimension 𝑑 − 2.

Proof. (i) ⇒ (ii). We use induction on 𝑑. The case 𝑑 ≤ 2

follows by Lemma 4. Let 𝑑 ≥ 3. Let 𝑥 ∈ m be a strict 𝑓-
sequence on 𝑀. By [1, Exercise 11.3.9], 𝑥 ∉ p for all p ∈

Ass𝑀 \ {m}. Note that m ∉ Ass𝑀, since depth𝑀 > 0.
Therefore 𝑥 is 𝑀 regular. Thus, by Lemma 3, 𝐻𝑑−1m (𝑀/𝑥𝑀)

is co-Cohen-Macaulay of Noetherian dimension 𝑑 − 1. Since
𝑀/𝑥𝑀 unmixed and depth𝑀/𝑥𝑀 ≥ 𝑑 − 2, it follows from
the inductive hypothesis that 𝐻𝑑−2m (𝑀/𝑥𝑀) is either zero or
co-Cohen-Macaulay of Noetherian dimension 𝑑 − 3. Hence,
from the exact sequence

0 󳨀→
𝐻
𝑑−2

m (𝑀)

𝑥𝐻𝑑−2m (𝑀)
󳨀→ 𝐻

𝑑−2

m (
𝑀

𝑥𝑀
) 󳨀→ (0:

𝐻
𝑑−1

m (𝑀)
𝑥) 󳨀→ 0,

(3)

and our assumption we get 𝐻𝑑−2m (𝑀/𝑥𝑀) ≅ (0:
𝐻
𝑑−1

m (𝑀)
𝑥)

and so (0:
𝐻
𝑑−1

m (𝑀)
𝑥) is either zero or co-Cohen-Macaulay of

Noetherian dimension 𝑑 − 3. Since 𝑥 is a coregular sequence
on 𝐻𝑑−1m (𝑀), we have 𝐻𝑑−1m (𝑀) being either zero or co-
Cohen-Macaulay of Noetherian dimension 𝑑−2, as required.

(ii) ⇒ (i). We prove by induction on 𝑑. By [8, Corollary
2.5], we can assume that 𝑑 ≥ 3. By our hypothesis there exists
𝑥 ∈ m \ (∪p∈Ass(𝑀)p) ∪ (∪q∈Att(𝐻𝑑−1m (𝑀))

q). Hence, from the
exact sequence

0 󳨀→
𝐻𝑖m (𝑀)

𝑥𝐻𝑖m (𝑀)
󳨀→ 𝐻

𝑖

m (
𝑀

𝑥𝑀
) 󳨀→ (0:

𝐻
𝑖+1

m (𝑀)
𝑥) 󳨀→ 0,

(4)

we have the isomorphism 𝐻𝑖m(𝑀/𝑥𝑀) ≅ (0:
𝐻
𝑖+1

m (𝑀)
𝑥)(‡)

for 𝑖 ∈ {𝑑 − 2, 𝑑 − 1}. Since 𝑥 is a coregular sequence on
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𝐻𝑑−1m (𝑀), (0:
𝐻
𝑑−1

m (𝑀)
𝑥) is either zero or co-Cohen-Macaulay

of Noetherian dimension 𝑑 − 3 and so is 𝐻𝑑−2m (𝑀/𝑥𝑀).
Hence by induction hypothesis 𝐻𝑑−1m (𝑀/𝑥𝑀) is co-Cohen-
Macaulay of Noetherian dimension 𝑑 − 1. Since 𝑥 is a
coregular sequence on𝐻𝑑m(𝑀), it follows, by (‡), that𝐻𝑑m(𝑀)

is co-Cohen-Macaulay of Noetherian dimension 𝑑. This
complete the proof.

The following consequence follows byTheorem 5.

Corollary 6. Let 𝑀 be a Cohen-Macaulay module. Then
𝐻𝑑m(𝑀) is co-Cohen-Macaulay of Noetherian dimension 𝑑.

The following theorem extends [16, Corollary 3.6].

Theorem7. Let width (𝐻𝑖m(𝑀)) ≥ 𝑖−1 for all 𝑖with 2 ≤ 𝑖 < 𝑑.
Then𝐻𝑑m(𝑀) is co-Cohen-Macaulay of Noetherian dimension
𝑑.

Proof. We use induction on 𝑑. Let 𝑑 = 3. Then, by [1,
Corollary 2.1.7] and our assumption, there exists 𝑥 ∈

m \ (∪p∈Ass(𝑀)p) ∪ (∪q∈Att(𝐻2m(𝑀))q). Hence from the exact
sequence

0 󳨀→ 𝑀
𝑥

󳨀→ 𝑀 󳨀→
𝑀

𝑥𝑀
󳨀→ 0 (∗) , (5)

we get the exact sequence

0 󳨀→ 𝐻
2

m (
𝑀

𝑥𝑀
) 󳨀→ 𝐻

3

m (𝑀)
𝑥

󳨀→ 𝐻
3

m (𝑀) 󳨀→ 0. (6)

Therefore𝐻2m(𝑀/𝑥𝑀) ≅ (0:
𝐻
3

m(𝑀)
𝑥) and so (0:

𝐻
3

m(𝑀)
𝑥) is co-

Cohen-Macaulay of Noetherian dimension 2.Thus𝐻3m(𝑀) is
co-Cohen-Macaulay of Noetherian dimension 3. The result
has been proved in this case. Now suppose that 𝑑 > 3 and
assume that our assertion is true for 𝑑 − 1. There exists 𝑥 ∈

m \ (∪p∈Ass(𝑀)p)∪ (∪
𝑑−1

𝑖=2
∪q∈Att(𝐻𝑖m(𝑀))q) and so from the exact

sequence (∗) we have the following long exact sequence

⋅ ⋅ ⋅ 󳨀→ 𝐻
𝑖

m (
𝑀

𝑥𝑀
) 󳨀→ 𝐻

𝑖

m (𝑀)
𝑥

󳨀→ 𝐻
𝑖

m (𝑀) 󳨀→ ⋅ ⋅ ⋅ .

(7)

Thus there is an isomorphism𝐻𝑖m(𝑀/𝑥𝑀) ≅ (0:
𝐻
𝑖+1

m (𝑀)
𝑥)(⋆)

for all 𝑖 with 2 ≤ 𝑖 < 𝑑. Hence width (𝐻𝑖m(𝑀/𝑥𝑀)) ≥

𝑖 − 1 for all 𝑖 with 2 ≤ 𝑖 < 𝑑 − 1 and so by the
induction hypothesis 𝐻𝑑−1m (𝑀/𝑥𝑀) is co-Cohen-Macaulay
of Noetherian dimension 𝑑 − 1. Therefore, in view of (⋆),
the module 𝐻

𝑑

m(𝑀) is co-Cohen-Macaulay of Noetherian
dimension 𝑑, as required.

The following corollary immediately follows by Theo-
rem 7 and [8, Corollary 2.5].

Corollary 8. Let 𝐻𝑖m(𝑀) be co-Cohen-Macaulay of Noethe-
rian dimension 𝑖 for all 𝑖 with 0 ≤ 𝑖 < 𝑑. Then 𝐻𝑑m(𝑀) is
co-Cohen-Macaulay of Noetherian dimension 𝑑.
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