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We first introduce double obstacle systems associated with the second-order quasilinear elliptic differential equation
div(𝐴(𝑥, ∇𝑢)) = div𝑓(𝑥, 𝑢), where 𝐴(𝑥, ∇𝑢), 𝑓(𝑥, 𝑢) are two 𝑛 ×𝑁matrices satisfying certain conditions presented in the context,
then investigate the local and global higher integrability of weak solutions to the double obstacle systems, and finally generalize the
results of the double obstacle problems to the double obstacle systems.

1. Introduction

LetΩ ⊂ 𝑅𝑛 be a bounded domain. We consider the following
quasilinear elliptic systems:

𝐷
𝑖
𝐴
𝑖

𝛼
(𝑥, ∇𝑢) = 𝐷

𝑖
𝑓
𝑖

𝛼
(𝑥, 𝑢) , 𝛼 = 1, 2, . . . , 𝑁, (1)

where 𝐴𝑖
𝛼
(𝑥, ℎ), 𝑓𝑖

𝛼
(𝑥, 𝑢) satisfy the conditions given in the

following context. If we denote 𝐴(𝑥, ℎ) =

(𝐴𝑖
𝛼
(𝑥, ℎ)), 𝑓(𝑥, 𝑢) = (𝑓𝑖

𝛼
(𝑥, 𝑢))(𝑛 × 𝑁 matrices), then

(1) turns into

div 𝐴 (𝑥, ∇𝑢) = div 𝑓 (𝑥, 𝑢) . (2)

Our aim is to generalize the integrability results of double
obstacle problems (𝑁 = 1) to systems (𝑁 > 1). In order
to do that, first, we have to define the obstacle problems
corresponding to systems (2), and then we investigate the
integrability of the weak solutions to the double obstacle
systems.

In order to narrate our assumptions and our results, we
give the following notations.

Let 𝑓(𝑥) = (𝑓
1
(𝑥), 𝑓
2
(𝑥), . . . , 𝑓

𝑁
(𝑥)), 𝑔(𝑥) = (𝑔

1
(𝑥), . . . ,

𝑔
𝑁
(𝑥)) be two vector-valued functions defined onΩ, then we

say that 𝑓(𝑥) ≤ 𝑔(𝑥) if and only if 𝑓
𝛼
(𝑥) ≤ 𝑔

𝛼
(𝑥) a.e. 𝑥 ∈

Ω, ∀1 ≤ 𝛼 ≤ 𝑁, and define max{𝑓(𝑥), 𝑔(𝑥)} =

(max{𝑓
1
(𝑥), 𝑔
1
(𝑥)}, . . . ,max{𝑓

𝑁
(𝑥), 𝑔
𝑁
(𝑥)}), min{𝑓(𝑥),

𝑔(𝑥)} = −max{−𝑓(𝑥), −𝑔(𝑥)}, 𝜃+(𝑥) = (max{𝜃
1
(𝑥), 0}, . . . ,

max{𝜃
𝑁
(𝑥), 0}), 𝜃−(𝑥) = (min{𝜃

1
(𝑥), 0}, . . . ,min{𝜃

𝑁
(𝑥), 0}).

Let𝑊1,𝑝(Ω), and let𝑊1,𝑝
0
(Ω),𝑊

1,𝑝

loc (Ω) be usual Sobolev
spaces, then define

𝑊
1,𝑝

(Ω, 𝑅
𝑁

) = {𝑓 (𝑥) | 𝑓 (𝑥) = (𝑓
1
(𝑥) , . . . , 𝑓

𝑁
(𝑥)) ,

𝑓
𝛼
(𝑥) ∈ 𝑊

1,𝑝

(Ω) , 𝛼 = 1, . . . , 𝑁} ,

𝑊
1,𝑝

0
(Ω, 𝑅
𝑁

) = {𝑓 (𝑥) | 𝑓 (𝑥) = (𝑓
1
(𝑥) , . . . , 𝑓

𝑁
(𝑥)) ,

𝑓
𝛼
(𝑥) ∈ 𝑊

1,𝑝

0
(Ω) , 𝛼 = 1, . . . , 𝑁} ,

𝑊
1,𝑝

loc (Ω, 𝑅
𝑁

) = {𝑓 (𝑥) | 𝑓 (𝑥) = (𝑓
1
(𝑥) , . . . , 𝑓

𝑁
(𝑥)) ,

𝑓
𝛼
(𝑥) ∈ 𝑊

1,𝑝

loc (Ω) , 𝛼 = 1, . . . , 𝑁} .

(3)

Let 𝜃 ∈ 𝑊1,𝑝(Ω, 𝑅𝑁) and 𝜑, 𝜓 : Ω → 𝑅𝑁, then we denote

𝐾
𝜃,𝑝

𝜑,𝜓
(Ω, 𝑅
𝑁

)

= {𝑢 ∈ 𝑊
1,𝑝

(Ω, 𝑅
𝑁

) : 𝑢 − 𝜃 ∈ 𝑊
1,𝑝

0
(Ω, 𝑅
𝑁

) ,

𝜑 ≤ 𝑢 ≤ 𝜓 a.e. in Ω } ,

(4)

and we call 𝜑, 𝜓 obstacles and 𝜃 boundary value.
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Let 𝐴 = (𝑎𝑖
𝛼
), 𝐵 = (𝑏𝑖

𝛼
) be two 𝑛 ×𝑁matrixes, then define

𝐴∙𝐵 = 𝑎𝑖
𝛼
𝑏𝑖
𝛼
; here and in the following we use the convention

that repeated indices are summed: here 𝛼 goes from 1 to 𝑁
and 𝑖 from 1 to 𝑛.

We consider the higher integrability of weak solutions to
𝐾
𝜃,𝑝

𝜑,𝜓
(𝐴)-double obstacle systems corresponding to (2).

Definition 1. We call a function 𝑢 ∈ 𝐾
𝜃,𝑝

𝜑,𝜓
(Ω, 𝑅𝑁) a weak

solution to 𝐾𝜃,𝑝
𝜑,𝜓
(𝐴)-double obstacle systems if

∫
Ω

(𝐴 (𝑥, ∇𝑢) − 𝑓 (𝑥, 𝑢)) ∙ ∇ (V − 𝑢) 𝑑𝑥 ≥ 0, (5)

holds for all V ∈ 𝐾
𝜃,𝑝

𝜑,𝜓
(Ω, 𝑅𝑁), here ∇𝑢 = (∇𝑢

1
, ∇𝑢
2
,

. . . , ∇𝑢
1
)
𝑇.

Obstacle problems naturally appear in the nonlinear
potential theory and variational inequalities (see [1, 2] and
references therein). It can be applied to phase transitions
in materials science, flame propagation, combustion theory,
crystal growth, optimal control problems, elasto-plastic prob-
lems, or financial problems [3, 4]. Reference [5] obtained
higher integrability and stability results of weak solutions to
𝐾
𝜃,𝑝

𝜑,𝜓
(𝐴)-obstacle problems under the conditions𝑁 = 1, 𝑓 =

0, and 𝐴 satisfies homogeneous conditions. In this paper, we
investigate the local and global higher integrability of weak
solutions associated with 𝐾

𝜃,𝑝

𝜑,𝜓
(𝐴)-double obstacle systems.

This kind of higher integrability has been previously studied
in [6] for single obstacle problems (𝑁 = 1). Our notation is
standard.

2. Main Results

Let 1 < 𝑝 < ∞, and 𝑠 > 𝑝. We assume that our mappings
𝐴 : Ω × 𝑅𝑛𝑁 → 𝑅𝑛𝑁, 𝑓 : Ω × 𝑅𝑁 → 𝑅𝑛𝑁 are Caratheodory
functions and satisfy the following conditions for fixed 0 <

𝛼 < 𝛽 < ∞, 0 < 𝜆 < ∞:

(A1) for all ℎ ∈ 𝑅𝑛𝑁 and a.e. 𝑥 ∈ Ω,

𝐴 (𝑥, ℎ) ∙ ℎ ≥ 𝛼|ℎ|
𝑝

, |𝐴 (𝑥, ℎ)| ≤ 𝛽|ℎ|
𝑝−1

; (6)

(A2) for all 𝑢 ∈ 𝑅𝑁 and a.e. 𝑥 ∈ Ω,
󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑢)

󵄨󵄨󵄨󵄨 ≤ 𝜙 (𝑥) + 𝜆|𝑢|
(𝑝−1)𝛾

. (7)

Fix 𝑥
0
∈ Ω, let𝑄

𝑟
be a cube with center 𝑥

0
and side length

𝑟, and let𝑄
𝜆𝑟
(𝜆 > 0) be the cube parallel to𝑄

𝑟
with the same

center as 𝑄
𝑟
and side length 𝜆𝑟. We denote

𝑓
𝑟
≜ −∫
𝑄
𝑟

𝑓𝑑𝑥 ≜
1
󵄨󵄨󵄨󵄨𝑄𝑟

󵄨󵄨󵄨󵄨
∫
𝑄
𝑟

𝑓𝑑𝑥, (8)

where |𝑄
𝑟
| denotes the Lebesgue Measure of 𝑄

𝑟
.

Theorem 2. Suppose that 𝜑, 𝜓, 𝜃 ∈ 𝑊1,𝑠(Ω, 𝑅𝑁) (𝑠 > 𝑝),
and let 𝑢 ∈ 𝐾

𝜃,𝑝

𝜑,𝜓
(Ω, 𝑅𝑁) be a weak solution to 𝐾

𝜃,𝑝

𝜑,𝜓
(𝐴)-

double obstacle systems under conditions (A1) and (A2) with

1 ≤ 𝛾 < 𝑛/(𝑛 − 𝑝), 𝜙(𝑥) ∈ 𝐿
𝑠/(𝑝−1)(Ω, 𝑅𝑁), then there exists

a constant 0 < 𝜖
0
= 𝜖
0
(𝑛,𝑁, 𝑝, 𝑠, 𝛼, 𝛽, 𝛾, 𝜆, diam(Ω)) < 𝑠 − 𝑝

such that, for each 𝜖 ∈ [0, 𝜖
0
), one has 𝑢 ∈ 𝑊

1,𝑝+𝜖

loc (Ω, 𝑅𝑁).
Furthermore, for every 𝑥

0
∈ Ω and every cube 𝑄

𝑟
⊂ Ω (𝑟 < 𝑟

0

small enough) centered at 𝑥
0
such that 𝑄

2𝑟
⊂⊂ Ω, one has

[−∫
𝑄
𝑟

(|∇𝑢| + |𝑢|
𝛾

)
𝑝+𝜖

𝑑𝑥]

1/(𝑝+𝜖)

≤ 𝐶{[−∫
𝑄
2𝑟

(|∇𝑢| + |𝑢|
𝛾

)
𝑝

𝑑𝑥]

1/𝑝

+ [−∫
𝑄
2𝑟

𝐻
𝑠

𝑑𝑥]

1/𝑠

} ,

(9)

where 𝐻 = |∇𝜑| + |∇𝜓| + |𝜙|1/(𝑝−1) and 𝐶 = 𝐶(𝑛,𝑁,

𝑝, 𝑠, 𝛼, 𝛽, 𝛾, 𝜆, diam(Ω)) < ∞.

In order to obtain the global higher integrability of weak
solutions to 𝐾𝜃,𝑝

𝜑,𝜓
(𝐴)-double obstacle systems, it seems that

we need to impose some regularity condition for 𝜕Ω, the
boundary of Ω. We say that 𝜕Ω is 𝑝-Poincaré thick if there
exists 0 < 𝑎 < ∞ such that, for all open cubes 𝑄

𝑟
⊂ 𝑅𝑛 with

side length 𝑟 > 0, there holds

(∫
𝑄
2𝑟

|𝑢|
𝑝

𝑑𝑥)

1/𝑝

≤ 𝑎𝑥(∫
𝑄
2𝑟

|∇𝑢|
𝑝𝑛/(𝑝+𝑛)

𝑑𝑥)

(𝑝+𝑛)/𝑝𝑛

, (10)

whenever 𝑢 ∈ 𝑊1,𝑝(𝑄
2𝑟
), 𝑢 = 0, a.e. on (𝑅𝑛 \ Ω) ∩ 𝑄

2𝑟

and 𝑄
3𝑟/2

∩ Ω𝐶 ̸= 0. Theorem 2.3 and Corollary 2.7 in [7]
have given some simple conditions such that (10) holds for
𝑝 ≥ 𝑛/(𝑛 − 1).

Theorem 3. Suppose that the boundary 𝜕Ω ofΩ is 𝑝-Poincaré
thick with 𝑝 > 𝑛/(𝑛−1), and 𝜑, 𝜓, 𝜃 ∈ 𝑊1,𝑠(Ω, 𝑅𝑁) (𝑠 > 𝑝). If
𝑢 ∈ 𝐾

𝜃,𝑝

𝜑,𝜓
(Ω, 𝑅𝑁) is a weak solution to𝐾𝜃,𝑝

𝜑,𝜓
(𝐴)-double obstacle

systems under conditions (A1) and (A2) with 1 ≤ 𝛾 < 𝑛/(𝑛−𝑝),
𝜙(𝑥) ∈ 𝐿𝑠/(𝑝−1)(Ω, 𝑅𝑁), then there exists a constant 0 < 𝜖

0
=

𝜖
0
(𝑛,𝑁, 𝑝, 𝑠, 𝑎, 𝛼, 𝛽, 𝛾, 𝜆, diam(Ω)) < 𝑠 − 𝑝 such that for each

𝜖 ∈ [0, 𝜖
0
), one has 𝑢 ∈ 𝑊1,𝑝+𝜖(Ω, 𝑅𝑁). Furthermore, we have

−∫
Ω

(|∇𝑢| + |𝑢|
𝛾

)
𝑝+𝜖

𝑑𝑥]
1/(𝑝+𝜖)

≤ 𝐶{[−∫
Ω

(|∇𝑢| + |𝑢|
𝛾

)
𝑝

𝑑𝑥]
1/𝑝

+ [−∫
Ω

𝐻
𝑠

𝑑𝑥]
1/𝑠

} ,

(11)

where 𝐻 = |∇𝜑| + |∇𝜓| + |∇𝜃| + |𝜙|1/(𝑝−1) and 𝐶 =

𝐶(𝑛,𝑁, 𝑝, 𝑠, 𝑎, 𝛼, 𝛽, 𝛾, 𝜆, diam(Ω)) < ∞.

3. Proofs of Main Results

The following lemma is due to Giaquinta and Modica [8].

Lemma 4 (Reverse Hölder’s inequality). Let 𝑄 be an 𝑛-cube
and 𝑔, 𝐺 be two nonnegative functions defined on 𝑄. Suppose
that for each 𝑥

0
∈ 𝑄 and each 𝑟 < min{(1/2) dist(𝑥

0
, 𝜕𝑄), 𝑟

0
}

−∫
𝑄
𝑟

𝑔
𝑝

𝑑𝑥 ≤ 𝑏(−∫
𝑄
2𝑟

𝑔𝑑𝑥)

𝑝

+ 𝜏−∫
𝑄
2𝑟

𝑔
𝑝

𝑑𝑥 + −∫
𝑄
2𝑟

𝐺
𝑝

𝑑𝑥, (12)
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where constants 𝑏 > 1, 𝑟
0
> 0, 0 ≤ 𝜏 < 1. Then 𝑔 ∈ 𝐿𝑞loc(𝑄) for

𝑞 ∈ [𝑝, 𝑝 + 𝜖) and

(−∫
𝑄
𝑟

𝑔
𝑞

𝑑𝑥)

1/𝑞

≤ 𝐶(−∫
𝑄
2𝑟

𝑔
𝑝

𝑑𝑥)

1/𝑝

+ (−∫
𝑄
2𝑟

𝐺
𝑞

𝑑𝑥)

1/𝑞

, (13)

for 𝑄
2𝑟
⊂⊂ 𝑄, 𝑟 < 𝑟

0
, where 𝐶 and 𝜖 are positive constants

depending only on 𝑏, 𝜏, 𝑝, 𝑛.

The proofs of Theorems 2 and 3 are stimulated by [5].
The general constant 𝐶 denotes a constant whose value may
change even on the same line.

Proof of Theorem 2. For any fixed 𝑥
0

∈ Ω and cube 𝑄
𝑟

centered at 𝑥
0
with side length 𝑟 such that 𝑄

2𝑟
⊂⊂ Ω, let 𝜂 ∈

𝐶∞
0
(𝑄
2𝑟
) be a cutoff function such that 0 ≤ 𝜂 ≤ 1, |∇𝜂| ≤ 𝐶/𝑟

and 𝜂 ≡ 1 on 𝑄
𝑟
.

Let V = (1 − 𝜂𝑝)(𝑢 − 𝑢
2𝑟
) + 𝜂𝑝𝑤, where 𝑤 = (𝜓 − 𝑢

2𝑟
)
−

+

min((𝜑−𝑢
2𝑟
)
+

, (𝜓−𝑢
2𝑟
)
+

). Due to the boundedness ofΩ, we
have 𝜑, 𝜓 ∈ 𝑊1,𝑝(Ω, 𝑅𝑁). Moreover, V + 𝑢

2𝑟
∈ 𝐾
𝜃,𝑝

𝜑,𝜓
(Ω, 𝑅𝑁)

because

𝑤 = {
(𝜑 − 𝑢

2𝑟
)
+

, 𝜓 ≥ 𝑢
2𝑟
,

𝜓 − 𝑢
2𝑟
, 𝜓 < 𝑢

2𝑟
,

(14)

and this yields 𝜑 ≤ V + 𝑢
2𝑟
≤ 𝜓 a.e. in Ω. Hence we have, by

(5),

∫
Ω

(𝐴 (𝑥, ∇𝑢) − 𝑓 (𝑥, 𝑢)) ∙ ∇ (V − 𝑢) 𝑑𝑥 ≥ 0. (15)

By the choice of V, we get

V − 𝑢 = −𝑢
2𝑟
− 𝜂
𝑝

(𝑢 − 𝑢
2𝑟
) + 𝜂
𝑝

𝑤, (16)

and hence

∇ (V − 𝑢) = −𝜂𝑝∇𝑢 + 𝜂𝑝∇𝑤 + 𝑝𝜂
𝑝−1

∇𝜂 ⊗ [𝑤 − (𝑢 − 𝑢
2𝑟
)] .

(17)

This and (15), together with the structure assumptions
(A1), (A2), yield

𝛼∫
𝑄
2𝑟

𝜂
𝑝

|∇𝑢|
𝑝

𝑑𝑥

≤ ∫
𝑄
2𝑟

𝜂
𝑝

𝐴 (𝑥, ∇𝑢) ∙ ∇𝑢𝑑𝑥

≤ 𝛽∫
𝑄
2𝑟

𝜂
𝑝

|∇𝑢|
𝑝−1

|∇𝑤| 𝑑𝑥

+ ∫
𝑄
2𝑟

𝜂
𝑝 󵄨󵄨󵄨󵄨𝜙

󵄨󵄨󵄨󵄨 |∇𝑢| 𝑑𝑥

+ 𝜆∫
𝑄
2𝑟

𝜂
𝑝

|𝑢|
(𝑝−1)𝛾

|∇𝑢| 𝑑𝑥

+ 𝑝𝛽∫
𝑄
2𝑟

𝜂
𝑝−1

[|𝑤| +
󵄨󵄨󵄨󵄨𝑢 − 𝑢2𝑟

󵄨󵄨󵄨󵄨]
󵄨󵄨󵄨󵄨∇𝜂

󵄨󵄨󵄨󵄨 |∇𝑢|
𝑝−1

𝑑𝑥

+ ∫
𝑄
2𝑟

𝜂
𝑝 󵄨󵄨󵄨󵄨𝜙

󵄨󵄨󵄨󵄨 |∇𝑤| 𝑑𝑥

+ 𝜆∫
𝑄
2𝑟

𝜂
𝑝

|𝑢|
(𝑝−1)𝛾

|∇𝑤| 𝑑𝑥

+ 𝑝∫
𝑄
2𝑟

𝜂
𝑝−1 󵄨󵄨󵄨󵄨𝜙

󵄨󵄨󵄨󵄨 [|𝑤| +
󵄨󵄨󵄨󵄨𝑢 − 𝑢2𝑟

󵄨󵄨󵄨󵄨]
󵄨󵄨󵄨󵄨∇𝜂

󵄨󵄨󵄨󵄨 𝑑𝑥

+ 𝑝𝜆∫
𝑄
2𝑟

𝜂
𝑝−1

|𝑢|
(𝑝−1)𝛾

[|𝑤| +
󵄨󵄨󵄨󵄨𝑢 − 𝑢2𝑟

󵄨󵄨󵄨󵄨]
󵄨󵄨󵄨󵄨∇𝜂

󵄨󵄨󵄨󵄨 𝑑𝑥.

(18)

Using Hölder’s inequality, Young’s inequality, and Min-
ikowski’s inequality, we can estimate each term in (18) as
follows:

𝛽∫
𝑄
2𝑟

𝜂
𝑝

|∇𝑢|
𝑝−1

|∇𝑤| 𝑑𝑥

≤ 𝛽(∫
𝑄
2𝑟

𝜂
𝑝

|∇𝑢|
𝑝

𝑑𝑥)

(𝑝−1)/𝑝

(∫
𝑄
2𝑟

𝜂
𝑝

|∇𝑤|
𝑝

𝑑𝑥)

1/𝑝

≤
𝛼

8
∫
𝑄
2𝑟

𝜂
𝑝

|∇𝑢|
𝑝

𝑑𝑥 + 𝐶∫
𝑄
2𝑟

𝜂
𝑝

|∇𝑤|
𝑝

𝑑𝑥,

∫
𝑄
2𝑟

𝜂
𝑝 󵄨󵄨󵄨󵄨𝜙

󵄨󵄨󵄨󵄨 |∇𝑢| 𝑑𝑥

≤
𝛼

8
∫
𝑄
2𝑟

𝜂
𝑝

|∇𝑢|
𝑝

𝑑𝑥 + 𝐶∫
𝑄
2𝑟

𝜂
𝑝󵄨󵄨󵄨󵄨𝜙

󵄨󵄨󵄨󵄨
𝑝/(𝑝−1)

𝑑𝑥,

𝜆∫
𝑄
2𝑟

𝜂
𝑝

|𝑢|
(𝑝−1)𝛾

|∇𝑢| 𝑑𝑥

≤
𝛼

8
∫
𝑄
2𝑟

𝜂
𝑝

|∇𝑢|
𝑝

𝑑𝑥 + 𝐶∫
𝑄
2𝑟

𝜂
𝑝

|𝑢|
𝑝𝛾

𝑑𝑥,

𝑝𝛽∫
𝑄
2𝑟

𝜂
𝑝−1

[|𝑤| +
󵄨󵄨󵄨󵄨𝑢 − 𝑢2𝑟

󵄨󵄨󵄨󵄨]
󵄨󵄨󵄨󵄨∇𝜂

󵄨󵄨󵄨󵄨 |∇𝑢|
𝑝−1

𝑑𝑥

≤
𝛼

8
∫
𝑄
2𝑟

𝜂
𝑝

|∇𝑢|
𝑝

𝑑𝑥

+ 𝐶𝑟
−𝑝

∫
𝑄
2𝑟

[|𝑤|
𝑝

+
󵄨󵄨󵄨󵄨𝑢 − 𝑢2𝑟

󵄨󵄨󵄨󵄨]
𝑝

𝑑𝑥.

∫
𝑄
2𝑟

𝜂
𝑝 󵄨󵄨󵄨󵄨𝜙

󵄨󵄨󵄨󵄨 |∇𝑤| 𝑑𝑥

≤ 𝐶∫
𝑄
2𝑟

𝜂
𝑝

|∇𝑤|
𝑝

𝑑𝑥

+ 𝐶∫
𝑄
2𝑟

𝜂
𝑝󵄨󵄨󵄨󵄨𝜙

󵄨󵄨󵄨󵄨
𝑝/(𝑝−1)

𝑑𝑥,
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𝜆∫
𝑄
2𝑟

𝜂
𝑝

|𝑢|
(𝑝−1)𝛾

|∇𝑤| 𝑑𝑥

≤ 𝐶∫
𝑄
2𝑟

𝜂
𝑝

|∇𝑤|
𝑝

𝑑𝑥

+ 𝐶∫
𝑄
2𝑟

𝜂
𝑝

|𝑢|
𝑝𝛾

𝑑𝑥,

𝑝∫
𝑄
2𝑟

𝜂
𝑝−1

[|𝑤| +
󵄨󵄨󵄨󵄨𝑢 − 𝑢2𝑟

󵄨󵄨󵄨󵄨]
󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨∇𝜂

󵄨󵄨󵄨󵄨 𝑑𝑥

≤ 𝐶∫
𝑄
2𝑟

𝜂
𝑝󵄨󵄨󵄨󵄨𝜙

󵄨󵄨󵄨󵄨
𝑝/(𝑝−1)

𝑑𝑥

+ 𝐶𝑟
−𝑝

∫
𝑄
2𝑟

[|𝑤|
𝑝

+
󵄨󵄨󵄨󵄨𝑢 − 𝑢2𝑟

󵄨󵄨󵄨󵄨
𝑝

] 𝑑𝑥,

𝑝𝜆∫
𝑄
2𝑟

𝜂
𝑝−1

|𝑢|
(𝑝−1)𝛾

[|𝑤| +
󵄨󵄨󵄨󵄨𝑢 − 𝑢2𝑟

󵄨󵄨󵄨󵄨]
󵄨󵄨󵄨󵄨∇𝜂

󵄨󵄨󵄨󵄨 𝑑𝑥

≤ 𝐶∫
𝑄
2𝑟

𝜂
𝑝

|𝑢|
𝑝𝛾

𝑑𝑥

+ 𝐶𝑟
−𝑝

∫
𝑄
2𝑟

[|𝑤|
𝑝

+
󵄨󵄨󵄨󵄨𝑢 − 𝑢2𝑟

󵄨󵄨󵄨󵄨
𝑝

] 𝑑𝑥.

(19)

We deduce from (14) that

|𝑤| ≤ {

󵄨󵄨󵄨󵄨𝜑 − 𝜑2𝑟
󵄨󵄨󵄨󵄨 , 𝜓 ≥ 𝑢

2𝑟
,

󵄨󵄨󵄨󵄨𝜓 − 𝜓2𝑟
󵄨󵄨󵄨󵄨 , 𝜓 < 𝑢

2𝑟
,

|∇𝑤| ≤
󵄨󵄨󵄨󵄨∇𝜑

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨∇𝜓

󵄨󵄨󵄨󵄨 .

(20)

Hence

−∫
𝑄
2𝑟

𝜂
𝑝

|∇𝑢|
𝑝

𝑑𝑥

≤ 𝐶−∫
𝑄
2𝑟

𝜂
𝑝

(
󵄨󵄨󵄨󵄨∇𝜑

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨∇𝜓

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨
1/(𝑝−1)

)
𝑝

𝑑𝑥

+ 𝐶−∫
𝑄
2𝑟

𝜂
𝑝

|𝑢|
𝑝𝛾

𝑑𝑥

+ 𝐶𝑟
−𝑝

−∫
𝑄
2𝑟

(
󵄨󵄨󵄨󵄨𝜑 − 𝜑2𝑟

󵄨󵄨󵄨󵄨
𝑝

+
󵄨󵄨󵄨󵄨𝜓 − 𝜓2𝑟

󵄨󵄨󵄨󵄨
𝑝

+
󵄨󵄨󵄨󵄨𝑢 − 𝑢2𝑟

󵄨󵄨󵄨󵄨
𝑝

) 𝑑𝑥.

(21)

Now choosing max{1, 𝑛𝑝/(𝑛 + 𝑝)} ≤ 𝑡 < 𝑝 and using
Poincaré’s inequality and Sobolev-Poincaré’s inequality, we
get

𝑟
−𝑝

−∫
𝑄
2𝑟

󵄨󵄨󵄨󵄨𝜑 − 𝜑2𝑟
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥 ≤ 𝐶−∫
𝑄
2𝑟

󵄨󵄨󵄨󵄨∇𝜑
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥, (22)

𝑟
−𝑝

−∫
𝑄
2𝑟

󵄨󵄨󵄨󵄨𝜓 − 𝜓2𝑟
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥 ≤ 𝐶−∫
𝑄
2𝑟

󵄨󵄨󵄨󵄨∇𝜓
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥, (23)

𝑟
−𝑝

−∫
𝑄
2𝑟

󵄨󵄨󵄨󵄨𝑢 − 𝑢2𝑟
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥 ≤ 𝐶(−∫
𝑄
2𝑟

|∇𝑢|
𝑡

𝑑𝑥)

𝑝/𝑡

, (24)

−∫
𝑄
2𝑟

𝜂
𝑝

|𝑢|
𝑝𝛾

𝑑𝑥 ≤ 𝐶𝑟
−𝑛

∫
𝑄
2𝑟

󵄨󵄨󵄨󵄨𝑢 − 𝑢2𝑟
󵄨󵄨󵄨󵄨
𝑝𝛾

𝑑𝑥

+ 𝐶−∫
𝑄
2𝑟

󵄨󵄨󵄨󵄨𝑢2𝑟
󵄨󵄨󵄨󵄨
𝑝𝛾

𝑑𝑥

≤ 𝐶𝑟
[𝑛((1/𝑝𝛾)−(1/𝑝))+1]𝑝𝛾

(∫
𝑄
2𝑟

|∇𝑢|
𝑝

𝑑𝑥)

𝛾−1

× −∫
𝑄
2𝑟

|∇𝑢|
𝑝

𝑑𝑥 + 𝐶(−∫
𝑄
2𝑟

|𝑢|
𝛾𝑡

𝑑𝑥)

𝑝/𝑡

≜ 𝜉 (𝑟) −∫
𝑄
2𝑟

|∇𝑢|
𝑝

𝑑𝑥 + 𝐶(−∫
𝑄
2𝑟

|𝑢|
𝛾𝑡

𝑑𝑥)

𝑝/𝑡

,

(25)

where 𝜉(𝑟) → 0 as 𝑟 → 0 because of the absolute continuity
of integrals and the fact that 𝛾 ≥ 1.

The above five inequalities imply that

−∫
𝑄
𝑟

|∇𝑢|
𝑝

𝑑𝑥

≤ 𝜉 (𝑟) −∫
𝑄
2𝑟

|∇𝑢|
𝑝

𝑑𝑥 + 𝐶(−∫
𝑄
2𝑟

|𝑢|
𝛾𝑡

𝑑𝑥)

𝑝/𝑡

+ 𝐶−∫
𝑄
2𝑟

(
󵄨󵄨󵄨󵄨∇𝜑

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨∇𝜓

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨
1/(𝑝−1)

)
𝑝

𝑑𝑥

+ 𝐶(−∫
𝑄
2𝑟

|∇𝑢|
𝑡

𝑑𝑥)

𝑝/𝑡

.

(26)

To complete our proof, adding −∫
𝑄
2𝑟

|𝑢|
𝑝𝛾

𝑑𝑥 to each side of
(26), using (25), and setting

𝑔 = (|∇𝑢| + |𝑢|
𝛾

)
𝑡

, 𝑘 =
𝑝

𝑡
,

𝐻 =
󵄨󵄨󵄨󵄨∇𝜑

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨∇𝜓

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨
1/(𝑝−1)

,

𝐺 = 𝐻
𝑡

.

(27)

Equation (26) can be rewritten as

−∫
𝑄
𝑟

𝑔
𝑘

𝑑𝑥

≤ 𝐶𝜉 (𝑟) −∫
𝑄
𝑟

𝑔
𝑘

𝑑𝑥 + 𝐶[(−∫
𝑄
2𝑟

𝑔𝑑𝑥)

𝑘

+ −∫
𝑄
2𝑟

𝐺
𝑘

𝑑𝑥] .

(28)

For 𝑟 (𝑟 < 𝑟
0
) small enough, we have 𝜏 = 𝐶𝜉(𝑟) <

1, and then Lemma 4 implies that there exists 0 < 𝜖
0
=

𝜖
0
(𝑛,𝑁, 𝑝, 𝑠, 𝛼, 𝛽, 𝛾, 𝜆, diam(Ω)) < 𝑠 − 𝑝 such that, for
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0 ≤ 𝜖 < 𝜖
0
, we have 𝑢 ∈ 𝑊

1,𝑝+𝜖

loc (Ω, 𝑅𝑁), and for every cube
𝑄
𝑟
(𝑟 < 𝑟

0
) such that 𝑄

2𝑟
⊂ Ω, we have

[−∫
𝑄
𝑟

(|∇𝑢| + |𝑢|
𝛾

)
𝑝+𝜖

𝑑𝑥]

1/(𝑝+𝜖)

≤ 𝐶{[−∫
𝑄
2𝑟

(|∇𝑢| + |𝑢|
𝛾

)
𝑝

𝑑𝑥]

1/𝑝

+[−∫
𝑄
2𝑟

𝐺
𝑠

𝑑𝑥]

1/𝑠

} ,

(29)

where 𝐶 = 𝐶(𝑛,𝑁, 𝑝, 𝑠, 𝛼, 𝛽, 𝛾, 𝜆, diam(Ω)) < ∞.

Proof of Theorem 3. Choose a cube 𝑄
0
= 𝑄
2𝑟
0

such that Ω ⊂

𝑄
0
. For an arbitrary cube𝑄

2𝑟
⊂ 𝑄
0
, there are two possibilities

to consider: (I) 𝑄
3𝑟/2

⊂ Ω, or (II) 𝑄
3𝑟/2

∩ Ω𝐶 ̸= 0.
In the case (I), following the proof ofTheorem 2, we have

−∫
𝑄
𝑟

𝑔
𝑘

𝑑𝑥 ≤ 𝐶𝜉 (𝑟) −∫
𝑄
2𝑟

𝑔
𝑘

𝑑𝑥 + 𝐶[(−∫
𝑄
2𝑟

𝑔𝑑𝑥)

𝑘

+ −∫
𝑄
2𝑟

𝐺
𝑘

𝑑𝑥] .

(30)

with 𝑔 = (|∇𝑢| + |𝑢|𝛾)
𝑡, 𝐻 = |∇𝜑| + |∇𝜓| + |𝜙|1/(𝑝−1), 𝐺 =

𝐻𝑡 in 𝑄
2𝑟
∩ Ω, and 𝑔 = 𝐺 = 0 in 𝑄

2𝑟
\ Ω, 𝑘 = 𝑝/𝑡, where

max{1, 𝑛𝑝/(𝑛 + 𝑝)} ≤ 𝑡 < 𝑝, and 𝜉(𝑟) → 0 as 𝑟 → 0.
In case (II), observing that replacing 𝜃 by 𝜃

1
=

min{𝜓,max{𝜑, 𝜃}}, we may as well assume that the boundary
function 𝜃 satisfies 𝜑 ≤ 𝜃 ≤ 𝜓 in Ω. Indeed, 𝜃

1
= (𝜑 − 𝜃)

+

−

(𝜓−𝜃)
−

+𝜃, and since 0 ≤ (𝜑−𝜃)+ ≤ (𝑢−𝜃)+ ∈ 𝑊1,𝑝
0
(Ω, 𝑅𝑁),

0 ≤ −(𝜓 − 𝜃)
−

≤ (𝑢 − 𝜃)
−

∈ 𝑊
1,𝑝

0
(Ω, 𝑅𝑁), the functions

(𝜑− 𝜃)
+

, −(𝜓−𝜃)
−, and hence 𝑢−𝜃

1
belongs to𝑊1,𝑝

0
(Ω, 𝑅𝑁).

Next consider the function V = 𝑢 − 𝜂𝑝(𝑢 − 𝜃) in Ω, where
𝜂 ∈ 𝐶∞

0
(𝑄
2𝑟
) is a standard test function as in the proof of

Theorem 2, then V ∈ 𝐾
𝜃,𝑝

𝜑,𝜓
(Ω, 𝑅
𝑁

). Indeed, because V − 𝜃 ∈

W1,𝑝
0

and 𝜑 ≤ 𝑢 ≤ 𝜓, 𝜑 ≤ 𝜃 ≤ 𝜓 a.e. in Ω, we have

V = (1 − 𝜂𝑝) 𝑢 + 𝜂𝑝𝜃 ≥ 𝜑,

V = (1 − 𝜂𝑝) 𝑢 + 𝜂𝑝𝜃 ≤ 𝜓 a.e. in Ω.
(31)

Since

∇V − ∇𝑢 = −𝜂𝑝∇𝑢 − 𝑝𝜂𝑝−1 (𝑢 − 𝜃) ∇𝜂 + 𝜂𝑝∇𝜃, (32)

we have, by (5) and assumptions (A1) and (A2)

𝛼∫
Ω

𝜂
𝑝

|∇𝑢|
𝑝

𝑑𝑥

≤ ∫
Ω

𝜂
𝑝

𝐴 (𝑥, ∇𝑢) ∙ ∇𝑢𝑑𝑥

≤ ∫
Ω

[(𝐴 (𝑥, ∇𝑢) − 𝑓 (𝑥, 𝑢))

∙ (𝜂
𝑝

∇𝜃 − 𝑝𝜂
𝑝−1

∇𝜂 ⊗ (𝑢 − 𝜃))

+𝜂
𝑝

𝑓 (𝑥, 𝑢) ∙ ∇𝑢] 𝑑𝑥

≤ 𝛽∫
Ω

𝜂
𝑝

|∇𝑢|
𝑝−1

|∇𝜃| 𝑑𝑥

+ ∫
Ω

𝜂
𝑝 󵄨󵄨󵄨󵄨𝜙

󵄨󵄨󵄨󵄨 |∇𝜃| 𝑑𝑥 + ∫
Ω

𝜂
𝑝 󵄨󵄨󵄨󵄨𝜙

󵄨󵄨󵄨󵄨 |∇𝑢| 𝑑𝑥

+ 𝜆∫
Ω

𝜂
𝑝

|𝑢|
(𝑝−1)𝛾

|∇𝜃| 𝑑𝑥

+ 𝜆∫
Ω

𝜂
𝑝

|𝑢|
(𝑝−1)𝛾

|∇𝑢| 𝑑𝑥

+ 𝑝𝛽∫
Ω

𝜂
𝑝−1

|𝑢 − 𝜃|
󵄨󵄨󵄨󵄨∇𝜂

󵄨󵄨󵄨󵄨 |∇𝑢|
𝑝−1

𝑑𝑥

+ 𝑝𝛽∫
Ω

𝜂
𝑝−1 󵄨󵄨󵄨󵄨𝜙

󵄨󵄨󵄨󵄨 |𝑢 − 𝜃|
󵄨󵄨󵄨󵄨∇𝜂

󵄨󵄨󵄨󵄨 𝑑𝑥

+ 𝑝𝛽∫
Ω

𝜂
𝑝−1

|𝑢|
(𝑝−1)𝛾

|𝑢 − 𝜃|
󵄨󵄨󵄨󵄨∇𝜂

󵄨󵄨󵄨󵄨 𝑑𝑥

≤
𝛼

2
∫
Ω

𝜂
𝑝

|∇𝑢|
𝑝

𝑑𝑥 + 𝐶∫
Ω

𝜂
𝑝

|∇𝜃|
𝑝

𝑑𝑥

+ 𝐶∫
Ω

𝜂
𝑝󵄨󵄨󵄨󵄨𝜙

󵄨󵄨󵄨󵄨
𝑝/(𝑝−1)

𝑑𝑥

+ 𝐶∫
Ω

𝜂
𝑝

|𝑢|
𝑝𝛾

𝑑𝑥 + 𝐶∫
Ω

|𝑢 − 𝜃|
𝑝󵄨󵄨󵄨󵄨∇𝜂

󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥,

(33)

where we have used Hölder’s inequality and Young’s inequal-
ity several times. Hence

∫
Ω

𝜂
𝑝

|∇𝑢|
𝑝

𝑑𝑥

≤ 𝐶 [∫
Ω

𝜂
𝑝

(|∇𝜃|
𝑝

+
󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨
𝑝/(𝑝−1)

) 𝑑𝑥

+ ∫
Ω

𝜂
𝑝

|𝑢|
𝑝𝛾

𝑑𝑥

+∫
Ω

|𝑢 − 𝜃|
𝑝󵄨󵄨󵄨󵄨∇𝜂

󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥] ,

(34)

where the generic constant 𝐶 is depending only on
𝑛,𝑁, 𝑝, 𝛼, 𝛽, 𝜆.

To estimate the last term in (34), we employ the 𝑝-
Poincaré thickness of 𝜕Ω. Indeed, the function 𝑢 − 𝜃 can be
extended continuously to be 0 to 𝐶Ω, and therefore

∫
Ω

|𝑢 − 𝜃|
𝑝󵄨󵄨󵄨󵄨∇𝜂

󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥

≤ 𝐶𝑟
−𝑝

𝑥[∫
𝑄
2𝑟
∩Ω

|∇ (𝑢 − 𝜃)|
𝑛𝑝/(𝑛+𝑝)

𝑑]

(𝑛+𝑝)/𝑛

.

(35)
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UsingMinikowski’s inequality andHölder’s inequality, we
obtain the following:

𝑟
−𝑝

[∫
𝑄
2𝑟
∩Ω

|∇ (𝑢 − 𝜃)|
𝑛𝑝/(𝑛+𝑝)

𝑑𝑥]

(𝑛+𝑝)/𝑛

≤ 𝐶𝑟
−𝑝

[(∫
𝑄
2𝑟
∩Ω

|∇𝜃|
𝑛𝑝/(𝑛+𝑝)

𝑑𝑥)

(𝑛+𝑝)/𝑛𝑝

+(∫
𝑄
2𝑟
∩Ω

|∇𝑢|
𝑛𝑝/(𝑛+𝑝)

𝑑𝑥)

(𝑛+𝑝)/𝑛𝑝

]

𝑝

≤ 𝐶∫
𝑄
2𝑟
∩Ω

|∇𝜃|
𝑝

𝑑𝑥

+ 𝐶𝑟
𝑛−(𝑛𝑝/𝑡)

(∫
𝑄
2𝑟
∩Ω

|∇𝑢|
𝑡

𝑑𝑥)

𝑝/𝑡

.

(36)

Hence we derive from (25), (34), (35), and (36) that

−∫
𝑄
𝑟
∩Ω

|∇𝑢|
𝑝

𝑑𝑥

≤ 𝐶𝜉 (𝑟) −∫
𝑄
2𝑟
∩Ω

|∇𝑢|
𝑝

𝑑𝑥

+ 𝐶−∫
𝑄
2𝑟
∩Ω

(|∇𝜃| +
󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨
1/(𝑝−1)

)
𝑝

𝑑𝑥

+ 𝐶[−∫
𝑄
2𝑟
∩Ω

(|𝑢|
𝛾𝑡

+ |∇𝑢|
𝑡

) 𝑑𝑥]

𝑝/𝑡

.

(37)

Adding −∫
𝑄
𝑟

|𝑢|𝑝𝛾𝑑𝑥 to each side of (37) and using (25),
setting 𝑔 = (|∇𝑢| + |𝑢|𝛾)𝑡,𝐻 = |∇𝜑| + |∇𝜓| + |∇𝜃| + |𝜙|1/(𝑝−1),
𝐺 = 𝐻𝑡 in 𝑄

2𝑟
∩ Ω, 𝑔 = 𝐺 = 0 in 𝑄

2𝑟
\ Ω, 𝑘 = 𝑝/𝑡, where

max{1, 𝑛𝑝/(𝑛 + 𝑝)} ≤ 𝑡 < 𝑝, we obtain

−∫
𝑄
𝑟
∩Ω

𝑔
𝑘

𝑑𝑥

≤ 𝐶𝜉 (𝑟) −∫
𝑄
2𝑟
∩Ω

𝑔
𝑘

𝑑𝑥

+ 𝐶[(−∫
𝑄
2𝑟
∩Ω

𝑔𝑑𝑥)

𝑘

+ −∫
𝑄
2𝑟
∩Ω

𝐺
𝑘

𝑑𝑥] ,

(38)

where 𝜉(𝑟) → 0 as 𝑟 → 0 and 𝐶 = 𝐶(𝑛,𝑁, 𝑝, 𝑠, 𝑎, 𝛼, 𝛽,

𝛾, 𝜆, diam(Ω)) > 0.
For 𝑟 (𝑟 < 𝑟

0
) small enough, we have 𝜏 = 𝐶𝜉(𝑟) <

1, and then Lemma 4 implies that there exists 0 < 𝜖
0
=

𝜖
0
(𝑛,𝑁, 𝑝, 𝑠, 𝑎, 𝛼, 𝛽, 𝛾, 𝜆, diam(Ω)) < 𝑠 − 𝑝 such that, for 0 ≤

𝜖 < 𝜖
0
, we have 𝑢 ∈ 𝑊1,𝑝+𝜖(Ω, 𝑅𝑁), and (11) holds. Hence the

theorem follows.
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