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The oblateness and the photogravitational effects of both the primaries on the location and the stability of the triangular equilibrium
points in the elliptical restricted three-body problem have been discussed. The stability of the triangular points under the
photogravitational and oblateness effects of both the primaries around the binary systems Achird, Lyeten, Alpha Cen-AB, Kruger
60, and Xi-Bootis, has been studied using simulation techniques by drawing different curves of zero velocity.

1. Introduction

Thepresent paper is devoted to the analysis of the photograv-
itational and the oblateness effects of both primaries on the
stability of triangular equilibrium points of the planar ellip-
tical restricted three-body problem. The elliptical restricted
three-body problem describes the dynamical system more
accurately on account that the realistic assumptions of the
motion of the primaries are subjected to move along the
elliptical orbit. We have attempted to investigate the stability
of triangular equilibriumpoints under the photogravitational
and oblateness effects of both the primaries. The bodies
of the elliptical restricted three-body problem are generally
considered to be spherical in shape, but in actual situations,
we have observed that several heavenly bodies are either
oblate spheroid or triaxial rigid bodies. The Earth, Jupiter,
and Saturn are examples of the oblate spheroid. The lack of
sphericity in heavenly bodies causes large perturbation. In
addition to the oblateness of heavenly bodies, the triaxiality,
the radiation forces of the bodies, the atmospheric drag, and
the solar wind are also causes of perturbation.

This motivates studies of stability of triangular equilib-
rium points under the influence of oblateness and radiation
of the primaries in the elliptical restricted three-body prob-
lem. The stability of the infinitesimal around the triangular

equilibrium points in the elliptical restricted three-body
problem described in considerable details is due to [1] and
the problem was also studied [2–9]. The stability of motion
of infinitesimal around one of the triangular equilibrium
points (𝐿

4
) also depends on 𝜇 and 𝑒. Nonlinear stability of

the triangular equilibrium points of the elliptical restricted
three-body problem with or without radiation pressure was
studied [10–12]. Furthermore, the nonlinear stability of the
infinitesimal in the orbits or the size of the stable region
around𝐿

4
was studied numerically by [11] and the parametric

resonance stability around𝐿
4
in the elliptical restricted three-

body problem has been studied [10].
The existence of the libration points [13, 14] and their

stability in the photogravitational elliptical restricted three-
body problem has been studied. The different aspects of the
problem in details of elliptical restricted three-body problem
have been investigated [15–26].

The influence of the eccentricity of the orbits of the oblate
primary bodies with one of the photogravitational effects on
the location of collinear and triangular equilibrium points
and their stability has been investigated [27–29].The stability
of triangular points in the elliptical restricted three-body
problem under the radiating and oblate primaries has been
recently discussed [30]. A similar problemhas been discussed
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in detail by applying different techniques to investigate the
stability of the system using simulation technique [31].

The present study aims to examine the motion of the
infinitesimal body in the elliptical restricted three-body
problem, when the primaries are oblate spheroid and are
also a source of radiation. We have obtained the coordinate
of the triangular equilibrium points of the problem. For the
circular problem, the primaries are fixed with respect to uni-
formly rotating axes and hence the Hamiltonian does not
involve time explicitly. But when the primariesmove on ellip-
tical orbits, the introduction of nonuniformly rotating and
pulsating coordinate system results again in fixed location
of the primaries. The elliptical restricted three-body problem
generalizes the original circular restricted three-body prob-
lems, while some useful problem of circular model still can
be satisfied by the elliptical case. The Hamiltonian, however,
does not depend explicitly on independent variable in this
case.The dimensionless variables are introduced by using the
distance 𝑟 between primaries given by

𝑟 =

𝑎 (1 − 𝑒
2
)

(1 + 𝑒 cos V)
, (1)

where 𝑎 and 𝑒 are the semimajor axis and the eccentricity of
the elliptical orbit of the primaries, moving along each other
and V is the true anomaly of𝑚

1
. A co-ordinate system which

rotateswith the variable angular velocity𝑤 is introduced.This
angular velocity is given by

𝑑𝜔

𝑑𝑡∗
=
𝑘(𝑚
1
+ 𝑚
2
)
1/2

(1 + 𝑒 cos V)2

𝑎3/2(1 − 𝑒2)
3/2

, (2)

where 𝑡∗ is dimensionless time.
The equation follows from the principal of the conser-

vation of angular momentum in the problem of two bodies
formed by the primaries of masses𝑚

1
and𝑚

2
. This principle

is expressed by

𝜔𝑟
2
= [𝑎 (1 − 𝑒

2
) 𝑘
2
(𝑚
1
+ 𝑚
2
)]
1/2

, (3)

where 𝑘 = 𝑘
1
+ 𝑘
2
, and 𝑘

1
and 𝑘

2
are the products of the

universal gravitational constants with the masses of prima-
ries.

The force of radiation is given by

𝐹 = 𝐹
𝑔
− 𝐹
𝑝
= (1 −

𝐹
𝑝

𝐹
𝑔

)𝐹
𝑔
= 𝑞𝐹
𝑔
, (4)

where 𝐹
𝑔
is the gravitational attraction force; 𝐹

𝑝
is the radia-

tion pressure; 𝑞 is the mass radiation factor. For simplicity of
calculation, we have considered 𝑞 = 1 − ∈

𝑖
, 𝑖 = 1, 2, where

∈
𝑖
≪ 1, 𝑖 = 1, 2.
The present paper deals with the photogravitational and

oblateness effects of both the primaries on the stability of
infinitesimal by exploiting simulation techniques by drawing
the different curves of zero velocity.

The present paper comprises three sections. The first sec-
tion of the paper describes the variational equation of motion

of the system. In the second section, we have described the
triangular equilibrium points of the system, and in the third
section the paper we have derived an expression which is
suitable for tracing of different curves of zero velocity.

The curves of zero velocity around equilibrium points
have been presented through simulation techniques, which
shows the region of stability. The effect of the oblateness of
primaries plays an important role in analyzing the stability of
infinitesimalwhich is obvious from the curves of zero velocity
traced.

2. Variational Equation of Motion

The differential equations of motion of infinitesimal in the
elliptical restricted three-body problem under the oblate and
radiating primaries in barycentric, pulsating, and nondimen-
sional coordinates are represented as follows [31]:

𝑥
󸀠󸀠
− 2𝑦
󸀠
= 𝜙Ω
𝑥
,

𝑦
󸀠󸀠
+ 2𝑥
󸀠
= 𝜙Ω
𝑦
,

(5)

where

Ω =
𝑥
2
+ 𝑦
2

2
+

1

1 + 3 ((𝐴
1
+ 𝐴
2
) /2)

× [
(1 − 𝜇) 𝑞

1

𝑟
1

+
𝜇𝑞
2

𝑟
2

+
(1 − 𝜇) 𝑞

1
𝐴
1

2𝑟
3

1

+
𝜇𝐴
2
𝑞
2

2𝑟
3

2

] ,

(6)

where

𝑟
2

1
= (𝑥 + 𝜇)

2

+ 𝑦
2
,

𝑟
2

2
= (𝑥 − 1 + 𝜇)

2

+ 𝑦
2
,

(7)

𝜙 = (
1

1 + 𝑒 cos V
) , (8)

whereΩ
𝑥
denotes the partial differentiation ofΩwith respect

to 𝑥, and Ω
𝑦
denotes the differentiation of Ω partially with

respect to𝑦, where𝐴
1
and𝐴

2
are the oblateness parameters of

the primaries. 𝑞
1
and 𝑞
2
are the mass radiation factors due to

the source of radiation of the bigger primary and the smaller
primary.

The co-ordinates of the triangular equilibrium points 𝐿
4

and 𝐿
5
are determined as follows [31]:

𝑥
0
= 1 − 𝜇 − 𝐴

1
(
1

2
+
∈
(2)

2
−
∈
(1)

2
)

− 𝐴
2
(
1

2
+
∈
(2)

2
−
∈
(1)

2
)

+
∈
(2)

3
−
∈
(1)

3
,

𝑦
𝑜
= ±

√3

2
[1 − (

𝐴
1
+ 𝐴
2

3
) (1 + ∈

(1)
+ ∈
(2)
)

−
2

9
(∈
(1)
+ ∈
(2)
)] .

(9)
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Thus by the coordinates of the triangular equilibrium
points we obtain up to the first-order terms in the parameter
𝐴
1
, 𝐴
2
, 𝑞
1
, and 𝑞

2
, which is represented by (9), the location

of equilibrium points is shown Figures 1, 2, 3, 4, and 5 for the
infinitesimal moving around various binary systems.

3. Different Curves of Zero Velocity

In order to discuss the different curves of zero velocity of the
infinitesimal in the elliptical restricted three-body problem,
when both the primaries are oblate spheroid and radiating,
multiplying the first equation of (5) by 𝑥󸀠 and the second
equation by 𝑦󸀠 and adding, we get;

we obtain

𝑥
󸀠
𝑥
󸀠󸀠
+ 𝑦
󸀠
𝑦
󸀠󸀠
=
𝜕Ω

𝜕𝑥
𝑥
󸀠
+
𝜕Ω

𝜕𝑦
𝑦
󸀠
,

1

2

𝜕

𝜕V
[𝑥
󸀠2
+ 𝑦
󸀠2
] = (

𝜕Ω

𝜕V
) .

(10)

Since Ω does not contain the time (true anomaly) explicitly,
(10) can be integrated to give

1

2
[𝑥
󸀠2
+ 𝑦
󸀠2
] = ∫

𝜕Ω

1 + 𝑒 cos V
+ 𝑐. (11)

0.8626
0.8538
0.7744

−0.7744
−0.8538
−0.8626

𝑋0

𝑌
0 0

0.4003 0.537 0.552 0.8 1.06 1.1

𝛼 Cen-AB

𝐴1 = 0.1

𝐴2 = 0.2

𝐴1 = 0.01
𝐴2 = 0.02

𝐴1 = 0
𝐴2 = 0

𝐿5
𝐿5 𝐿5

𝐿4
𝐿4

𝐿4

Figure 3: Location of triangular points for Achird with 𝐴
1
= 𝐴
2
=

0, 𝐴
1
= 0.01, 𝐴

2
= 0.02, and 𝐴

1
= 0.1, 𝐴

2
= 0.2.

𝐴1 = 0.1
𝐴2 = 0.2

𝐴1 = 0.01
𝐴2 = 0.02

𝐴1 = 0
𝐴2 = 0

𝑋0𝑌
0

0.866
0.8573
0.7794

Kruger 60

−0.7794
−0.8573
−0.866

0
0.4563 0.5913 0.6063 0.9 1.22 1.18

𝐿5 𝐿5 𝐿5

𝐿4𝐿4𝐿4

Figure 4: Location of triangular points for Kruger 60 with 𝐴
1
=

𝐴
2
= 0, 𝐴

1
= 0.01, 𝐴

2
= 0.02, and 𝐴

1
= 0.1, 𝐴

2
= 0.2.

Due to the presence of (1+𝑒 cos V) in the denominator of (11),
the equation is not possible to integrate to any defined form.
Hence, in elliptical restricted three-body problem, it does not
adjust the Jacobi integral of the classical circular problem at
least in its usual sense.

The elliptical restricted three-body problem is different
from the classical restricted problem in the sense that the
Jacobi integral does not exist [16], and energy along any orbit
is a time-dependent quantity. As we know no exact, complete,
and general solution to the elliptical restricted three-body
problem, Ω can be obtained unlike in classical restricted
three-body problem, but this mathematical inconvenience is
overcome along investigation of certain special cases of the
problem based on simplifying themathematical model under
consideration [2].Now, consider the potential functionwhich
is represented as follows:

Ω(𝑥, 𝑦) =
Ω (𝑥, 𝑦)

1 + 𝑒 cos V
+ 𝑐. (12)

Hence, Ω(𝑥, 𝑦) depends not only on the position co-
ordinate of the infinitesimal but also on an independent
variable.We select the initial point V = 0 andwe consider only
a part of the trajectory V = 0 and V = 𝛿, where 𝛿 is arbitrary
sufficiently small time interval, during which the primaries
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describe the small one. We may define a Jacobi constant in
elliptical case as follows:

𝑥
󸀠2
+ 𝑦
󸀠2
−

𝑥
2
+ 𝑦
2

(1 + 𝑒 cos V)
−

2

(1 + 𝑒 cos V)

× [
1

1 + 3 ((𝐴
1
+ 𝐴
2
) /2)

×{
(1−𝜇) 𝑞

1

𝑟
1

+
𝜇𝑞
2

𝑟
2

+
(1−𝜇) 𝑞

1
𝐴
1

2𝑟
3

1

+
𝜇𝐴
2
𝑞
2

2𝑟
3

2

}] = 𝑐.

(13)

Equation (13) describes different curves of zero velocity,
at each given instant of time of elliptical restricted three-body
problem. The zero velocity curves are now pulsating with
frequency of the nominal elliptical motion. Therefore, in
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the planar elliptical restricted three-body problem, the zero
velocity curves are obtained from the following equation:

𝑥
2
+ 𝑦
2
− 2 [

1

1 + 3 ((𝐴
1
+ 𝐴
2
) /2)

× {
(1 − 𝜇) 𝑞

1

𝑟
1

+
𝜇𝑞
2

𝑟
2

+
(1 − 𝜇) 𝑞

1
𝐴
1

2𝑟
3

1

+
𝜇𝐴
2
𝑞
2

2𝑟
3

2

}] + 𝑐 = 0

(14)

with the help of (14), the different curves of zero velocity have
been traced using the software MATLAB 7.1 of the infinitesi-
mal around the binary systemAchird, Luyten, Alpha CenAB,
Kruger 60 andXi Bootis, taking into account various values of
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Table 1: Location of triangular equilibrium points mentioned in the research paper of Jagdish and Aishetu [30].

Binary system Mass ratio (𝜇) Critical mass value Oblateness Location of triangular points
𝑞
1

𝑞
2 𝐴

1
𝐴
2

𝑋
0

±𝑌
0

0 0 0.604 0.8654
Achird 0.3949 0.9971 0.9997 0.01 0.02 0.5891 0.8567

0.1 0.2 0.4544 0.7785
0 0 0.5 0.866

Luyten 0.5 0.999998 0.99999 0.01 0.02 0.485 0.8574
0.1 0.2 0.35 0.7794
0 0 0.5421 0.8626

𝛼 Cen-AB 0.4519 0.9971 0.985 0.01 0.02 0.527 0.8538
0.1 0.2 0.3903 0.7744
0 0 0.6063 0.866

Kruger 60 0.3937 0.99992 0.99996 0.01 0.02 0.5913 0.8573
0.1 0.2 0.4563 0.7794
0 0 0.5764 0.8658

Xi Bootis 0.4231 0.9988 0.9998 0.01 0.02 0.5614 0.8571
0.1 0.2 0.4267 0.779
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2
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oblateness parameters 𝐴
1
and 𝐴

2
and critical mass parame-

ters 𝑞
1
and 𝑞
2
fromTable 1.We have traced different curves of

zero velocity of the infinitesimal about triangular equilibrium
points. Figures 6, 7, and 8 represent the same around binary
system Achird, and likewise Figures 9, 10, and 11 for binary
system Luyten, Figures 12, 13, and 14 for binary system Alpha
Cen-AB, Figures 15, 16, and 17 for binary system Kruger 60,
and Figures 18, 19, and 20 for binary system Xi Bootis.

Hence, we observe typical behavior of the infinitesimal
around the binary system, Achird, Luyten, Alpha Cen-AB,
Kruger 60, and Xi Bootis.

4. Discussion and Conclusion

Theoblateness and photogravitational effects of the primaries
on the location and the stability of the triangular Lagrangian
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2
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points in elliptical restricted three-body problem have been
studied. The problem was studied under the assumption that
the eccentricity of the orbit of the gravitating bodies is small.
The oblateness of the more massive primary does not affect
the motion of the smaller primary due to its large mass,
whereas it affects the motion of infinitesimal body.

The differential equation governing themotion and stabi-
lity of triangular equilibrium points of the elliptical restricted
three-body problem under the oblate and radiating primaries
has been analyzed, and configurations of the triangular equi-
librium points are described. The stability of the triangular
points under the photogravitational and oblateness effects of
both the primaries around the binary systems Achird, Lyeten,
Aipha Cen-AB, Kruger 60, and Xi Bootis have been stud-
ied using simulation technique by drawing different curves
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Figure 16: Curve of zero velocity (Kruger60-2) 𝑞
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Figure 17: Curve of zero velocity (Kruger60-3) 𝑞
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Figure 18: Curve of zero velocity (Xi Bootis-1) 𝑞
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Figure 19: Curve of zero velocity (Xi Bootis-2) 𝑞
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Figure 20: Curve of zero velocity (Xi Bootis-3) 𝑞
1
= 0.9988, 𝑞

2
=

0.9988, and 𝐴
1
= 0.1, 𝐴

2
= 0.2.

of zero velocity around triangular equilibrium point. It is
observed that the region within the curves, the infinitesimal
will remain stable.
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