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Abstract. 
In the present paper a criterion for basicity of exponential system with linear phase is obtained in Sobolev weight space 
	
		
			

				𝑊
			

			
				1
				𝑝
				,
				𝜌
			

			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
.


In solving mathematical physics problems by the Fourier method, there often arise the systems of exponents of the form
				
	
 		
 			
				(
				1
				)
			
 			
				(
				2
				)
			
 		
	

	
		
			
				
				𝑒
			

			
				𝑖
				(
				𝑛
				𝑡
				+
				𝛼
				(
				𝑡
				)
				)
			

			
				;
				𝑒
			

			
				−
				𝑖
				(
				𝑛
				𝑡
				+
				𝛽
				(
				𝑡
				)
				)
			

			

				
			

			
				𝑛
				≥
				1
			

			
				,
				
				𝑒
				1
				∪
			

			
				𝑖
				(
				𝑛
				𝑡
				+
				𝛼
				(
				𝑡
				)
				)
			

			
				;
				𝑒
			

			
				−
				𝑖
				(
				𝑛
				𝑡
				+
				𝛽
				(
				𝑡
				)
				)
			

			

				
			

			
				𝑛
				≥
				1
			

			

				,
			

		
	

			where 
	
		
			
				𝛼
				(
				𝑡
				)
			

		
	
 and 
	
		
			
				𝛽
				(
				𝑡
				)
			

		
	
 are continuous or piecewise-continuous functions. Substantiation of the method requires studying the basis properties of these systems in Lebesgue and Sobolev spaces of functions. In the case when 
	
		
			
				𝛼
				(
				𝑡
				)
			

		
	
 and 
	
		
			
				𝛽
				(
				𝑡
				)
			

		
	
 are linear functions, the basis properties of these systems in 
	
		
			

				𝐿
			

			

				𝑝
			

			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
, 
	
		
			
				1
				<
				𝑝
				<
				+
				∞
			

		
	
, were completely studied in the papers [1–9]. The weighted case of the space 
	
		
			

				𝐿
			

			

				𝑝
			

		
	
 was considered in the papers [10, 11]. The basis properties of these systems in Sobolev spaces were studied in [12–14]. It should be noted that the close problems were also considered in [15].
In the present paper we study basis properties of the systems (1) and (2) in Sobolev weight spaces when 
	
		
			
				𝛼
				(
				𝑡
				)
				=
				𝛼
				𝑡
			

		
	
, 
	
		
			
				𝛽
				(
				𝑡
				)
				=
				𝛼
				𝑡
			

		
	
, where 
	
		
			

				𝛼
			

		
	
 is a real parameter. Therewith the issue of basicity of system (2) in Sobolev spaces is reduced to the issue of basicity of system (1) in respective Lebesgue spaces.
Let 
	
		
			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
 and 
	
		
			

				𝑊
			

			
				1
				𝑝
				,
				𝜌
			

			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
 be weight spaces with the norms
				
	
 		
 			
				(
				3
				)
			
 			
				(
				4
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			
				𝑝
				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				=
				
			

			
				𝜋
				−
				𝜋
			

			
				|
				|
				|
				|
				𝑢
				(
				𝜃
				)
			

			

				𝑝
			

			
				𝜌
				(
				𝜃
				)
				𝑑
				𝜃
				,
				‖
				𝑢
				‖
			

			

				𝑊
			

			
				1
				𝑝
				,
				𝜌
			

			
				=
				‖
				𝑢
				‖
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				+
				‖
				‖
				𝑢
			

			

				
			

			
				‖
				‖
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			

				,
			

		
	

			respectively, where 
	
		
			
				∏
				𝜌
				(
				𝑡
				)
				=
			

			
				𝑙
				𝑖
				=
				1
			

			
				(
				s
				i
				n
				|
				(
				𝑡
				−
				𝜏
			

			

				𝑖
			

			
				)
				/
				2
				|
				)
			

			

				𝛽
			

			

				𝑖
			

		
	
, 
	
		
			
				−
				𝜋
				<
				𝜏
			

			

				1
			

			
				<
				𝜏
			

			

				2
			

			
				<
				⋯
				<
				𝜏
			

			

				𝑙
			

			
				<
				𝜋
			

		
	
. Denote by 
	
		
			

				ℒ
			

			
				𝑝
				,
				𝜌
			

			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
 the direct sum 
	
		
			

				ℒ
			

			
				𝑝
				,
				𝜌
			

			
				=
				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				⊕
				ℂ
			

		
	
, where 
	
		
			

				ℂ
			

		
	
 is the complex plane. The norm in this space is defined by the expression 
	
		
			
				‖
				̂
				𝑢
				‖
			

			

				ℒ
			

			
				𝑝
				,
				𝜌
			

			
				=
				‖
				𝑢
				‖
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				+
				|
				𝜆
				|
			

		
	
, where 
	
		
			
				̂
				𝑢
				=
				(
				𝑢
				;
				𝜆
				)
				∈
				ℒ
			

			
				𝑝
				,
				𝜌
			

		
	
.
The following easily provable lemmas play an important role in obtaining the main results. It holds the following.
Lemma 1.  Let 
	
		
			

				𝛽
			

			

				𝑖
			

			
				∈
				(
				−
				1
				,
				𝑝
				−
				1
				)
			

		
	
, 
	
		
			
				𝑖
				=
			

			
				
			
			
				1
				,
				𝑙
			

		
	
; 
	
		
			
				𝑝
				∈
				(
				1
				,
				+
				∞
				)
			

		
	
. Then the operator
					
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				
				𝐴
				(
				𝑢
				;
				𝜆
				)
				=
				𝜆
				+
			

			
				𝑡
				−
				𝜋
			

			
				𝑢
				(
				𝜃
				)
				𝑑
				𝜃
			

		
	

				realizes an isomorphism between the spaces 
	
		
			

				ℒ
			

			
				𝑝
				,
				𝜌
			

		
	
 and 
	
		
			

				𝑊
			

			
				1
				𝑝
				,
				𝜌
			

			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
; that is, the spaces 
	
		
			

				ℒ
			

			
				𝑝
				,
				𝜌
			

		
	
 and 
	
		
			

				𝑊
			

			
				1
				𝑝
				,
				𝜌
			

		
	
 are isomorphic.
Proof. At first prove the boundedness of the operator 
	
		
			

				𝐴
			

		
	
. We have
					
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				‖
				𝐴
				̂
				𝑢
				‖
			

			

				𝑊
			

			
				1
				𝑝
				,
				𝜌
			

			
				=
				‖
				‖
				‖
				
				𝜆
				+
			

			
				𝑡
				−
				𝜋
			

			
				‖
				‖
				‖
				𝑢
				(
				𝜃
				)
				𝑑
				𝜃
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				+
				‖
				𝑢
				‖
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				≤
				‖
				𝜆
				‖
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				+
				‖
				‖
				‖
				
			

			
				𝑡
				−
				𝜋
			

			
				‖
				‖
				‖
				𝑢
				(
				𝜃
				)
				𝑑
				𝜃
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				+
				‖
				𝑢
				‖
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				=
				
				
			

			
				𝜋
				−
				𝜋
			

			
				|
				|
				𝜆
				|
				|
			

			

				𝑝
			

			
				
				𝜌
				(
				𝜃
				)
				𝑑
				𝜃
			

			
				1
				/
				𝑝
			

			
				+
				
				
			

			
				𝜋
				−
				𝜋
			

			
				|
				|
				|
				|
				
			

			
				𝑡
				−
				𝜋
			

			
				|
				|
				|
				|
				𝑢
				(
				𝜃
				)
				𝑑
				𝜃
			

			

				𝑝
			

			
				
				𝜌
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				1
				/
				𝑝
			

			
				+
				‖
				𝑢
				‖
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				≤
				|
				|
				𝜆
				|
				|
				‖
				𝜌
				‖
			

			
				𝐿
				1
				/
				𝑝
			

			

				1
			

			
				+
				
				
			

			
				𝜋
				−
				𝜋
			

			
				
				
			

			
				𝑡
				−
				𝜋
			

			
				|
				|
				|
				|
				
				𝑢
				(
				𝜃
				)
				𝑑
				𝜃
			

			

				𝑝
			

			
				
				𝜌
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				1
				/
				𝑝
			

			
				+
				‖
				𝑢
				‖
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				≤
				|
				|
				𝜆
				|
				|
				‖
				𝜌
				‖
			

			
				𝐿
				1
				/
				𝑝
			

			

				1
			

			
				+
				
				
			

			
				𝜋
				−
				𝜋
			

			
				
				
			

			
				𝜋
				−
				𝜋
			

			
				|
				|
				|
				|
				
				𝑢
				(
				𝜃
				)
				𝑑
				𝜃
			

			

				𝑝
			

			
				
				𝜌
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				1
				/
				𝑝
			

			
				+
				‖
				𝑢
				‖
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				=
				|
				|
				𝜆
				|
				|
				‖
				𝜌
				‖
			

			
				𝐿
				1
				/
				𝑝
			

			

				1
			

			
				+
				
			

			
				𝜋
				−
				𝜋
			

			
				|
				|
				|
				|
				𝑢
				(
				𝜃
				)
				𝑑
				𝜃
				‖
				𝜌
				‖
			

			
				𝐿
				1
				/
				𝑝
			

			

				1
			

			
				+
				‖
				𝑢
				‖
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			

				.
			

		
	

				Having applied the Holder inequality, hence we get
					
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				
			

			
				𝜋
				−
				𝜋
			

			
				|
				|
				|
				|
				
				𝑢
				(
				𝜃
				)
				𝑑
				𝜃
				=
			

			
				𝜋
				−
				𝜋
			

			
				|
				|
				|
				|
				𝜌
				𝑢
				(
				𝜃
				)
			

			
				1
				/
				𝑝
			

			

				𝜌
			

			
				−
				1
				/
				𝑝
			

			
				≤
				
				
				𝑑
				𝜃
			

			
				𝜋
				−
				𝜋
			

			
				|
				|
				|
				|
				𝑢
				(
				𝜃
				)
			

			

				𝑝
			

			
				
				𝜌
				𝑑
				𝜃
			

			
				1
				/
				𝑝
			

			
				×
				
				
			

			
				𝜋
				−
				𝜋
			

			

				𝜌
			

			
				−
				𝑞
				/
				𝑝
			

			
				
				(
				𝜃
				)
				𝑑
				𝜃
			

			
				1
				/
				𝑞
			

			
				=
				‖
				𝑢
				‖
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				‖
				‖
				𝜌
			

			
				1
				/
				(
				1
				−
				𝑝
				)
			

			
				‖
				‖
			

			
				𝐿
				1
				/
				𝑞
			

			

				1
			

			

				,
			

		
	

				where
					
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				𝑝
				+
				1
			

			
				
			
			
				𝑞
				=
				1
				.
			

		
	

				Consequently
					
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				‖
				𝐴
				̂
				𝑢
				‖
			

			

				𝑊
			

			
				1
				𝑝
				,
				𝜌
			

			
				≤
				|
				|
				𝜆
				|
				|
				‖
				𝜌
				‖
			

			
				𝐿
				1
				/
				𝑝
			

			

				1
			

			
				+
				‖
				𝑢
				‖
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				‖
				𝜌
				‖
			

			
				𝐿
				1
				/
				𝑝
			

			

				1
			

			
				‖
				‖
				𝜌
			

			
				1
				/
				(
				1
				−
				𝑝
				)
			

			
				‖
				‖
			

			
				𝐿
				1
				/
				𝑞
			

			

				1
			

			
				+
				‖
				𝑢
				‖
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				=
				|
				|
				𝜆
				|
				|
				𝜌
			

			
				𝐿
				1
				/
				𝑝
			

			

				1
			

			
				+
				
				1
				+
				‖
				𝜌
				‖
			

			
				𝐿
				1
				/
				𝑝
			

			

				1
			

			
				‖
				‖
				𝜌
			

			
				1
				/
				(
				1
				−
				𝑝
				)
			

			
				‖
				‖
			

			
				𝐿
				1
				/
				𝑞
			

			

				1
			

			
				
				+
				1
				‖
				𝑢
				‖
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				
				|
				|
				𝜆
				|
				|
				≤
				𝑀
				+
				‖
				𝑢
				‖
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				
				=
				𝑀
				‖
				̂
				𝑢
				‖
			

			

				ℒ
			

			
				𝑝
				,
				𝜌
			

			

				,
			

		
	

				where
					
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				
				𝑀
				=
				m
				a
				x
				‖
				𝜌
				‖
			

			
				𝐿
				1
				/
				𝑝
			

			

				1
			

			
				;
				‖
				𝜌
				‖
			

			
				𝐿
				1
				/
				𝑝
			

			

				1
			

			
				‖
				‖
				𝜌
			

			
				1
				/
				(
				1
				−
				𝑝
				)
			

			
				‖
				‖
			

			
				𝐿
				1
				/
				𝑞
			

			

				1
			

			
				
				.
				+
				1
			

		
	

				Let us show that 
	
		
			
				K
				e
				r
				𝐴
				=
				{
				0
				}
			

		
	
. Put 
	
		
			
				𝐴
				̂
				𝑢
				=
				0
			

		
	
; that is,
					
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				
				𝜆
				+
			

			
				𝑡
				−
				𝜋
			

			
				𝑢
				(
				𝜃
				)
				𝑑
				𝜃
				=
				0
				,
				∀
				𝑡
				∈
				(
				−
				𝜋
				,
				𝜋
				)
				,
			

		
	

				where 
	
		
			
				𝜆
				∈
				𝐶
			

		
	
, 
	
		
			
				𝑢
				∈
				ℒ
			

			
				𝑝
				,
				𝜌
			

		
	
. By differentiating this equality, we get 
	
		
			
				𝑢
				(
				𝜃
				)
				=
				0
			

		
	
, a.e. on 
	
		
			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
. Hence it follows that 
	
		
			
				𝜆
				=
				0
			

		
	
. From (11) it directly follows that 
	
		
			
				𝑢
				=
				0
			

		
	
 a.e. on 
	
		
			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
, and so 
	
		
			
				̂
				𝑢
				=
				0
			

		
	
. Show that 
	
		
			
				I
				m
				𝐴
				=
				𝑊
			

			
				1
				𝑝
				,
				𝜌
			

			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
 (
	
		
			
				I
				m
				𝐴
			

		
	
 is the range of values of the operator 
	
		
			

				𝐴
			

		
	
). Let 
	
		
			
				𝑣
				∈
				𝑊
			

			
				1
				𝑝
				,
				𝜌
			

			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
 be an arbitrary function. Let 
	
		
			
				̂
				𝑣
				=
				(
				𝑣
			

			

				
			

			
				;
				𝑣
				(
				0
				)
				)
			

		
	
. It is clear that 
	
		
			
				𝐴
				̂
				𝑣
				=
				𝑣
			

		
	
 and 
	
		
			
				̂
				𝑣
				∈
				ℒ
			

			
				𝑝
				,
				𝜌
			

		
	
. Then from the Banach theorem we get that the operator 
	
		
			

				𝐴
			

		
	
 is boundedly invertible.The lemma is proved.
The following lemma is also valid.
Lemma 2.  Let 
	
		
			
				𝑝
				∈
				(
				1
				,
				+
				∞
				)
			

		
	
 and 
	
		
			

				𝛽
			

			

				𝑖
			

			
				∈
				(
				−
				1
				,
				𝑝
				−
				1
				)
			

		
	
, 
	
		
			
				𝑖
				=
			

			
				
			
			
				1
				,
				𝑙
			

		
	
. Then for all 
	
		
			

				𝑝
			

			

				0
			

			
				∈
				(
				1
				,
				𝛼
				)
				∶
				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				(
				−
				𝜋
				,
				𝜋
				)
				⊂
				𝐿
			

			

				𝑝
			

			

				0
			

			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
, where 
					
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				
				𝑝
				𝛼
				=
				m
				i
				n
				2
				;
				𝑝
				;
			

			
				
			
			

				𝛽
			

			

				1
			

			
				;
				𝑝
				+
				1
			

			
				
			
			

				𝛽
			

			

				2
			

			
				𝑝
				+
				1
				;
				…
				;
			

			
				
			
			

				𝛽
			

			

				𝑙
			

			
				
				.
				+
				1
			

		
	

Proof. Let 
	
		
			
				𝑓
				∈
				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
, 
	
		
			

				𝑝
			

			

				0
			

			
				∈
				(
				1
				,
				𝛼
				)
			

		
	
. We have 
					
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				
			

			
				𝜋
				−
				𝜋
			

			
				|
				|
				𝑓
				|
				|
			

			

				𝑝
			

			

				0
			

			
				=
				
				𝑑
				𝑡
			

			
				𝜋
				−
				𝜋
			

			
				|
				|
				𝑓
				|
				|
			

			

				𝑝
			

			

				0
			

			

				𝜌
			

			

				𝑝
			

			

				0
			

			
				/
				𝑝
			

			

				𝜌
			

			
				−
				𝑝
			

			

				0
			

			
				/
				𝑝
			

			
				≤
				
				
				𝑑
				𝑡
			

			
				𝜋
				−
				𝜋
			

			
				|
				|
				𝑓
				|
				|
			

			

				𝑝
			

			
				
				𝜌
				𝑑
				𝑡
			

			

				𝑝
			

			

				0
			

			
				/
				𝑝
			

			
				
				
			

			
				𝜋
				−
				𝜋
			

			

				𝜌
			

			

				𝑝
			

			

				0
			

			
				/
				(
				𝑝
			

			

				0
			

			
				−
				𝑝
				)
			

			
				
				𝑑
				𝑡
			

			
				(
				𝑝
				−
				𝑝
			

			

				0
			

			
				)
				/
				𝑝
			

			
				=
				‖
				𝑓
				‖
			

			

				𝑝
			

			

				0
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				
				
			

			
				𝜋
				𝑙
				−
				𝜋
			

			

				
			

			
				𝑖
				=
				1
			

			
				
				|
				|
				|
				s
				i
				n
				𝑡
				−
				𝜏
			

			

				𝑖
			

			
				
			
			
				2
				|
				|
				|
				
			

			

				𝛽
			

			

				𝑖
			

			

				𝑝
			

			

				0
			

			
				/
				(
				𝑝
			

			

				0
			

			
				−
				𝑝
				)
			

			
				
				𝑑
				𝑡
			

			
				(
				𝑝
				−
				𝑝
			

			

				0
			

			
				)
				/
				𝑝
			

			

				.
			

		
	

				Since 
	
		
			

				𝑝
			

			

				0
			

			
				<
				𝑝
				/
				(
				𝛽
			

			

				𝑖
			

			
				+
				1
				)
			

		
	
 and 
	
		
			

				𝛽
			

			

				𝑖
			

			
				>
				−
				1
			

		
	
, then 
	
		
			

				𝛽
			

			

				𝑖
			

			

				𝑝
			

			

				0
			

			
				/
				(
				𝑝
			

			

				0
			

			
				−
				𝑝
				)
				>
				−
				1
			

		
	
, 
	
		
			
				𝑖
				=
			

			
				
			
			
				1
				,
				𝑙
			

		
	
. It is easy to see that 
	
		
			
				𝑓
				∈
				𝐿
			

			

				𝑝
			

			

				0
			

			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
 and moreover 
	
		
			
				‖
				𝑓
				‖
			

			

				𝐿
			

			
				𝑝
				0
			

			
				≤
				𝐶
				‖
				𝑓
				‖
			

			

				𝐿
			

			
				𝑝
				,
				𝜌
			

		
	
.The lemma is proved.
In obtaining the basic results we need the following main lemma.
Lemma 3.  Let 
	
		
			
				𝑓
				∈
				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
, 
	
		
			
				∏
				𝜌
				(
				𝑡
				)
				=
			

			
				𝑙
				𝑖
				=
				1
			

			
				(
				s
				i
				n
				|
				(
				𝑡
				−
				𝜏
			

			

				𝑖
			

			
				)
				/
				2
				|
				)
			

			

				𝛽
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝛽
			

			

				𝑖
			

			
				∈
				(
				−
				1
				,
				𝑝
				/
				𝑞
				)
			

		
	
, 
	
		
			
				𝑖
				=
			

			
				
			
			
				1
				,
				𝑙
			

		
	
, 
	
		
			
				𝛼
				∈
				𝑅
			

		
	
 be a real parameter, 
	
		
			
				1
				/
				𝑝
				+
				1
				/
				𝑞
				=
				1
			

		
	
. Let 
	
		
			

				𝑓
			

		
	
 have the expansion 
					
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				
				𝑓
				(
				𝑡
				)
				=
			

			
				𝑛
				≠
				0
			

			

				𝑐
			

			

				𝑛
			

			

				𝑒
			

			
				𝑖
				[
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				]
				𝑡
			

		
	

				in the space 
	
		
			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
. Then it is valid
					
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				
			

			
				|
				𝑛
				|
				>
				|
				𝛼
				|
			

			
				|
				|
				|
				|
				𝑐
			

			

				𝑛
			

			
				
			
			
				|
				|
				|
				|
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				<
				+
				∞
				.
			

		
	

Proof. As it follows from Lemma 2, 
	
		
			
				∃
				𝑝
			

			

				0
			

			
				∈
				(
				1
				,
				2
				)
				∶
				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				⊂
				𝐿
			

			

				𝑝
			

			

				0
			

		
	
. At first consider the case when 
	
		
			
				𝛼
				>
				1
				/
				2
				𝑝
			

			

				0
			

			
				−
				1
			

		
	
, 
	
		
			
				1
				/
				𝑝
			

			

				0
			

			
				+
				1
				/
				𝑞
			

			

				0
			

			
				=
				1
			

		
	
. In this case the system 
	
		
			
				{
				𝑒
			

			
				𝑖
				(
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				)
				𝑡
			

			

				}
			

			
				𝑛
				≠
				0
			

		
	
 is minimal in 
	
		
			

				𝐿
			

			

				𝑝
			

			

				0
			

			
				(
				0
				,
				𝜋
				)
			

		
	
 (see [4]). Then from the results of the paper [16], the Hausdorff-Young inequality is valid for this system; that is,
					
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				
			

			

				∞
			

			

				
			

			
				𝑛
				≠
				0
			

			
				|
				|
				𝑐
			

			

				𝑛
			

			
				|
				|
			

			

				𝑞
			

			

				0
			

			

				
			

			
				1
				/
				𝑞
			

			

				0
			

			
				≤
				𝑀
				‖
				𝑓
				‖
			

			

				𝐿
			

			
				𝑝
				0
			

			

				.
			

		
	

				Applying the Holder inequality, we obtain
					
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				
			

			
				|
				𝑛
				|
				>
				|
				𝛼
				|
			

			
				|
				|
				|
				|
				𝑐
			

			

				𝑛
			

			
				
			
			
				|
				|
				|
				|
				≤
				
				
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
			

			
				|
				𝑛
				|
				>
				|
				𝛼
				|
			

			
				|
				|
				𝑐
			

			

				𝑛
			

			
				|
				|
			

			

				𝑞
			

			

				0
			

			

				
			

			
				1
				/
				𝑞
			

			

				0
			

			
				×
				
				
			

			
				|
				𝑛
				|
				>
				|
				𝛼
				|
			

			

				1
			

			
				
			
			
				|
				|
				|
				|
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
			

			

				𝑝
			

			

				0
			

			

				
			

			
				1
				/
				𝑝
			

			

				0
			

			

				.
			

		
	

				If 
	
		
			
				𝛼
				<
				1
				/
				2
				𝑝
			

			

				0
			

			
				−
				1
			

		
	
, then 
	
		
			
				∃
				𝑘
				∈
				𝑁
			

		
	
, 
	
		
			

				𝛼
			

			

				
			

			
				=
				𝛼
				+
				𝑘
				>
				1
				/
				2
				𝑝
			

			

				0
			

			
				−
				1
			

		
	
. Then 
					
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				
				𝑓
				(
				𝑡
				)
				=
			

			
				𝑛
				≠
				0
			

			

				𝑐
			

			

				𝑛
			

			

				𝑒
			

			
				𝑖
				(
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				)
				𝑡
			

			

				=
			

			
				−
				1
			

			

				
			

			
				𝑛
				=
				−
				𝑘
			

			

				𝑐
			

			

				𝑛
			

			

				𝑒
			

			
				𝑖
				(
				𝑛
				−
				𝛼
				)
				𝑡
			

			

				+
			

			

				𝑘
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑐
			

			

				𝑛
			

			

				𝑒
			

			
				𝑖
				(
				𝑛
				+
				𝛼
				)
				𝑡
			

			
				+
				
			

			
				|
				𝑛
				|
				≥
				𝑘
				+
				1
			

			

				𝑐
			

			

				𝑛
			

			

				𝑒
			

			
				𝑖
				(
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				)
				𝑡
			

			
				=
				𝑓
			

			

				𝑘
			

			
				
				(
				𝑡
				)
				+
			

			
				𝑛
				≠
				0
			

			

				𝑐
			

			
				𝑛
				+
				𝑘
				s
				i
				g
				n
				𝑛
			

			

				𝑒
			

			
				𝑖
				(
				𝑛
				+
				(
				𝑘
				+
				𝛼
				)
				s
				i
				g
				n
				𝑛
				)
				𝑡
			

			
				=
				𝑓
			

			

				𝑘
			

			
				
				(
				𝑡
				)
				+
			

			
				𝑛
				≠
				0
			

			

				𝑐
			

			
				𝑛
				+
				𝑘
				s
				i
				g
				n
				𝑛
			

			

				𝑒
			

			
				𝑖
				(
				𝑛
				+
				𝛼
			

			

				′
			

			
				s
				i
				g
				n
				𝑛
				)
				𝑡
			

			

				,
			

		
	

				where 
	
		
			

				𝑓
			

			

				𝑘
			

			
				∑
				(
				𝑡
				)
				=
			

			
				−
				1
				𝑛
				=
				−
				𝑘
			

			

				𝑐
			

			

				𝑛
			

			

				𝑒
			

			
				𝑖
				(
				𝑛
				−
				𝛼
				)
				𝑡
			

			
				+
				∑
			

			
				𝑘
				𝑛
				=
				1
			

			

				𝑐
			

			

				𝑛
			

			

				𝑒
			

			
				𝑖
				(
				𝑛
				+
				𝛼
				)
				𝑡
			

		
	
, 
	
		
			

				𝛼
			

			

				
			

			
				=
				𝑘
				+
				𝛼
			

		
	
. As a result, we have 
					
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑡
				)
				−
				𝑓
			

			

				𝑘
			

			
				
				(
				𝑡
				)
				=
			

			
				𝑛
				≠
				0
			

			

				𝑐
			

			
				𝑛
				+
				𝑘
				s
				i
				g
				n
				𝑛
			

			

				𝑒
			

			
				𝑖
				(
				𝑛
				+
				𝛼
			

			

				′
			

			
				s
				i
				g
				n
				𝑛
				)
				𝑡
			

			

				.
			

		
	

				Since 
	
		
			

				𝛽
			

			

				
			

			
				>
				1
				/
				𝑝
			

			

				0
			

			
				−
				2
			

		
	
, then again from the results of the paper [16] it follows
					
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				
				
			

			
				𝑛
				≠
				0
			

			
				|
				|
				𝑐
			

			
				𝑛
				+
				𝑘
				s
				i
				g
				n
				𝑛
			

			
				|
				|
			

			

				𝑞
			

			

				0
			

			

				
			

			
				1
				/
				𝑞
			

			

				0
			

			
				‖
				‖
				≤
				𝑀
				𝑓
				−
				𝑓
			

			

				𝑘
			

			
				‖
				‖
			

			

				𝐿
			

			
				𝑝
				0
			

			

				.
			

		
	

				In the same way we establish the convergence of the series 
	
		
			

				∑
			

			
				|
				𝑛
				|
				>
				|
				𝛼
				|
			

			
				|
				𝑐
			

			

				𝑛
			

			
				/
				(
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				)
				|
			

		
	
.Consider the case when 
	
		
			
				𝛼
				=
				1
				/
				2
				𝑝
			

			

				0
			

			
				−
				1
			

		
	
. Then 
	
		
			
				∃
				𝑝
			

			

				
			

			
				∈
				(
				𝑝
			

			

				0
			

			
				,
				2
				)
				∶
				𝛼
				>
				1
				/
				2
				𝑝
			

			

				
			

			
				−
				1
			

		
	
. In this case the system 
	
		
			
				{
				𝑒
			

			
				𝑖
				(
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				)
				𝑡
			

			

				}
			

			
				𝑛
				≠
				0
			

		
	
 is minimal in 
	
		
			

				𝐿
			

			

				𝑝
			

			

				′
			

		
	
, and, consequently, from the results of the paper [16] it holds the Hausdorff-Young inequality; that is, 
					
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				
				
			

			
				𝑛
				≠
				0
			

			
				|
				|
				𝑐
			

			

				𝑛
			

			
				|
				|
			

			

				𝑞
			

			

				′
			

			

				
			

			
				1
				/
				𝑞
			

			

				′
			

			
				≤
				𝑀
				‖
				𝑓
				‖
			

			

				𝐿
			

			
				𝑝
				′
			

			

				,
			

		
	

				where 
	
		
			
				1
				/
				𝑝
			

			

				
			

			
				+
				1
				/
				𝑞
			

			

				
			

			
				=
				1
			

		
	
.From the previous reasonings we get the absolute convergence of the series 
	
		
			

				∑
			

			
				|
				𝑛
				|
				>
				|
				𝛼
				|
			

			
				|
				𝑐
			

			

				𝑛
			

			
				/
				(
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				)
				|
			

		
	
. The lemma is proved.
Theorem 4.  Let 
	
		
			
				𝑝
				∈
				(
				1
				,
				+
				∞
				)
			

		
	
, 
	
		
			
				∏
				𝜌
				(
				𝑡
				)
				=
			

			
				𝑙
				𝑖
				=
				1
			

			
				(
				s
				i
				n
				|
				(
				𝑡
				−
				𝜏
			

			

				𝑖
			

			
				)
				/
				2
				|
				)
			

			

				𝛽
			

			

				𝑖
			

		
	
 be a weight function, 
	
		
			
				𝛼
				(
				𝑡
				)
				≡
				𝛼
				𝑡
			

		
	
, 
	
		
			
				𝛽
				(
				𝑡
				)
				≡
				𝛼
				𝑡
			

		
	
, 
	
		
			
				𝛼
				∈
				𝑅
			

		
	
 be a real parameter, and the inequalities 
	
		
			
				−
				1
				<
				𝛽
			

			

				𝑖
			

			
				<
				𝑝
				/
				𝑞
			

		
	
, 
	
		
			
				𝑖
				=
			

			
				
			
			
				1
				,
				𝑙
			

		
	
; 
	
		
			
				1
				/
				2
				𝑝
				−
				1
				/
				2
				>
				𝛼
				>
				1
				/
				2
				𝑝
				−
				1
			

		
	
 hold. Then the following statements are equivalent: (1)system (2) forms a basis for 
	
		
			

				𝑊
			

			
				𝑝
				,
				𝜌
			

			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
;(2)system (1) forms a basis for 
	
		
			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
.
Proof. At first, suppose that the system (1) forms a basis for 
	
		
			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
. Let us show that the system 
	
		
			
				{
				̂
				𝑢
			

			

				𝑛
			

			

				}
			

			
				∞
				𝑛
				=
				0
			

		
	
 forms a basis for 
	
		
			

				ℒ
			

			
				𝑝
				,
				𝜌
			

		
	
, where 
	
		
			
				̂
				𝑢
			

			

				0
			

			
				=
				(
				0
				;
				1
				)
			

		
	
, 
	
		
			
				̂
				𝑢
			

			

				𝑛
			

			
				=
				(
				𝑖
				(
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				)
				𝑒
			

			
				𝑖
				(
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				)
				𝑡
			

			
				;
				𝑒
			

			
				−
				𝑖
				(
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				)
				𝜋
			

			

				)
			

		
	
, 
	
		
			
				𝑛
				≠
				0
			

		
	
.It is enough to prove that the arbitrary element 
	
		
			
				̂
				𝑢
				=
				(
				𝑢
				;
				𝜆
				)
			

		
	
 of 
	
		
			

				ℒ
			

			
				𝑝
				,
				𝜌
			

		
	
 has the unique expansion
					
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				
				̂
				𝑢
				=
			

			
				𝑛
				≠
				0
			

			

				𝜆
			

			

				𝑛
			

			
				̂
				𝑢
			

			

				𝑛
			

			

				;
			

		
	

				that is,
					
	
 		
 			
				(
				2
				3
				)
			
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				
				𝑢
				(
				𝑡
				)
				=
			

			
				𝑛
				≠
				0
			

			
				𝑖
				(
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				)
				𝜆
			

			

				𝑛
			

			

				𝑒
			

			
				𝑖
				(
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				)
				𝑡
			

			
				,
				𝜆
				=
				𝜆
			

			

				0
			

			
				+
				
			

			
				𝑛
				≠
				0
			

			

				𝜆
			

			

				𝑛
			

			

				.
			

		
	

				Since the system (1) forms a basis for 
	
		
			

				𝐿
			

			
				𝑝
				,
				𝜌
			

			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
, then the expansion (23) holds and the coefficients 
	
		
			

				𝜆
			

			

				𝑛
			

			
				(
				𝑛
				≠
				0
				)
			

		
	
 are uniquely determined. By Lemma 3 the series 
	
		
			

				∑
			

			
				𝑛
				≠
				0
			

			

				𝜆
			

			

				𝑛
			

		
	
 absolutely converges. Then it is clear that the number 
	
		
			

				𝜆
			

			

				0
			

		
	
 from (24) is uniquely determined. This means that the system 
	
		
			
				{
				̂
				𝑢
			

			

				𝑛
			

			

				}
			

			
				∞
				𝑛
				=
				∞
			

		
	
 forms a basis for 
	
		
			

				ℒ
			

			
				𝑝
				,
				𝜌
			

		
	
. Consider the system 
	
		
			
				{
				𝑣
			

			

				𝑛
			

			

				}
			

			
				∞
				𝑛
				=
				−
				∞
			

		
	
, where 
	
		
			

				𝑣
			

			

				𝑛
			

			
				=
				𝐴
				̂
				𝑢
			

			

				𝑛
			

		
	
, 
	
		
			
				∫
				𝐴
				[
				(
				𝑢
				,
				𝜆
				)
				]
				=
				𝜆
				+
			

			
				𝑡
				−
				𝜋
			

			
				𝑢
				(
				𝜏
				)
				𝑑
				𝑡
			

		
	
, 
	
		
			
				̂
				𝑢
				=
				(
				𝑢
				;
				𝜆
				)
				∈
				𝐿
			

			
				𝑝
				,
				𝜌
			

		
	
. It is not difficult to see that 
					
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝑣
			

			

				0
			

			
				=
				1
				,
				𝑣
			

			

				𝑛
			

			
				=
				𝑒
			

			
				𝑖
				(
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				)
				𝑡
			

			
				,
				𝑛
				≠
				0
				.
			

		
	
Now, let us prove the converse. Assume that the system (2) forms a basis for 
	
		
			

				𝑊
			

			
				1
				𝑝
			

			
				(
				−
				𝜋
				,
				𝜋
				)
			

		
	
. Consider the system 
	
		
			
				̂
				𝑢
			

			

				𝑛
			

			
				=
				𝐴
			

			
				−
				1
			

			

				𝑣
			

			

				𝑛
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑍
			

		
	
. It is easy to see that the inverse operator is determined as 
	
		
			

				𝐴
			

			
				−
				1
			

			
				𝑣
				=
				(
				𝑣
			

			

				
			

			
				;
				𝑣
				(
				−
				𝜋
				)
				)
			

		
	
. It is obvious that the system 
	
		
			
				{
				̂
				𝑢
			

			

				𝑛
			

			

				}
			

			
				∞
				−
				∞
			

		
	
 forms a basis for 
	
		
			

				ℒ
			

			
				𝑝
				,
				𝜌
			

		
	
. We have
					
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				̂
				𝑢
			

			

				0
			

			
				=
				(
				0
				;
				1
				)
				,
				̂
				𝑢
			

			

				𝑛
			

			
				=
				
				𝑖
				(
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				)
				𝑒
			

			
				𝑖
				(
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				)
				𝑡
			

			
				;
				𝑒
			

			
				−
				𝑖
				(
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				)
				𝜋
			

			
				
				.
			

		
	

				Consequently, 
	
		
			
				̂
				𝑢
				=
				(
				𝑢
				;
				𝜆
				)
				∈
				𝐿
			

			
				𝑝
				,
				𝜌
			

		
	
 has a unique expansion (22) in 
	
		
			

				ℒ
			

			
				𝑝
				,
				𝜌
			

		
	
. As a result, we obtain that each 
	
		
			
				𝑢
				∈
				𝐿
			

			
				𝑝
				,
				𝜌
			

		
	
 has a unique expansion of the form (23). Indeed, let there exist another expansion for 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 in 
	
		
			

				𝐿
			

			
				𝑝
				,
				𝜌
			

		
	
: 
					
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				
				𝑢
				(
				𝑡
				)
				=
			

			
				𝑛
				≠
				0
			

			
				𝑖
				(
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				)
				𝜇
			

			

				𝑛
			

			

				𝑒
			

			
				𝑖
				(
				𝑛
				+
				𝛼
				s
				i
				g
				n
				𝑛
				)
				𝑡
			

			

				.
			

		
	

				The absolute convergence of the series 
	
		
			

				∑
			

			
				𝑛
				≠
				0
			

			

				𝜇
			

			

				𝑛
			

		
	
 follows from Lemma 3. Put 
	
		
			

				𝜇
			

			

				0
			

			
				∑
				=
				𝜆
				−
			

			
				𝑛
				≠
				0
			

			

				𝜇
			

			

				𝑛
			

		
	
. It is clear that the biorthogonal coefficients of the element 
	
		
			
				̂
				𝑢
				=
				(
				𝑢
				;
				𝜆
				)
			

		
	
 are 
	
		
			

				(
			

			
				
			
			
				𝜇
				;
				𝜇
			

			

				0
			

			

				)
			

		
	
, where 
	
		
			
				
			
			
				𝜇
				=
				{
				𝜇
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. From the basicity of the system 
	
		
			
				{
				̂
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				𝑛
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				∞
				𝑛
				=
				−
				∞
			

		
	
 in 
	
		
			

				ℒ
			

			
				𝑝
				,
				𝜌
			

		
	
 we obtain that 
	
		
			

				𝜇
			

			

				𝑛
			

			
				=
				𝜆
			

			

				𝑛
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑍
			

		
	
. This contradicts our conjecture. The theorem is proved.
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