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The concept of nil-symmetric rings has been introduced as a generalization of symmetric rings and a particular case of nil-
semicommutative rings. A ring 𝑅 is called right (left) nil-symmetric if, for 𝑎, 𝑏, 𝑐 ∈ 𝑅, where 𝑎, 𝑏 are nilpotent elements, 𝑎𝑏𝑐 =
0 (𝑐𝑎𝑏 = 0) implies 𝑎𝑐𝑏 = 0. A ring is called nil-symmetric if it is both right and left nil-symmetric. It has been shown that the
polynomial ring over a nil-symmetric ring may not be a right or a left nil-symmetric ring. Further, it is also proved that if 𝑅 is right
(left) nil-symmetric, then the polynomial ring 𝑅[𝑥] is a nil-Armendariz ring.

1. Introduction

Throughout this paper, all rings are associative with unity.
Given a ring 𝑅, nil(𝑅) and 𝑅[𝑥] denote the set of all nilpotent
elements of 𝑅 and the polynomial ring over 𝑅, respectively.
A ring 𝑅 is called reduced if it has no nonzero nilpotent
elements; 𝑅 is said to be Abelian if all idempotents of 𝑅 are
central; 𝑅 is symmetric [1] if 𝑎𝑏𝑐 = 0 implies 𝑎𝑐𝑏 = 0 for all
𝑎, 𝑏, 𝑐 ∈ 𝑅. An equivalent condition for a ring to be symmetric
is that whenever product of any number of elements of the
ring is zero, any permutation of the factors still gives the
product zero [2]. 𝑅 is reversible [3] if 𝑎𝑏 = 0 implies 𝑏𝑎 = 0

for all 𝑎, 𝑏 ∈ 𝑅; 𝑅 is called semicommutative [4] if 𝑎𝑏 = 0

implies 𝑎𝑅𝑏 = 0 for all 𝑎, 𝑏 ∈ 𝑅. In [5], Rege-Chhawchharia
introduced the concept of an Armendariz ring. A ring 𝑅 is
called Armendariz if whenever polynomials𝑓(𝑥) = 𝑎

0
+𝑎
1
𝑥+

⋅ ⋅ ⋅ + 𝑎
𝑛
𝑥
𝑛, 𝑔(𝑥) = 𝑏

0
+ 𝑏
1
𝑥 + ⋅ ⋅ ⋅ + 𝑏

𝑚
𝑥
𝑚

∈ 𝑅[𝑥] satisfy
𝑓(𝑥)𝑔(𝑥) = 0, then 𝑎

𝑖
𝑏
𝑗
= 0 for each 𝑖, 𝑗. Liu-Zhao [6] and

Antoine [7] further generalize the concept of an Armendariz
ring by defining a weak-Armendariz and a nil-Armendariz
ring, respectively. A ring 𝑅 is called weak-Armendariz if
whenever polynomials 𝑓(𝑥) = 𝑎

0
+ 𝑎
1
𝑥 + ⋅ ⋅ ⋅ + 𝑎

𝑛
𝑥
𝑛, 𝑔(𝑥) =

𝑏
0
+ 𝑏
1
𝑥 + ⋅ ⋅ ⋅ + 𝑏

𝑚
𝑥
𝑚
∈ 𝑅[𝑥] satisfy 𝑓(𝑥)𝑔(𝑥) = 0, then

𝑎
𝑖
𝑏
𝑗
∈ nil(𝑅) for each 𝑖, 𝑗. A ring 𝑅 is called nil-Armendariz

if whenever 𝑓(𝑥) = 𝑎
0
+ 𝑎
1
𝑥 + ⋅ ⋅ ⋅ + 𝑎

𝑛
𝑥
𝑛, 𝑔(𝑥) = 𝑏

0
+

𝑏
1
𝑥 + ⋅ ⋅ ⋅ + 𝑏

𝑚
𝑥
𝑚
∈ 𝑅[𝑥] satisfy 𝑓(𝑥)𝑔(𝑥) ∈ nil(𝑅)[𝑥], then

𝑎
𝑖
𝑏
𝑗
∈ nil(𝑅) for each 𝑖, 𝑗. Mohammadi et al. [8] initiated

the notion of a nil-semicommutative ring as a generalization
of a semicommutative ring. A ring 𝑅 is nil-semicommutative
if 𝑎𝑏 = 0 implies 𝑎𝑅𝑏 = 0 for all 𝑎, 𝑏 ∈ nil(𝑅). In their
paper it is shown that, in a nil-semicommutative ring 𝑅,
nil(𝑅) forms an ideal of 𝑅. Getting motivated by their paper
we introduce the concept of a right (left) nil-symmetric ring
which is a generalization of symmetric rings and a particular
case of nil-semicommutative rings. Thus all the results valid
for nil-semicommutative rings are valid for right (left) nil-
symmetric rings also. We also prove that if a ring 𝑅 is right
(left) nil-symmetric and Armendariz, then 𝑅[𝑥] is right (left)
nil-symmetric. In the context, there are also several other
generalizations of symmetric rings (see [9, 10]).

2. Right (Left) Nil-Symmetric Rings

For a ring𝑅,𝑀
𝑛
(𝑅) and𝑇

𝑛
(𝑅) denote the 𝑛×𝑛 fullmatrix ring

and the upper triangular matrix ring over 𝑅, respectively. We
observe that if 𝑅 is a ring, then

nil (𝑇
𝑛
(𝑅)) =(

nil (𝑅) 𝑅 𝑅 ⋅ ⋅ ⋅ 𝑅

0 nil (𝑅) 𝑅 ⋅ ⋅ ⋅ 𝑅

0 0 nil (𝑅) ⋅ ⋅ ⋅ 𝑅

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ nil (𝑅)

).

(1)
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Definition 1. A ring 𝑅 is said to be right (left) nil-symmetric if
whenever, for every 𝑎, 𝑏 ∈ nil(𝑅) and for every 𝑐 ∈ 𝑅, 𝑎𝑏𝑐 =
0 (𝑐𝑎𝑏 = 0), then 𝑎𝑐𝑏 = 0. A ring 𝑅 is nil-symmetric if it is
both right and left nil-symmetric.

Example 2. let 𝑘 be a field, and let 𝑅 be the path algebra of the
quiver

1
𝑥

←󳨀 2↺
𝑦
, (2)

over 𝑘, modulo the relation 𝑦2 = 0. Let 𝑒
1
and 𝑒
2
be the paths

of length 0 at vertices 1 and 2, respectively. Composing arrows
from left to right, 𝑥𝑦 is a nonzero path, while 𝑦𝑥 is not.

Then any nilpotent element is a linear combination of 𝑥,
𝑦, and 𝑥𝑦.

Let (𝑎𝑥+𝑏𝑦+𝑐𝑥𝑦) and (𝑑𝑥+𝑒𝑦+𝑓𝑥𝑦) be two such elements
and let (𝑔𝑒

1
+ℎ𝑒
2
+ 𝑖𝑥+ 𝑗𝑦+ 𝑙𝑥𝑦) be an arbitrary element. We

have
(𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥𝑦) (𝑑𝑥 + 𝑒𝑦 + 𝑓𝑥𝑦) (𝑔𝑒

1
+ ℎ𝑒
2
+ 𝑖𝑥 + 𝑗𝑦 + 𝑙𝑥𝑦)

= (𝑎𝑒ℎ) 𝑥𝑦,

(𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥𝑦) (𝑔𝑒
1
+ ℎ𝑒
2
+ 𝑖𝑥 + 𝑗𝑦 + 𝑙𝑥𝑦) (𝑑𝑥 + 𝑒𝑦 + 𝑓𝑥𝑦)

= (𝑎𝑒ℎ) 𝑥𝑦.

(3)

Thus 𝑅 is a right nil-symmetric ring. However, we have that
𝑒
2
𝑥𝑦 = 0, while 𝑥𝑒

2
𝑦 = 𝑥𝑦 ̸= 0. Hence, 𝑅 is not a left nil-

symmetric ring.
Similarly by considering the opposite ring of 𝑅, one

can have a left nil-symmetric ring which is not right nil-
symmetric.

Clearly every symmetric ring is nil-symmetric but the
converse is not true by Example 3 and that every subring of a
right (left) nil-symmetric ring is right (left) nil-symmetric.

Example 3. For a reduced ring 𝑅, 𝑇
2
(𝑅) is a nil-symmetric

ring which is not symmetric. This can be verified as follows.
Let

(
0 𝑎

0 0
) , (

0 𝑏

0 0
) ∈ nil (𝑇

2
(𝑅)) ; let (𝑐 𝑑

0 𝑒
) ∈ 𝑇

2
(𝑅) . (4)

Then

(
0 𝑎

0 0
)(

0 𝑏

0 0
)(

𝑐 𝑑

0 𝑒
) = 0. (5)

Also

(
0 𝑎

0 0
)(

𝑐 𝑑

0 𝑒
)(

0 𝑏

0 0
) = 0. (6)

Thus 𝑇
2
(𝑅) is a right nil-symmetric ring. Similarly it can be

shown that 𝑇
2
(𝑅) is a left nil-symmetric ring. But

(
1 1

0 1
)(

1 0

0 0
)(

0 1

0 0
) ̸= 0 (7)

whereas

(
1 1

0 1
)(

0 1

0 0
)(

1 0

0 0
) = 0. (8)

Thus 𝑇
2
(𝑅) is not symmetric.

From the above example we observe that a nil-symmetric
ring need not be Abelian, as ( 1 1

0 0
) is an idempotent in 𝑇

2
(𝑅),

but

(
1 1

0 0
)(

1 1

0 1
) ̸= (

1 1

0 1
)(

1 1

0 0
) . (9)

Remark 4. An Abelian ring also need not be either a right
nil-symmetric or a left nil-symmetric ring as shown by the
following example.

Example 5. We consider the ring in [11, Example 2.2]

𝑅 = {(
𝑎 𝑏

𝑐 𝑑
) : 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z, 𝑎 − 𝑑 ≡ 𝑏 ≡ 𝑐 ≡ 0 (mod 2)} .

(10)

𝑅 is an Abelian ring as ( 0 0
0 0
) and ( 1 0

0 1
) are the only idempo-

tents. Again we have

(
0 0

2 0
) ∈ nil (𝑅) ,

(
0 0

2 0
)(

0 0

2 0
)(

2 2

2 2
) = 0 = (

2 2

2 2
)(

0 0

2 0
)(

0 0

2 0
) ,

(11)

but

(
0 0

2 0
)(

2 2

2 2
)(

0 0

2 0
) ̸= 0. (12)

Hence, 𝑅 is neither right nil-symmetric nor left nil-
symmetric.

Proposition 6. Let 𝑅 be a reduced ring. Then

𝑆 =
{

{

{

(

𝑎 𝑏 𝑐

0 𝑎 𝑑

0 0 𝑎

) : 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅
}

}

}

(13)

is a nil-symmetric ring.

Proof. Let

(

0 𝑏
1
𝑐
1

0 0 𝑑
1

0 0 0

) ,(

0 𝑏
2
𝑐
2

0 0 𝑑
2

0 0 0

) ∈ nil (𝑆) , (

𝑎
3
𝑏
3
𝑐
3

0 𝑎
3
𝑑
3

0 0 𝑎
3

) ∈ 𝑆

(14)

be such that

(

0 𝑏
1
𝑐
1

0 0 𝑑
1

0 0 0

)(

0 𝑏
2
𝑐
2

0 0 𝑑
2

0 0 0

)(

𝑎
3
𝑏
3
𝑐
3

0 𝑎
3
𝑑
3

0 0 𝑎
3

) = 0. (15)

This implies

(

0 0 𝑏
1
𝑑
2
𝑎
3

0 0 0

0 0 0

) = 0, that is, 𝑏
1
𝑑
2
𝑎
3
= 0. (16)
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Since 𝑅 is reduced, 𝑏
1
𝑎
3
𝑑
2
= 0. Thus

(

0 𝑏
1
𝑐
1

0 0 𝑑
1

0 0 0

)(

𝑎
3
𝑏
3
𝑐
3

0 𝑎
3
𝑑
3

0 0 𝑎
3

)(

0 𝑏
2
𝑐
2

0 0 𝑑
2

0 0 0

)

= (

0 0 𝑏
1
𝑎
3
𝑑
2

0 0 0

0 0 0

) = 0.

(17)

Hence, 𝑆 is a right nil-symmetric ring. Similarly it can be
shown that 𝑆 is a left nil-symmetric ring.

Let 𝑆 be a reduced ring and we define a new ring as
follows:

𝑅
𝑛
=

{{{{{{

{{{{{{

{

(

𝑎 𝑎
12

𝑎
13

⋅ ⋅ ⋅ 𝑎
1𝑛

0 𝑎 𝑎
23

⋅ ⋅ ⋅ 𝑎
2𝑛

0 0 𝑎 ⋅ ⋅ ⋅ 𝑎
3𝑛

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝑎

) : 𝑎, 𝑎
𝑖𝑗
∈ 𝑆

}}}}}}

}}}}}}

}

, (18)

where 𝑛 ≥ 2. Based on Proposition 6, one may think that
𝑅
𝑛
may also be nil-symmetric for 𝑛 ≥ 4, but the following

example nullifies that possibility.

Example 7. Let 𝑅 be a reduced ring and let

𝑅
4
=

{{{

{{{

{

(

𝑎 𝑎
12

𝑎
13

𝑎
14

0 𝑎 𝑎
23

𝑎
24

0 0 𝑎 𝑎
34

0 0 0 𝑎

) : 𝑎, 𝑎
𝑖𝑗
∈ 𝑅

}}}

}}}

}

. (19)

Now

(

0 1 −1 0

0 0 0 0

0 0 0 0

0 0 0 0

)(

0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 0

)(

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

) = 0,

(

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

)(

0 1 −1 0

0 0 0 0

0 0 0 0

0 0 0 0

)(

0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 0

) = 0

(20)

but

(

0 1 −1 0

0 0 0 0

0 0 0 0

0 0 0 0

)(

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

)(

0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 0

) ̸= 0. (21)

Thus 𝑅
4
is neither a right nil-symmetric ring nor a left nil-

symmetric ring.
For a ring 𝑅, let

𝑉 (𝑅) =

{{{

{{{

{

(

𝑎 𝑎
12

𝑎
13

𝑎
14

0 𝑎 𝑎
23

𝑎
24

0 0 𝑎 0

0 0 0 𝑎

) : 𝑎, 𝑎
𝑖𝑗
∈ 𝑅

}}}

}}}

}

. (22)

Then 𝑉(𝑅) forms a subring of 𝑅
4
.

Example 8. For every reduced ring 𝑅,𝑉(𝑅) is nil-symmetric.
Let

(

0 𝑎
12

𝑎
13

𝑎
14

0 0 𝑎
23

𝑎
24

0 0 0 0

0 0 0 0

) ,(

0 𝑏
12

𝑏
13

𝑏
14

0 0 𝑏
23

𝑏
24

0 0 0 0

0 0 0 0

) ∈ nil (𝑉 (𝑅))

(23)

and let

(

𝑐 𝑐
12

𝑐
13

𝑐
14

0 𝑐 𝑐
23

𝑐
24

0 0 𝑐 0

0 0 0 𝑐

) ∈ 𝑉 (𝑅) (24)

be such that

(

0 𝑎
12

𝑎
13

𝑎
14

0 0 𝑎
23

𝑎
24

0 0 0 0

0 0 0 0

)(

0 𝑏
12

𝑏
13

𝑏
14

0 0 𝑏
23

𝑏
24

0 0 0 0

0 0 0 0

)

×(

𝑐 𝑐
12

𝑐
13

𝑐
14

0 𝑐 𝑐
23

𝑐
24

0 0 𝑐 0

0 0 0 𝑐

) = 0.

(25)

This gives

(

0 0 𝑎
12
𝑏
23
𝑐 𝑎
12
𝑏
24
𝑐

0 0 0 0

0 0 0 0

0 0 0 0

) = 0. (26)

Thus 𝑎
12
𝑏
23
𝑐 = 0, 𝑎

12
𝑏
24
𝑐 = 0. Since 𝑅 is reduced, we have

𝑎
12
𝑐𝑏
23
= 0, 𝑎

12
𝑐𝑏
24
= 0. Therefore,

(

0 0 𝑎
12
𝑐𝑏
23

𝑎
12
𝑐𝑏
24

0 0 0 0

0 0 0 0

0 0 0 0

)

= (

0 𝑎
12

𝑎
13

𝑎
14

0 0 𝑎
23

𝑎
24

0 0 0 0

0 0 0 0

)

×(

𝑐 𝑐
12

𝑐
13

𝑐
14

0 𝑐 𝑐
23

𝑐
24

0 0 𝑐 0

0 0 0 𝑐

)

×(

0 𝑏
12

𝑏
13

𝑏
14

0 0 𝑏
23

𝑏
24

0 0 0 0

0 0 0 0

) = 0.

(27)

Hence,𝑉(𝑅) is a right nil-symmetric ring. Similarly, it can be
shown that 𝑉(𝑅) is a left nil-symmetric ring.
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We also observe that every right (left) nil-symmetric ring
is nil-semicommutative.

Proposition 9. Every right (left) nil-symmetric ring is nil-
semicommutative.

Proof. Let 𝑅 be a right nil-symmetric ring and 𝑎, 𝑏 ∈ nil(𝑅)
such that 𝑎𝑏 = 0. Let 𝑐 ∈ 𝑅 be arbitrary; then 𝑎𝑏𝑐 =

0. By right nil-symmetric property of 𝑅, 𝑎𝑐𝑏 = 0. Thus
𝑎𝑅𝑏 = 0. Hence, 𝑅 is nil-semicommutative. Proceeding
similarly one can show that every left nil-symmetric ring is
nil-semicommutative.

Remark 10. Theconverse is however not true, as shown by the
following example.

Example 11. For every reduced ring 𝑅, 𝑇
3
(𝑅) is a nil-

semicommutative ring which is neither a right nil-symmetric
ring nor a left nil-symmetric ring. This can be verified as
follows.

We have

(

0 1 0

0 0 0

0 0 0

) ,(

0 0 0

0 0 1

0 0 0

) ∈ nil (𝑇
3
(𝑅)) ,

(

0 1 0

0 0 0

0 0 0

)(

0 0 0

0 0 1

0 0 0

)(

0 0 0

0 1 0

0 0 0

) = 0

= (

0 0 0

0 1 0

0 0 0

)(

0 1 0

0 0 0

0 0 0

)(

0 0 0

0 0 1

0 0 0

) ,

(28)

but

(

0 1 0

0 0 0

0 0 0

)(

0 0 0

0 1 0

0 0 0

)(

0 0 0

0 0 1

0 0 0

) ̸= 0. (29)

Thus 𝑇
3
(𝑅) is neither a right nil-symmetric ring nor a left

nil-symmetric ring. But 𝑇
3
(𝑅) is nil-semicommutative by [8,

Example 2.2].

Remark 12. Semicommutativity and nil-symmetry do not
follow each other. In Example 3, 𝑇

2
(𝑅) is a nil-symmetric

ring but not Abelian (and so not semicommutative [12]). The
following example [13, Example 2.8] shows that a semicom-
mutative ring need not be a right or left nil-symmetric ring.

Example 13. Let 𝑄
8
= {1, 𝑥

−1
, 𝑥
𝑖
, 𝑥
−𝑖
, 𝑥
𝑗
, 𝑥
−𝑗
, 𝑥
𝑘
, 𝑥
−𝑘
} be the

quaternion group and letZ
2
be the ring of integers modulo 2.

Consider the group ring𝑅 = Z
2
𝑄
8
. By [14, Corollary 2.3],𝑅 is

reversible and so semicommutative. Let 𝑎 = 1+𝑥
𝑗
, 𝑏 = 1+𝑥

𝑖
,

𝑐 = 1 + 𝑥
𝑖
+ 𝑥
𝑗
+ 𝑥
𝑘
. Then 𝑎, 𝑏 ∈ nil(𝑅) and 𝑐 ∈ 𝑅 such

that 𝑎𝑏𝑐 = 𝑐𝑎𝑏 = 0, but 𝑎𝑐𝑏 ̸= 0. Hence, 𝑅 is neither a right
nil-symmetric ring nor a left nil-symmetric ring.

Proposition 14. For a reduced ring 𝑅 and for 𝑛 ≥ 2,

𝑉
𝑛
(𝑅) =

{{{{{{{{

{{{{{{{{

{

(
(

(

𝑎
1
𝑎
2
𝑎
3

𝑎
4
⋅ ⋅ ⋅ 𝑎
𝑛

0 𝑎
1
𝑎
2
𝑎
3
⋅ ⋅ ⋅ 𝑎
𝑛−1

0 0 𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑛−2

...
...

...
...d

...
0 0 0 0 ⋅ ⋅ ⋅ 𝑎

2

0 0 0 0 ⋅ ⋅ ⋅ 𝑎
1

)
)

)

: 𝑎
1
, . . . , 𝑎

𝑛
∈ 𝑅

}}}}}}}}

}}}}}}}}

}

𝑖𝑠 𝑎 𝑛𝑖𝑙-𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑟𝑖𝑛𝑔. (30)

Proof. Let 𝑅 be a reduced ring. Then by [9, Theorem 2.3],
𝑅[𝑥]/(𝑥

𝑛
) is a symmetric ring and hence a nil-symmetric

ring, where (𝑥𝑛) is the ideal generated by 𝑥𝑛 for any positive
integer 𝑛. Also by [15], 𝑅[𝑥]/(𝑥𝑛) ≅ 𝑉

𝑛
(𝑅) for 𝑛 ≥ 2. Hence,

for 𝑛 ≥ 2, 𝑉
𝑛
(𝑅) is nil-symmetric.

Since the class of nil-symmetric rings is contained in
the class of nil-semicommutative rings, the results which are
valid for nil-semicommutative rings are also valid for nil-
symmetric rings. Mohammadi et al. [8, Example 2.8] have
shown that 𝑇

5
(𝑅) is not a nil-semicommutative ring, where

𝑅 is a reduced ring. Thus 𝑇
5
(𝑅) is not nil-symmetric. Now

we give an example of a weak-Armendariz ring which is not
nil-symmetric.

Example 15. Let 𝑅 be a reduced ring and let

𝑅
4
=

{{{

{{{

{

(

𝑎 𝑎
12

𝑎
13

𝑎
14

0 𝑎 𝑎
23

𝑎
24

0 0 𝑎 𝑎
34

0 0 0 𝑎

) : 𝑎, 𝑎
𝑖𝑗
∈ 𝑅

}}}

}}}

}

. (31)

By [6, Example 2.4], 𝑅
4

is weak-Armendariz. By
Example 7, 𝑅

4
is neither a right nor a left nil-symmetric ring.

Proposition 16. Finite product of right (left) nil-symmetric
rings is right (left) nil-symmetric.

Proof. It comes from the fact that nil(∏𝑛
𝑖=1
𝑅
𝑖
) = ∏

𝑛

𝑖=1
nil(𝑅
𝑖
)

[8, Proposition 2.13]. Let (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
), (𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
) ∈

nil(∏𝑛
𝑖=1
𝑅
𝑖
) and (𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
) ∈ ∏

𝑛

𝑖=1
𝑅
𝑖
such that

(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)(𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
)(𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
) = 0. Thus, for

each 𝑖 = 1, 2, . . . , 𝑛, 𝑎
𝑖
𝑏
𝑖
𝑐
𝑖
= 0. Since 𝑅

𝑖
is right nil-

symmetric, 𝑎
𝑖
𝑐
𝑖
𝑏
𝑖
= 0 for each 𝑖 = 1, 2, . . . , 𝑛. So, we get

(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)(𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
)(𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
) = 0. The result can

be similarly proved for left nil-symmetric rings.

Proposition 17. Let 𝑅 be a ring and let Δ be a multiplicatively
closed subset of 𝑅 consisting of central nonzero-divisors. Then
𝑅 is right (left) nil-symmetric if and only if Δ−1𝑅 is right (left)
nil-symmetric.

Proof. It suffices to prove the necessary condition because
subrings of right (left) nil-symmetric rings are also right (left)
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nil-symmetric. Let 𝛼𝛽𝛾 = 0 with 𝛼 = 𝑢
−1
𝑎, 𝛽 = V−1𝑏 ∈

nil(Δ−1𝑅), and 𝛾 = 𝑤
−1
𝑐 ∈ Δ

−1
𝑅; then 𝑢, V, 𝑤 ∈ Δ, 𝑎, 𝑏 ∈

nil(𝑅), and 𝑐 ∈ 𝑅. Since Δ is contained in the center of 𝑅, we
have 0 = 𝛼𝛽𝛾 = 𝑢−1𝑎V−1𝑏𝑤−1𝑐 = (𝑢V𝑤)−1𝑎𝑏𝑐 and so 𝑎𝑏𝑐 = 0.
It follows that 𝑎𝑐𝑏 = 0, since 𝑅 is right nil-symmetric. Thus
𝛼𝛾𝛽 = (𝑢V𝑤)−1𝑎𝑏𝑐 = 0. Hence, Δ−1𝑅 is right nil-symmetric.
Similarly, Δ−1𝑅 can be shown to be left nil-symmetric if 𝑅
itself is a left nil-symmetric ring.

Corollary 18. For a ring 𝑅, 𝑅[𝑥] is a right (left) nil-symmetric
ring if and only if 𝑅[𝑥; 𝑥−1] is a right (left) nil-symmetric ring.

Proof. It directly follows from Proposition 17. If Δ = {1,

𝑥, 𝑥
2
, . . .}, then Δ is clearly a multiplicatively closed subset of

𝑅[𝑥] and 𝑅[𝑥; 𝑥−1] = Δ−1𝑅[𝑥].

Proposition 19. Let 𝑅 be a ring. Then 𝑒𝑅 and (1 − 𝑒)𝑅 are
right (left) nil-symmetric for some central idempotent 𝑒 of 𝑅 if
and only if 𝑅 is right (left) nil-symmetric.

Proof. It suffices to prove the necessary condition because
subrings of right (left) nil-symmetric rings are also right
(left) nil-symmetric. Let 𝑒𝑅 and (1 − 𝑒)𝑅 be right (left) nil-
symmetric rings for some central idempotent 𝑒 of 𝑅. Since,
𝑅 ≅ 𝑒𝑅 ⊕ (1 − 𝑒)𝑅, 𝑅 is right (left) nil-symmetric by
Proposition 16.

Since the class of right (left) nil-symmetric rings is closed
under subrings, therefore, for any right (left) nil-symmetric
ring 𝑅 and for any 𝑒2 = 𝑒 ∈ 𝑅, 𝑒𝑅𝑒 is a right (left) nil-
symmetric ring.The converse is, however, not true, in general
as shown by the following example.

Example 20. Let 𝑆 be any reduced ring. Then by Example 11,
𝑅 = 𝑇

3
(𝑆) is neither a right nil-symmetric nor a left nil-

symmetric ring.
But for

𝑒
2
= 𝑒 = (

1 0 0

0 0 0

0 0 0

) ∈ 𝑅, 𝑒𝑅𝑒 =
{

{

{

(

𝑎 0 0

0 0 0

0 0 0

) : 𝑎 ∈ 𝑆
}

}

}

(32)

is a reduced ring and so a nil-symmetric ring.

For any nonempty subsets 𝐴, 𝐵, 𝐶 of a ring 𝑅, 𝐴𝐵𝐶
denotes the set of all finite sums of the elements of the type
𝑎𝑏𝑐, where 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶.

Proposition 21. A ring 𝑅 is right (left) nil-symmetric if and
only if 𝐴𝐵𝐶 = 0 implies 𝐴𝐶𝐵 = 0 (𝐶𝐴𝐵 = 0 implies 𝐴𝐶𝐵 = 0)
for any two nonempty subsets 𝐴, 𝐵 of 𝑛𝑖𝑙(𝑅) and any subset 𝐶
of 𝑅.

Proof. Let 𝑅 be a right nil-symmetric ring and let 𝐴, 𝐵 be
nonempty subsets of nil(𝑅); let 𝐶 be a nonempty subset of 𝑅
such that 𝐴𝐵𝐶 = 0. Then 𝑎𝑏𝑐 = 0 for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶.
Right nil-symmetric property of𝑅 gives 𝑎𝑐𝑏 = 0 for all 𝑎 ∈ 𝐴,
𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶. Thus 𝐴𝐶𝐵 = 0. Similar proof can be given for
left nil-symmetric rings.The converse is straightforward.

The following result shows that, for a semiprime ring, the
properties of reduced, symmetric, reversible, semicommuta-
tive, nil-semicommutative, and nil-symmetric rings coincide.
Note that a ring𝑅 is said to be semiprime if, for𝑎 ∈ 𝑅,𝑎𝑅𝑎 = 0
implies that 𝑎 = 0.

Proposition 22. For a semiprime ring 𝑅, the following state-
ments are equivalent.

(1) 𝑅 is reduced.

(2) 𝑅 is symmetric.

(3) 𝑅 is reversible.

(4) 𝑅 is semicommutative.

(5) 𝑅 is nil-semicommutative.

(6) 𝑅 is right (left) nil-symmetric.

Proof. (1)–(4) are equivalent by [16, Lemma 2.7]. (1)⇔(5) by
[8, Proposition 2.18]. (2)⇒(6) is clear. (6)⇒ (1): let 𝑎2 = 0 for
𝑎 ∈ 𝑅. Then 𝑎2𝑐 = 0 for any 𝑐 ∈ 𝑅, and so 𝑎𝑐𝑎 = 0, since 𝑅 is
right nil-symmetric. Thus 𝑎 = 0 by semiprimeness of 𝑅 and,
therefore, 𝑅 is reduced.

Given a ring𝑅 and a bimodule
𝑅𝑀𝑅

, the trivial extension
of𝑅 by𝑀 is the ring𝑇(𝑅,𝑀) = 𝑅⊕𝑀with the usual addition
and the following multiplication:

(𝑟
1
, 𝑚
1
) (𝑟
2
, 𝑚
2
) = (𝑟

1
𝑟
2
, 𝑟
1
𝑚
2
+ 𝑚
1
𝑟
2
) . (33)

This is isomorphic to the ring of all matrices:

(
𝑟 𝑚

0 𝑟
) , (34)

where 𝑟 ∈ 𝑅 and𝑚 ∈ 𝑀 and the usual matrix operations are
used.

Proposition 23. For a reduced ring 𝑅, 𝑇(𝑅, 𝑅) is a nil-
symmetric ring.

Proof. Let 𝑅 be a reduced ring. Since 𝑇(𝑅, 𝑅) is a subring of
𝑆 in Proposition 6 and the class of right(left) nil-symmetric
rings is closed under subrings, thus𝑇(𝑅, 𝑅) is a nil-symmetric
ring.

Considering the above proposition one may conjecture
that if a ring 𝑅 is nil-symmetric, then 𝑇(𝑅, 𝑅) is nil-
symmetric. However, the following example eliminates the
possibility.

Example 24. LetH be the Hamilton quaternions over the real
number field and let

𝑅 =
{

{

{

(

𝑎 𝑏 𝑐

0 𝑎 𝑑

0 0 𝑎

) : 𝑎, 𝑏, 𝑐, 𝑑 ∈ H
}

}

}

. (35)
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Then by Proposition 6, 𝑅 is a nil-symmetric ring. Let 𝑆 be
the trivial extension of 𝑅 by itself. Then 𝑆 is not a right nil-
symmetric ring. Note that

(
(
(

(

(

0 𝑖 0

0 0 0

0 0 0

) (

0 0 0

0 0 0

0 0 0

)

(

0 0 0

0 0 0

0 0 0

) (

0 𝑖 0

0 0 0

0 0 0

)

)
)
)

)

,

(
(
(

(

(

0 0 0

0 0 𝑗

0 0 0

) (

−𝑖 0 0

0 −𝑖 0

0 0 −𝑖

)

(

0 0 0

0 0 0

0 0 0

) (

0 0 0

0 0 𝑗

0 0 0

)

)
)
)

)

∈ nil (𝑆) ,

(
(
(

(

(

0 𝑖 0

0 0 0

0 0 0

) (

0 0 0

0 0 0

0 0 0

)

(

0 0 0

0 0 0

0 0 0

) (

0 𝑖 0

0 0 0

0 0 0

)

)
)
)

)

×
(
(
(

(

(

0 0 0

0 0 𝑗

0 0 0

) (

−𝑖 0 0

0 −𝑖 0

0 0 −𝑖

)

(

0 0 0

0 0 0

0 0 0

) (

0 0 0

0 0 𝑗

0 0 0

)

)
)
)

)

×
(
(
(

(

(

0 0 0

0 0 1

0 0 0

) (

𝑘 0 0

0 𝑘 0

0 0 𝑘

)

(

0 0 0

0 0 0

0 0 0

) (

0 0 0

0 0 1

0 0 0

)

)
)
)

)

= 0.

(36)

However we have

(
(
(

(

(

0 𝑖 0

0 0 0

0 0 0

) (

0 0 0

0 0 0

0 0 0

)

(

0 0 0

0 0 0

0 0 0

) (

0 𝑖 0

0 0 0

0 0 0

)

)
)
)

)

×
(
(
(

(

(

0 0 0

0 0 1

0 0 0

) (

𝑘 0 0

0 𝑘 0

0 0 𝑘

)

(

0 0 0

0 0 0

0 0 0

) (

0 0 0

0 0 1

0 0 0

)

)
)
)

)

×
(
(
(

(

(

0 0 0

0 0 𝑗

0 0 0

) (

−𝑖 0 0

0 −𝑖 0

0 0 −𝑖

)

(

0 0 0

0 0 0

0 0 0

) (

0 0 0

0 0 𝑗

0 0 0

)

)
)
)

)

=
(
(
(

(

(

0 0 0

0 0 0

0 0 0

) (

0 0 2

0 0 0

0 0 0

)

(

0 0 0

0 0 0

0 0 0

) (

0 0 0

0 0 0

0 0 0

)

)
)
)

)

̸= 0.

(37)

Thus 𝑆 = 𝑇(𝑅, 𝑅) is not a right nil-symmetric ring.

Example 25. Let 𝑅 be a ring and let 𝐼 be an ideal of 𝑅 such
that 𝑅/𝐼 is nil-symmetric. Then 𝑅may not be nil-symmetric.
This can be verified as follows. Let 𝑆 be any reduced ring.
Then by Example 11, 𝑅 = 𝑇

3
(𝑆) is not nil-symmetric but nil-

semicommutative. Thus

𝐼 = nil (𝑅) =
{

{

{

(

0 𝑏 𝑐

0 0 𝑑

0 0 0

) : 𝑏, 𝑐, 𝑑 ∈ 𝑆
}

}

}

(38)

is an ideal of 𝑅 and 𝑅/𝐼 is reduced, so nil-symmetric.

Homomorphic image of a right (left) nil-symmetric ring
need not be a right (left) nil-symmetric ring.This is discussed
after Example 26.

3. Polynomial Extension of
Nil-Symmetric Rings

Anderson-Camillo [17] proved that a ring 𝑅 is Armendariz
if and only if 𝑅[𝑥] is Armendariz; Huh et al. [12] have
shown that polynomial rings over semicommutative rings
need not be semicommutative; Kim-Lee [16] showed that
polynomial rings over reversible rings need not be reversible.
Recently Mohammadi et al. [8] have given an example of
a nil-semicommutative ring 𝑅 for which 𝑅[𝑥] is not nil-
semicommutative. Based on the above findings, it is natural to
check whether the polynomial ring over a nil-symmetric ring
is nil-symmetric. However, the answer is given in the negative
through the following example.

Example 26. Let Z
2
be the field of integers modulo 2 and

let 𝐴 = Z
2
[𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑏
0
, 𝑏
1
, 𝑏
2
, 𝑐] be the free algebra of

polynomials with zero constant terms in noncommuting
indeterminates 𝑎

0
, 𝑎
1
, 𝑎
2
, 𝑏
0
, 𝑏
1
, 𝑏
2
, and 𝑐 over Z

2
. Consider

an ideal of the ring Z
2
+ 𝐴, say 𝐼, generated by the following

elements: 𝑎
0
𝑏
0
, 𝑎
0
𝑏
1
+𝑎
1
𝑏
0
, 𝑎
0
𝑏
2
+𝑎
1
𝑏
1
+𝑎
2
𝑏
0
, 𝑎
1
𝑏
2
+𝑎
2
𝑏
1
, 𝑎
2
𝑏
2
,

𝑎
0
𝑟𝑏
0
, 𝑎
2
𝑟𝑏
2
, 𝑏
0
𝑎
0
, 𝑏
0
𝑎
1
+ 𝑏
1
𝑎
0
, 𝑏
0
𝑎
2
+ 𝑏
1
𝑎
1
+ 𝑏
2
𝑎
0
, 𝑏
1
𝑎
2
+ 𝑏
2
𝑎
1
,

𝑏
0
𝑟𝑎
0
, 𝑏
2
𝑟𝑎
2
, (𝑎
0
+𝑎
1
+𝑎
2
)𝑟(𝑏
0
+𝑏
1
+𝑏
2
), (𝑏
0
+𝑏
1
+𝑏
2
)𝑟(𝑎
0
+𝑎
1
+𝑎
2
),

and 𝑟
1
𝑟
2
𝑟
3
𝑟
4
, where 𝑟, 𝑟

1
, 𝑟
2
, 𝑟
3
, 𝑟
4
∈ 𝐴. Now 𝑅 = (Z

2
+𝐴)/𝐼 is
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symmetric by [9, Example 3.1] and so a nil-symmetric ring.
By [8, Example 3.6], we have 𝑎

0
+ 𝑎
1
𝑥 + 𝑎

2
𝑥
2, 𝑏
0
+ 𝑏
1
𝑥 +

𝑏
2
𝑥
2
∈ nil(𝑅[𝑥]). Now (𝑎

0
+ 𝑎
1
𝑥 + 𝑎
2
𝑥
2
)(𝑏
0
+ 𝑏
1
𝑥 + 𝑏
2
𝑥
2
)𝑐,

𝑐(𝑎
0
+ 𝑎
1
𝑥 + 𝑎
2
𝑥
2
)(𝑏
0
+ 𝑏
1
𝑥 + 𝑏
2
𝑥
2
) ∈ 𝐼[𝑥], but (𝑎

0
+ 𝑎
1
𝑥 +

𝑎
2
𝑥
2
)𝑐(𝑏
0
+ 𝑏
1
𝑥 + 𝑏
2
𝑥
2
) ∉ 𝐼[𝑥] because 𝑎

0
𝑐𝑏
1
+ 𝑎
1
𝑐𝑏
0
∉ 𝐼.

Hence 𝑅[𝑥] is neither a right nil-symmetric ring nor a left
nil-symmetric ring.

Remark 27. The above example also helps in showing that
homomorphic image of a right (left) nil-symmetric ring need
not be a right (left) nil-symmetric ring. This is verified as
follows.

Example 28. In Example 26, (Z
2
+ 𝐴)[𝑥] is a domain [16]

and so a nil-symmetric ring. But the quotient ring (Z
2
+

𝐴)[𝑥]/𝐼[𝑥] ≅ 𝑅[𝑥] is neither a right nil-symmetric ring nor a
left nil-symmetric ring.

Now we study some conditions under which the answer
may be given positively. Since every right (left) nil-symmetric
ring is nil-semicommutative by Proposition 9, therefore, by
[8, Theorem 3.3] for each right (left) nil-symmetric ring 𝑅,
nil(𝑅[𝑥]) = nil(𝑅)[𝑥]. The converse is, however, not true, in
general. Now we give an example of a ring 𝑅 which satisfies
nil(𝑅[𝑥]) = nil(𝑅)[𝑥], but 𝑅 is neither a right nil-symmetric
ring nor a left nil-symmetric ring.

Example 29. We use the ring in [7, Example 4.8]. Let 𝐾 be a
field, 𝑛 ≥ 2 and𝑅 = 𝐾⟨𝑎, 𝑏|𝑏

𝑛
= 0⟩.Then nil(𝑅) is not an ideal

of 𝑅. Thus 𝑅 is neither a right nil-symmetric nor a left nil-
symmetric ring by Proposition 9 and [8, Theorem 2.5]. But
𝑅 is a nil-Armendariz ring and hence by [7, Corollary 5.2],
nil(𝑅[𝑥]) = nil(𝑅)[𝑥].

Proposition 30. If 𝑅 is a right (left) nil-symmetric and
Armendariz ring, then the polynomial ring 𝑅[𝑥] is right (left)
nil-symmetric.

Proof. Let 𝑅 be a right nil-symmetric and Armendariz ring
and let 𝑓(𝑥) = ∑

𝑚

𝑖=0
𝑎
𝑖
𝑥
𝑖
, 𝑔(𝑥) = ∑

𝑛

𝑗=0
𝑏
𝑗
𝑥
𝑗
∈ nil(𝑅[𝑥]) and

ℎ(𝑥) = ∑
𝑝

𝑘=0
𝑎
𝑘
𝑥
𝑘
∈ 𝑅[𝑥] such that𝑓(𝑥)𝑔(𝑥)ℎ(𝑥) = 0. Since𝑅

is right nil-symmetric, nil(𝑅[𝑥]) = nil(𝑅)[𝑥] by Proposition 9
and [8,Theorem 3.3].Thus 𝑎

𝑖
, 𝑏
𝑗
∈ nil(𝑅) for 𝑖 = 0, 1, 2, . . . , 𝑚;

𝑗 = 0, 1, 2, . . . , 𝑛. Since 𝑅 is Armendariz, therefore, 𝑎
𝑖
𝑏
𝑗
𝑐
𝑘
= 0

by [17, Proposition 1]. Thus by right nil-symmetric property
of 𝑅, 𝑎

𝑖
𝑐
𝑘
𝑏
𝑗
= 0. Therefore, 𝑓(𝑥)ℎ(𝑥)𝑔(𝑥) = 0. Hence, 𝑅[𝑥]

is a right nil-symmetric ring. Similarly it can be shown that
𝑅[𝑥] is a left nil-symmetric ring if 𝑅 is a left nil-symmetric
and Armendariz ring.

Proposition 31. If 𝑅 is a right (left) nil-symmetric ring, then
𝑅[𝑥] is nil-Armendariz.

Proof. Let 𝑅 be a right (left) nil-symmetric ring. Thus by
Proposition 9, 𝑅 is nil-semicommutative. By [8, Corollary
2.9], 𝑅 is a nil-Armendariz ring. Again by [8, Theorem 3.3],
nil(𝑅[𝑥]) = nil(𝑅)[𝑥]. Thus by [7, Theorem 5.3], 𝑅[𝑥] is nil-
Armendariz.
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