On Nil-Symmetric Rings

Uday Shankar Chakraborty ${ }^{1}$ and Krishnendu Das ${ }^{2}$
${ }^{1}$ Department of Mathematics, Albert Einstein School of Physical Sciences, Assam University, Silchar, Assam 788011, India
${ }^{2}$ Department of Mathematics, Netaji Subhas Mahavidyalaya, Udaipur, Tripura 799120, India

Correspondence should be addressed to Uday Shankar Chakraborty; udayhkd@gmail.com
Received 4 May 2014; Accepted 17 September 2014; Published 16 October 2014
Academic Editor: Li Guo
Copyright © 2014 U. S. Chakraborty and K. Das. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The concept of nil-symmetric rings has been introduced as a generalization of symmetric rings and a particular case of nilsemicommutative rings. A ring R is called right (left) nil-symmetric if, for $a, b, c \in R$, where a, b are nilpotent elements, $a b c=$ $0(c a b=0)$ implies $a c b=0$. A ring is called nil-symmetric if it is both right and left nil-symmetric. It has been shown that the polynomial ring over a nil-symmetric ring may not be a right or a left nil-symmetric ring. Further, it is also proved that if R is right (left) nil-symmetric, then the polynomial ring $R[x]$ is a nil-Armendariz ring.

1. Introduction

Throughout this paper, all rings are associative with unity. Given a ring $R, \operatorname{nil}(R)$ and $R[x]$ denote the set of all nilpotent elements of R and the polynomial ring over R, respectively. A ring R is called reduced if it has no nonzero nilpotent elements; R is said to be Abelian if all idempotents of R are central; R is symmetric [1] if $a b c=0$ implies $a c b=0$ for all $a, b, c \in R$. An equivalent condition for a ring to be symmetric is that whenever product of any number of elements of the ring is zero, any permutation of the factors still gives the product zero [2]. R is reversible [3] if $a b=0$ implies $b a=0$ for all $a, b \in R ; R$ is called semicommutative [4] if $a b=0$ implies $a R b=0$ for all $a, b \in R$. In [5], Rege-Chhawchharia introduced the concept of an Armendariz ring. A ring R is called Armendariz if whenever polynomials $f(x)=a_{0}+a_{1} x+$ $\cdots+a_{n} x^{n}, g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x]$ satisfy $f(x) g(x)=0$, then $a_{i} b_{j}=0$ for each i, j. Liu-Zhao [6] and Antoine [7] further generalize the concept of an Armendariz ring by defining a weak-Armendariz and a nil-Armendariz ring, respectively. A ring R is called weak-Armendariz if whenever polynomials $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, g(x)=$ $b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x]$ satisfy $f(x) g(x)=0$, then $a_{i} b_{j} \in \operatorname{nil}(R)$ for each i, j. A ring R is called nil-Armendariz if whenever $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, g(x)=b_{0}+$ $b_{1} x+\cdots+b_{m} x^{m} \in R[x]$ satisfy $f(x) g(x) \in \operatorname{nil}(R)[x]$, then $a_{i} b_{j} \in \operatorname{nil}(R)$ for each i, j. Mohammadi et al. [8] initiated
the notion of a nil-semicommutative ring as a generalization of a semicommutative ring. A ring R is nil-semicommutative if $a b=0$ implies $a R b=0$ for all $a, b \in \operatorname{nil}(R)$. In their paper it is shown that, in a nil-semicommutative ring R, $\operatorname{nil}(R)$ forms an ideal of R. Getting motivated by their paper we introduce the concept of a right (left) nil-symmetric ring which is a generalization of symmetric rings and a particular case of nil-semicommutative rings. Thus all the results valid for nil-semicommutative rings are valid for right (left) nilsymmetric rings also. We also prove that if a ring R is right (left) nil-symmetric and Armendariz, then $R[x]$ is right (left) nil-symmetric. In the context, there are also several other generalizations of symmetric rings (see $[9,10]$).

2. Right (Left) Nil-Symmetric Rings

For a ring $R, M_{n}(R)$ and $T_{n}(R)$ denote the $n \times n$ full matrix ring and the upper triangular matrix ring over R, respectively. We observe that if R is a ring, then

$$
\operatorname{nil}\left(T_{n}(R)\right)=\left(\begin{array}{ccccc}
\operatorname{nil}(R) & R & R & \cdots & R \tag{1}\\
0 & \operatorname{nil}(R) & R & \cdots & R \\
0 & 0 & \operatorname{nil}(R) & \cdots & R \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \operatorname{nil}(R)
\end{array}\right)
$$

Definition 1. A ring R is said to be right (left) nil-symmetric if whenever, for every $a, b \in \operatorname{nil}(R)$ and for every $c \in R, a b c=$ $0(c a b=0)$, then $a c b=0$. A ring R is nil-symmetric if it is both right and left nil-symmetric.

Example 2. let k be a field, and let R be the path algebra of the quiver

$$
\begin{equation*}
1 \stackrel{x}{\longleftarrow} 2 \sigma^{y}, \tag{2}
\end{equation*}
$$

over k, modulo the relation $y^{2}=0$. Let e_{1} and e_{2} be the paths of length 0 at vertices 1 and 2 , respectively. Composing arrows from left to right, $x y$ is a nonzero path, while $y x$ is not.

Then any nilpotent element is a linear combination of x, y, and $x y$.

Let $(a x+b y+c x y)$ and $(d x+e y+f x y)$ be two such elements and let $\left(g e_{1}+h e_{2}+i x+j y+l x y\right)$ be an arbitrary element. We have

$$
\begin{align*}
&(a x+b y+c x y)(d x+e y+f x y)\left(g e_{1}+h e_{2}+i x+j y+l x y\right) \\
& \quad(a e h) x y \\
&(a x++b y+c x y)\left(g e_{1}+h e_{2}+i x+j y+l x y\right)(d x+e y+f x y) \\
& \quad=(a e h) x y . \tag{3}
\end{align*}
$$

Thus R is a right nil-symmetric ring. However, we have that $e_{2} x y=0$, while $x e_{2} y=x y \neq 0$. Hence, R is not a left nilsymmetric ring.

Similarly by considering the opposite ring of R, one can have a left nil-symmetric ring which is not right nilsymmetric.

Clearly every symmetric ring is nil-symmetric but the converse is not true by Example 3 and that every subring of a right (left) nil-symmetric ring is right (left) nil-symmetric.

Example 3. For a reduced ring $R, T_{2}(R)$ is a nil-symmetric ring which is not symmetric. This can be verified as follows.

Let

$$
\left(\begin{array}{ll}
0 & a \tag{4}\\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right) \in \operatorname{nil}\left(T_{2}(R)\right) ; \quad \text { let }\left(\begin{array}{ll}
c & d \\
0 & e
\end{array}\right) \in T_{2}(R) .
$$

Then

$$
\left(\begin{array}{ll}
0 & a \tag{5}\\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
c & d \\
0 & e
\end{array}\right)=0
$$

Also

$$
\left(\begin{array}{ll}
0 & a \tag{6}\\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
c & d \\
0 & e
\end{array}\right)\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)=0
$$

Thus $T_{2}(R)$ is a right nil-symmetric ring. Similarly it can be shown that $T_{2}(R)$ is a left nil-symmetric ring. But

$$
\left(\begin{array}{ll}
1 & 1 \tag{7}\\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \neq 0
$$

whereas

$$
\left(\begin{array}{ll}
1 & 1 \tag{8}\\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=0
$$

Thus $T_{2}(R)$ is not symmetric.

From the above example we observe that a nil-symmetric ring need not be Abelian, as $\left(\begin{array}{cc}1 & 1 \\ 0 & 0\end{array}\right)$ is an idempotent in $T_{2}(R)$, but

$$
\left(\begin{array}{ll}
1 & 1 \tag{9}\\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \neq\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
$$

Remark 4. An Abelian ring also need not be either a right nil-symmetric or a left nil-symmetric ring as shown by the following example.

Example 5. We consider the ring in [11, Example 2.2]

$$
R=\left\{\left(\begin{array}{ll}
a & b \tag{10}\\
c & d
\end{array}\right): a, b, c, d \in \mathbb{Z}, a-d \equiv b \equiv c \equiv 0(\bmod 2)\right\} .
$$

R is an Abelian ring as $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ are the only idempotents. Again we have

$$
\begin{gather*}
\left(\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right) \in \operatorname{nil}(R), \\
\left(\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right)\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right)=0=\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right), \tag{11}
\end{gather*}
$$

but

$$
\left(\begin{array}{ll}
0 & 0 \tag{12}\\
2 & 0
\end{array}\right)\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right) \neq 0
$$

Hence, R is neither right nil-symmetric nor left nilsymmetric.

Proposition 6. Let R be a reduced ring. Then

$$
S=\left\{\left(\begin{array}{lll}
a & b & c \tag{13}\\
0 & a & d \\
0 & 0 & a
\end{array}\right): a, b, c, d \in R\right\}
$$

is a nil-symmetric ring.
Proof. Let

$$
\left(\begin{array}{ccc}
0 & b_{1} & c_{1} \tag{14}\\
0 & 0 & d_{1} \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & b_{2} & c_{2} \\
0 & 0 & d_{2} \\
0 & 0 & 0
\end{array}\right) \in \operatorname{nil}(S), \quad\left(\begin{array}{ccc}
a_{3} & b_{3} & c_{3} \\
0 & a_{3} & d_{3} \\
0 & 0 & a_{3}
\end{array}\right) \in S
$$

be such that

$$
\left(\begin{array}{ccc}
0 & b_{1} & c_{1} \tag{15}\\
0 & 0 & d_{1} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & b_{2} & c_{2} \\
0 & 0 & d_{2} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
a_{3} & b_{3} & c_{3} \\
0 & a_{3} & d_{3} \\
0 & 0 & a_{3}
\end{array}\right)=0
$$

This implies

$$
\left(\begin{array}{ccc}
0 & 0 & b_{1} d_{2} a_{3} \tag{16}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=0, \quad \text { that is, } b_{1} d_{2} a_{3}=0
$$

Since R is reduced, $b_{1} a_{3} d_{2}=0$. Thus

$$
\begin{align*}
& \left(\begin{array}{ccc}
0 & b_{1} & c_{1} \\
0 & 0 & d_{1} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
a_{3} & b_{3} & c_{3} \\
0 & a_{3} & d_{3} \\
0 & 0 & a_{3}
\end{array}\right)\left(\begin{array}{ccc}
0 & b_{2} & c_{2} \\
0 & 0 & d_{2} \\
0 & 0 & 0
\end{array}\right) \tag{17}\\
& \quad=\left(\begin{array}{ccc}
0 & 0 & b_{1} a_{3} d_{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=0 .
\end{align*}
$$

Hence, S is a right nil-symmetric ring. Similarly it can be shown that S is a left nil-symmetric ring.

Let S be a reduced ring and we define a new ring as follows:

$$
R_{n}=\left\{\left(\begin{array}{ccccc}
a & a_{12} & a_{13} & \cdots & a_{1 n} \tag{18}\\
0 & a & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}\right): a, a_{i j} \in S\right\}
$$

where $n \geq 2$. Based on Proposition 6, one may think that R_{n} may also be nil-symmetric for $n \geq 4$, but the following example nullifies that possibility.

Example 7. Let R be a reduced ring and let

$$
R_{4}=\left\{\left(\begin{array}{cccc}
a & a_{12} & a_{13} & a_{14} \tag{19}\\
0 & a & a_{23} & a_{24} \\
0 & 0 & a & a_{34} \\
0 & 0 & 0 & a
\end{array}\right): a, a_{i j} \in R\right\}
$$

Now

$$
\begin{align*}
& \left(\begin{array}{cccc}
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=0 \tag{20}\\
& \left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)=0
\end{align*}
$$

but

$$
\left(\begin{array}{cccc}
0 & 1 & -1 & 0 \tag{21}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \neq 0
$$

Thus R_{4} is neither a right nil-symmetric ring nor a left nilsymmetric ring.

For a ring R, let

$$
V(R)=\left\{\left(\begin{array}{cccc}
a & a_{12} & a_{13} & a_{14} \tag{22}\\
0 & a & a_{23} & a_{24} \\
0 & 0 & a & 0 \\
0 & 0 & 0 & a
\end{array}\right): a, a_{i j} \in R\right\}
$$

Then $V(R)$ forms a subring of R_{4}.

Example 8. For every reduced ring $R, V(R)$ is nil-symmetric. Let

$$
\left(\begin{array}{cccc}
0 & a_{12} & a_{13} & a_{14} \tag{23}\\
0 & 0 & a_{23} & a_{24} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{cccc}
0 & b_{12} & b_{13} & b_{14} \\
0 & 0 & b_{23} & b_{24} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \in \operatorname{nil}(V(R))
$$

and let

$$
\left(\begin{array}{cccc}
c & c_{12} & c_{13} & c_{14} \tag{24}\\
0 & c & c_{23} & c_{24} \\
0 & 0 & c & 0 \\
0 & 0 & 0 & c
\end{array}\right) \in V(R)
$$

be such that

$$
\begin{gather*}
\left(\begin{array}{cccc}
0 & a_{12} & a_{13} & a_{14} \\
0 & 0 & a_{23} & a_{24} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
0 & b_{12} & b_{13} & b_{14} \\
0 & 0 & b_{23} & b_{24} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
\quad \times\left(\begin{array}{cccc}
c & c_{12} & c_{13} & c_{14} \\
0 & c & c_{23} & c_{24} \\
0 & 0 & c & 0 \\
0 & 0 & 0 & c
\end{array}\right)=0 \tag{25}
\end{gather*}
$$

This gives

$$
\left(\begin{array}{cccc}
0 & 0 & a_{12} b_{23} c & a_{12} b_{24} c \tag{26}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=0
$$

Thus $a_{12} b_{23} c=0, a_{12} b_{24} c=0$. Since R is reduced, we have $a_{12} c b_{23}=0, a_{12} c b_{24}=0$. Therefore,

$$
\begin{align*}
&\left(\begin{array}{cccc}
0 & 0 & a_{12} c b_{23} & a_{12} c b_{24} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
&=\left(\begin{array}{cccc}
0 & a_{12} & a_{13} & a_{14} \\
0 & 0 & a_{23} & a_{24} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \times\left(\begin{array}{cccc}
c & c_{12} & c_{13} & c_{14} \\
0 & c & c_{23} & c_{24} \\
0 & 0 & c & 0 \\
0 & 0 & 0 & c
\end{array}\right) \tag{27}\\
& \times\left(\begin{array}{cccc}
0 & b_{12} & b_{13} & b_{14} \\
0 & 0 & b_{23} & b_{24} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=0
\end{align*}
$$

Hence, $V(R)$ is a right nil-symmetric ring. Similarly, it can be shown that $V(R)$ is a left nil-symmetric ring.

We also observe that every right (left) nil-symmetric ring is nil-semicommutative.

Proposition 9. Every right (left) nil-symmetric ring is nilsemicommutative.

Proof. Let R be a right nil-symmetric ring and $a, b \in \operatorname{nil}(R)$ such that $a b=0$. Let $c \in R$ be arbitrary; then $a b c=$ 0 . By right nil-symmetric property of R, acb $=0$. Thus $a R b=0$. Hence, R is nil-semicommutative. Proceeding similarly one can show that every left nil-symmetric ring is nil-semicommutative.

Remark 10. The converse is however not true, as shown by the following example.

Example 11. For every reduced ring $R, T_{3}(R)$ is a nilsemicommutative ring which is neither a right nil-symmetric ring nor a left nil-symmetric ring. This can be verified as follows.

We have

$$
\begin{aligned}
& \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \in \operatorname{nil}\left(T_{3}(R)\right), \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)=0
\end{aligned}
$$

$$
V_{n}(R)=\left\{\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \cdots a_{n} \tag{30}\\
0 & a_{1} & a_{2} & a_{3} \cdots a_{n-1} \\
0 & 0 & a_{1} & a_{2} \cdots a_{n-2} \\
\vdots & \vdots & \vdots & \vdots \ddots \vdots \\
0 & 0 & 0 & 0 \cdots a_{2} \\
0 & 0 & 0 & 0 \cdots a_{1}
\end{array}\right): a_{1}, \ldots, a_{n} \in R\right\} \text { is a nil-symmetric ring. }
$$

Proof. Let R be a reduced ring. Then by [9, Theorem 2.3], $R[x] /\left(x^{n}\right)$ is a symmetric ring and hence a nil-symmetric ring, where $\left(x^{n}\right)$ is the ideal generated by x^{n} for any positive integer n. Also by [15], $R[x] /\left(x^{n}\right) \cong V_{n}(R)$ for $n \geq 2$. Hence, for $n \geq 2, V_{n}(R)$ is nil-symmetric.

Since the class of nil-symmetric rings is contained in the class of nil-semicommutative rings, the results which are valid for nil-semicommutative rings are also valid for nilsymmetric rings. Mohammadi et al. [8, Example 2.8] have shown that $T_{5}(R)$ is not a nil-semicommutative ring, where R is a reduced ring. Thus $T_{5}(R)$ is not nil-symmetric. Now we give an example of a weak-Armendariz ring which is not nil-symmetric.

Example 15. Let R be a reduced ring and let

$$
R_{4}=\left\{\left(\begin{array}{cccc}
a & a_{12} & a_{13} & a_{14} \tag{31}\\
0 & a & a_{23} & a_{24} \\
0 & 0 & a & a_{34} \\
0 & 0 & 0 & a
\end{array}\right): a, a_{i j} \in R\right\}
$$

$$
=\left(\begin{array}{lll}
0 & 0 & 0 \tag{28}\\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right),
$$

but

$$
\left(\begin{array}{lll}
0 & 1 & 0 \tag{29}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \neq 0 .
$$

Thus $T_{3}(R)$ is neither a right nil-symmetric ring nor a left nil-symmetric ring. But $T_{3}(R)$ is nil-semicommutative by [8, Example 2.2].

Remark 12. Semicommutativity and nil-symmetry do not follow each other. In Example 3, $T_{2}(R)$ is a nil-symmetric ring but not Abelian (and so not semicommutative [12]). The following example [13, Example 2.8] shows that a semicommutative ring need not be a right or left nil-symmetric ring.

Example 13. Let $Q_{8}=\left\{1, x_{-1}, x_{i}, x_{-i}, x_{j}, x_{-j}, x_{k}, x_{-k}\right\}$ be the quaternion group and let \mathbb{Z}_{2} be the ring of integers modulo 2 . Consider the group ring $R=\mathbb{Z}_{2} Q_{8}$. By [14, Corollary 2.3], R is reversible and so semicommutative. Let $a=1+x_{j}, b=1+x_{i}$, $c=1+x_{i}+x_{j}+x_{k}$. Then $a, b \in \operatorname{nil}(R)$ and $c \in R$ such that $a b c=c a b=0$, but $a c b \neq 0$. Hence, R is neither a right nil-symmetric ring nor a left nil-symmetric ring.

Proposition 14. For a reduced ring R and for $n \geq 2$,

By [6, Example 2.4], R_{4} is weak-Armendariz. By Example 7, R_{4} is neither a right nor a left nil-symmetric ring.

Proposition 16. Finite product of right (left) nil-symmetric rings is right (left) nil-symmetric.

Proof. It comes from the fact that $\operatorname{nil}\left(\prod_{i=1}^{n} R_{i}\right)=\prod_{i=1}^{n} \operatorname{nil}\left(R_{i}\right)$ [8, Proposition 2.13]. Let $\left(a_{1}, a_{2}, \ldots, a_{n}\right),\left(b_{1}, b_{2}, \ldots, b_{n}\right) \quad \in$ $\operatorname{nil}\left(\prod_{i=1}^{n} R_{i}\right)$ and $\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \prod_{i=1}^{n} R_{i}$ such that $\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{n}\right)\left(c_{1}, c_{2}, \ldots, c_{n}\right)=0$. Thus, for each $i=1,2, \ldots, n, a_{i} b_{i} c_{i}=0$. Since R_{i} is right nilsymmetric, $a_{i} c_{i} b_{i}=0$ for each $i=1,2, \ldots, n$. So, we get $\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(c_{1}, c_{2}, \ldots, c_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{n}\right)=0$. The result can be similarly proved for left nil-symmetric rings.

Proposition 17. Let R be a ring and let Δ be a multiplicatively closed subset of R consisting of central nonzero-divisors. Then R is right (left) nil-symmetric if and only if $\Delta^{-1} R$ is right (left) nil-symmetric.

Proof. It suffices to prove the necessary condition because subrings of right (left) nil-symmetric rings are also right (left)
nil-symmetric. Let $\alpha \beta \gamma=0$ with $\alpha=u^{-1} a, \beta=v^{-1} b \in$ $\operatorname{nil}\left(\Delta^{-1} R\right)$, and $\gamma=w^{-1} c \in \Delta^{-1} R$; then $u, v, w \in \Delta, a, b \in$ $\operatorname{nil}(R)$, and $c \in R$. Since Δ is contained in the center of R, we have $0=\alpha \beta \gamma=u^{-1} a v^{-1} b w^{-1} c=(u v w)^{-1} a b c$ and so $a b c=0$. It follows that $a c b=0$, since R is right nil-symmetric. Thus $\alpha \gamma \beta=(u v w)^{-1} a b c=0$. Hence, $\Delta^{-1} R$ is right nil-symmetric. Similarly, $\Delta^{-1} R$ can be shown to be left nil-symmetric if R itself is a left nil-symmetric ring.

Corollary 18. For a ring $R, R[x]$ is a right (left) nil-symmetric ring if and only if $R\left[x ; x^{-1}\right]$ is a right (left) nil-symmetric ring.

Proof. It directly follows from Proposition 17. If $\Delta=\{1$, $\left.x, x^{2}, \ldots\right\}$, then Δ is clearly a multiplicatively closed subset of $R[x]$ and $R\left[x ; x^{-1}\right]=\Delta^{-1} R[x]$.

Proposition 19. Let R be a ring. Then $e R$ and $(1-e) R$ are right (left) nil-symmetric for some central idempotent e of R if and only if R is right (left) nil-symmetric.

Proof. It suffices to prove the necessary condition because subrings of right (left) nil-symmetric rings are also right (left) nil-symmetric. Let $e R$ and $(1-e) R$ be right (left) nilsymmetric rings for some central idempotent e of R. Since, $R \cong e R \oplus(1-e) R, R$ is right (left) nil-symmetric by Proposition 16.

Since the class of right (left) nil-symmetric rings is closed under subrings, therefore, for any right (left) nil-symmetric ring R and for any $e^{2}=e \in R, e R e$ is a right (left) nilsymmetric ring. The converse is, however, not true, in general as shown by the following example.

Example 20. Let S be any reduced ring. Then by Example 11, $R=T_{3}(S)$ is neither a right nil-symmetric nor a left nilsymmetric ring.

But for

$$
e^{2}=e=\left(\begin{array}{lll}
1 & 0 & 0 \tag{32}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \in R, \quad e R e=\left\{\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right): a \in S\right\}
$$

is a reduced ring and so a nil-symmetric ring.
For any nonempty subsets A, B, C of a ring $R, A B C$ denotes the set of all finite sums of the elements of the type $a b c$, where $a \in A, b \in B, c \in C$.

Proposition 21. A ring R is right (left) nil-symmetric if and only if $A B C=0$ implies $A C B=0(C A B=0$ implies $A C B=0)$ for any two nonempty subsets A, B of nil (R) and any subset C of R.

Proof. Let R be a right nil-symmetric ring and let A, B be nonempty subsets of nil(R); let C be a nonempty subset of R such that $A B C=0$. Then $a b c=0$ for all $a \in A, b \in B, c \in C$. Right nil-symmetric property of R gives $a c b=0$ for all $a \in A$, $b \in B, c \in C$. Thus $A C B=0$. Similar proof can be given for left nil-symmetric rings. The converse is straightforward.

The following result shows that, for a semiprime ring, the properties of reduced, symmetric, reversible, semicommutative, nil-semicommutative, and nil-symmetric rings coincide. Note that a ring R is said to be semiprime if, for $a \in R, a R a=0$ implies that $a=0$.

Proposition 22. For a semiprime ring R, the following statements are equivalent.
(1) R is reduced.
(2) R is symmetric.
(3) R is reversible.
(4) R is semicommutative.
(5) R is nil-semicommutative.
(6) R is right (left) nil-symmetric.

Proof. (1)-(4) are equivalent by [16, Lemma 2.7]. (1) $\Leftrightarrow(5)$ by [8, Proposition 2.18]. $(2) \Rightarrow(6)$ is clear. $(6) \Rightarrow(1)$: let $a^{2}=0$ for $a \in R$. Then $a^{2} c=0$ for any $c \in R$, and so $a c a=0$, since R is right nil-symmetric. Thus $a=0$ by semiprimeness of R and, therefore, R is reduced.

Given a ring R and a bimodule ${ }_{R} M_{R}$, the trivial extension of R by M is the ring $T(R, M)=R \oplus M$ with the usual addition and the following multiplication:

$$
\begin{equation*}
\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+m_{1} r_{2}\right) . \tag{33}
\end{equation*}
$$

This is isomorphic to the ring of all matrices:

$$
\left(\begin{array}{cc}
r & m \tag{34}\\
0 & r
\end{array}\right)
$$

where $r \in R$ and $m \in M$ and the usual matrix operations are used.

Proposition 23. For a reduced ring $R, T(R, R)$ is a nilsymmetric ring.

Proof. Let R be a reduced ring. Since $T(R, R)$ is a subring of S in Proposition 6 and the class of right(left) nil-symmetric rings is closed under subrings, thus $T(R, R)$ is a nil-symmetric ring.

Considering the above proposition one may conjecture that if a ring R is nil-symmetric, then $T(R, R)$ is nilsymmetric. However, the following example eliminates the possibility.

Example 24. Let \mathbb{H} be the Hamilton quaternions over the real number field and let

$$
R=\left\{\left(\begin{array}{ccc}
a & b & c \tag{35}\\
0 & a & d \\
0 & 0 & a
\end{array}\right): a, b, c, d \in \mathbb{H}\right\}
$$

Then by Proposition 6, R is a nil-symmetric ring. Let S be the trivial extension of R by itself. Then S is not a right nilsymmetric ring. Note that

$$
\left.\begin{array}{l}
\left(\begin{array}{lll}
\left(\begin{array}{lll}
0 & i & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\left.\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & i & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right) \\
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & j \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
-i & 0 & 0 \\
0 & -i & 0 \\
0 & 0 & -i
\end{array}\right) \\
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & j \\
0 & 0 & 0
\end{array}\right)
\end{array}\right) \in \operatorname{nil}(S) \\
\left(\begin{array}{lll}
0 & i & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\left.\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & i & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right)
\end{array}\right)
$$

However we have

$$
\begin{aligned}
& \left(\begin{array}{l}
\left(\begin{array}{lll}
0 & i & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{array}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right) \\
& \times\left(\begin{array}{c}
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
\end{array}\left(\begin{array}{lll}
k & 0 & 0 \\
0 & k & 0 \\
0 & 0 & k
\end{array}\right)\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0
\end{array} 1\right.
\end{aligned}
$$

$$
\left.\begin{array}{l}
\times\left(\begin{array}{cc}
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & j \\
0 & 0 & 0
\end{array}\right) & \left(\begin{array}{ccc}
-i & 0 & 0 \\
0 & -i & 0 \\
0 & 0 & -i
\end{array}\right) \\
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & \left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & j \\
0 & 0 & 0
\end{array}\right)
\end{array}\right) \\
=\left(\begin{array}{lll}
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{array}\left(\begin{array}{lll}
0 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right. \tag{37}\\
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{array}\right) \neq 0 .
$$

Thus $S=T(R, R)$ is not a right nil-symmetric ring.
Example 25. Let R be a ring and let I be an ideal of R such that R / I is nil-symmetric. Then R may not be nil-symmetric. This can be verified as follows. Let S be any reduced ring. Then by Example 11, $R=T_{3}(S)$ is not nil-symmetric but nilsemicommutative. Thus

$$
I=\operatorname{nil}(R)=\left\{\left(\begin{array}{lll}
0 & b & c \tag{38}\\
0 & 0 & d \\
0 & 0 & 0
\end{array}\right): b, c, d \in S\right\}
$$

is an ideal of R and R / I is reduced, so nil-symmetric.
Homomorphic image of a right (left) nil-symmetric ring need not be a right (left) nil-symmetric ring. This is discussed after Example 26.

3. Polynomial Extension of Nil-Symmetric Rings

Anderson-Camillo [17] proved that a ring R is Armendariz if and only if $R[x]$ is Armendariz; Huh et al. [12] have shown that polynomial rings over semicommutative rings need not be semicommutative; Kim-Lee [16] showed that polynomial rings over reversible rings need not be reversible. Recently Mohammadi et al. [8] have given an example of a nil-semicommutative ring R for which $R[x]$ is not nilsemicommutative. Based on the above findings, it is natural to check whether the polynomial ring over a nil-symmetric ring is nil-symmetric. However, the answer is given in the negative through the following example.

Example 26. Let \mathbb{Z}_{2} be the field of integers modulo 2 and let $A=\mathbb{Z}_{2}\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}, c\right]$ be the free algebra of polynomials with zero constant terms in noncommuting indeterminates $a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}$, and c over \mathbb{Z}_{2}. Consider an ideal of the ring $\mathbb{Z}_{2}+A$, say I, generated by the following elements: $a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}, a_{1} b_{2}+a_{2} b_{1}, a_{2} b_{2}$, $a_{0} r b_{0}, a_{2} r b_{2}, b_{0} a_{0}, b_{0} a_{1}+b_{1} a_{0}, b_{0} a_{2}+b_{1} a_{1}+b_{2} a_{0}, b_{1} a_{2}+b_{2} a_{1}$, $b_{0} r a_{0}, b_{2} r a_{2},\left(a_{0}+a_{1}+a_{2}\right) r\left(b_{0}+b_{1}+b_{2}\right),\left(b_{0}+b_{1}+b_{2}\right) r\left(a_{0}+a_{1}+a_{2}\right)$, and $r_{1} r_{2} r_{3} r_{4}$, where $r, r_{1}, r_{2}, r_{3}, r_{4} \in A$. Now $R=\left(\mathbb{Z}_{2}+A\right) / I$ is
symmetric by [9, Example 3.1] and so a nil-symmetric ring. By [8, Example 3.6], we have $a_{0}+a_{1} x+a_{2} x^{2}, b_{0}+b_{1} x+$ $b_{2} x^{2} \in \operatorname{nil}(R[x])$. Now $\left(a_{0}+a_{1} x+a_{2} x^{2}\right)\left(b_{0}+b_{1} x+b_{2} x^{2}\right) c$, $c\left(a_{0}+a_{1} x+a_{2} x^{2}\right)\left(b_{0}+b_{1} x+b_{2} x^{2}\right) \in I[x]$, but $\left(a_{0}+a_{1} x+\right.$ $\left.a_{2} x^{2}\right) c\left(b_{0}+b_{1} x+b_{2} x^{2}\right) \notin I[x]$ because $a_{0} c b_{1}+a_{1} c b_{0} \notin I$. Hence $R[x]$ is neither a right nil-symmetric ring nor a left nil-symmetric ring.

Remark 27. The above example also helps in showing that homomorphic image of a right (left) nil-symmetric ring need not be a right (left) nil-symmetric ring. This is verified as follows.

Example 28. In Example 26, $\left(\mathbb{Z}_{2}+A\right)[x]$ is a domain [16] and so a nil-symmetric ring. But the quotient ring $\left(\mathbb{Z}_{2}+\right.$ $A)[x] / I[x] \cong R[x]$ is neither a right nil-symmetric ring nor a left nil-symmetric ring.

Now we study some conditions under which the answer may be given positively. Since every right (left) nil-symmetric ring is nil-semicommutative by Proposition 9, therefore, by [8, Theorem 3.3] for each right (left) nil-symmetric ring R, $\operatorname{nil}(R[x])=\operatorname{nil}(R)[x]$. The converse is, however, not true, in general. Now we give an example of a ring R which satisfies $\operatorname{nil}(R[x])=\operatorname{nil}(R)[x]$, but R is neither a right nil-symmetric ring nor a left nil-symmetric ring.

Example 29. We use the ring in [7, Example 4.8]. Let K be a field, $n \geq 2$ and $R=K\left\langle a, b \mid b^{n}=0\right\rangle$. Then $\operatorname{nil}(R)$ is not an ideal of R. Thus R is neither a right nil-symmetric nor a left nilsymmetric ring by Proposition 9 and [8, Theorem 2.5]. But R is a nil-Armendariz ring and hence by [7, Corollary 5.2], $\operatorname{nil}(R[x])=\operatorname{nil}(R)[x]$.

Proposition 30. If R is a right (left) nil-symmetric and Armendariz ring, then the polynomial ring $R[x]$ is right (left) nil-symmetric.

Proof. Let R be a right nil-symmetric and Armendariz ring and let $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in \operatorname{nil}(R[x])$ and $h(x)=\sum_{k=0}^{p} a_{k} x^{k} \in R[x]$ such that $f(x) g(x) h(x)=0$. Since R is right nil-symmetric, $\operatorname{nil}(R[x])=\operatorname{nil}(R)[x]$ by Proposition 9 and [8, Theorem 3.3]. Thus $a_{i}, b_{j} \in \operatorname{nil}(R)$ for $i=0,1,2, \ldots, m$; $j=0,1,2, \ldots, n$. Since R is Armendariz, therefore, $a_{i} b_{j} c_{k}=0$ by [17, Proposition 1]. Thus by right nil-symmetric property of $R, a_{i} c_{k} b_{j}=0$. Therefore, $f(x) h(x) g(x)=0$. Hence, $R[x]$ is a right nil-symmetric ring. Similarly it can be shown that $R[x]$ is a left nil-symmetric ring if R is a left nil-symmetric and Armendariz ring.

Proposition 31. If R is a right (left) nil-symmetric ring, then $R[x]$ is nil-Armendariz.

Proof. Let R be a right (left) nil-symmetric ring. Thus by Proposition 9, R is nil-semicommutative. By [8, Corollary 2.9], R is a nil-Armendariz ring. Again by [8, Theorem 3.3], $\operatorname{nil}(R[x])=\operatorname{nil}(R)[x]$. Thus by [7, Theorem 5.3], $R[x]$ is nilArmendariz.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors are deeply indebted to Dr. Pierre-Guy Plamondon, Laboratory of Mathematics, University of Paris, France, for providing Example 2 and Professor Mangesh B. Rege, Department of Mathematics, NEHU, Shillong, India, for his valuable suggestions.

References

[1] J. Lambek, "On the representation of modules by sheaves of factor modules," Canadian Mathematical Bulletin, vol. 14, pp. 359-368, 1971.
[2] D. D. Anderson and V. Camillo, "Semigroups and rings whose zero products commute," Communications in Algebra, vol. 27, no. 6, pp. 2847-2852, 1999.
[3] P. M. Cohn, "Reversible rings," Bulletin of the London Mathematical Society, vol. 31, no. 6, pp. 641-648, 1999.
[4] L. Motais de Narbonne, "Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents," in Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), pp. 71-73, Bib Necklace, Paris, France, 1982.
[5] M. B. Rege and S. Chhawchharia, "Armendariz rings," Proceedings of the Japan Academy, vol. 73, no. 1, pp. 14-17, 1997.
[6] Z. Liu and R. Zhao, "On weak Armendariz rings," Communications in Algebra, vol. 34, no. 7, pp. 2607-2616, 2006.
[7] R. Antoine, "Nilpotent elements and Armendariz rings," Journal of Algebra, vol. 319, no. 8, pp. 3128-3140, 2008.
[8] R. Mohammadi, A. Moussavi, and M. Zahiri, "On nilsemicommutative rings," International Electronic Journal of Algebra, vol. 11, pp. 20-37, 2012.
[9] C. Huh, H. K. Kim, N. K. Kim, and Y. Lee, "Basic examples and extensions of symmetric rings," Journal of Pure and Applied Algebra, vol. 202, no. 1-3, pp. 154-167, 2005.
[10] L. Ouyang and H. Chen, "On weak symmetric rings," Communications in Algebra, vol. 38, no. 2, pp. 697-713, 2010.
[11] N. Agayev, G. Güngöroğlu, A. Harmanci, and S. Halıcıoğlu, "Central Armendariz rings," Bulletin of the Malaysian Mathematical Sciences Society, vol. 34, no. 1, pp. 137-145, 2011.
[12] C. Huh, Y. Lee, and A. Smoktunowicz, "Armendariz rings and semicommutative rings," Communications in Algebra, vol. 30, no. 2, pp. 751-761, 2002.
[13] G. Kafkas, B. Ungor, S. Halicioglu, and A. Harmanci, "Generalized symmetric rings," Algebra and Discrete Mathematics, vol. 12, no. 2, pp. 72-84, 2011.
[14] R. C. Courter, "Finite-dimensional right duo algebras are duo," Proceedings of the American Mathematical Society, vol. 84, no. 2, pp. 157-161, 1982.
[15] T.-K. Lee and Y. Zhou, "Armendariz and reduced rings," Communications in Algebra, vol. 32, no. 6, pp. 2287-2299, 2004.
[16] N. K. Kim and Y. Lee, "Extensions of reversible rings," Journal of Pure and Applied Algebra, vol. 185, no. 1-3, pp. 207-223, 2003.
[17] D. D. Anderson and V. Camillo, "Armendariz rings and Gaussian rings," Communications in Algebra, vol. 26, no. 7, pp. 22652272, 1998.

Advances in Operations Research $-$

The Scientific World Journal

Advances in
Decision Sciences
= -

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Mathematical Problems in Engineering

Journal of Function Spaces
$\underline{=}$

International Journal of Differential Equations 5

