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We investigate shape preserving for 𝑞-Bernstein-Stancu polynomials 𝐵
𝑞,𝛼

𝑛
(𝑓; 𝑥) introduced by Nowak in 2009. When 𝛼 = 0,

𝐵
𝑞,𝛼

𝑛
(𝑓; 𝑥) reduces to the well-known 𝑞-Bernstein polynomials introduced by Phillips in 1997; when 𝑞 = 1, 𝐵𝑞,𝛼

𝑛
(𝑓; 𝑥) reduces to

Bernstein-Stancu polynomials introduced by Stancu in 1968; when 𝑞 = 1, 𝛼 = 0, we obtain classical Bernstein polynomials. We
prove that basic 𝐵

𝑞,𝛼

𝑛
(𝑓; 𝑥) basis is a normalized totally positive basis on [0, 1] and 𝑞-Bernstein-Stancu operators are variation-

diminishing, monotonicity preserving and convexity preserving on [0, 1].

1. Introduction

Let 𝑞 > 0. For each nonnegative integer 𝑟, we define the 𝑞-
integer [𝑟]𝑞 as

[𝑟]𝑞 ≡ [𝑟] :=

{{

{{

{

(1 − 𝑞
𝑟
)

(1 − 𝑞)
, 𝑞 ̸= 1,

𝑟, 𝑞 = 1,

(1)

we then define 𝑞-factorial [𝑟]! as

[𝑟]𝑞! ≡ [𝑟]! := [𝑟] [𝑟 − 1] ⋅ ⋅ ⋅ [1] , [0]! = 1, (2)

and we next define a 𝑞-binomial coefficient as

[
𝑛

𝑟
]

𝑞

≡ [
𝑛

𝑟
] :=

[𝑛] [𝑛 − 1] ⋅ ⋅ ⋅ [𝑛 − 𝑟 + 1]

[𝑟]!
=

[𝑛]!

[𝑟]! [𝑛 − 𝑟]!
,

(3)

for integers 𝑛 ≥ 𝑟 ≥ 0 and as zero otherwise. Also, we use the
𝑞-Pochhammer symbol defined as for any 𝑐 ∈ C

(𝑐; 𝑞)
0
:= 1, (𝑐; 𝑞)

𝑛
:=

𝑛−1

∏

𝑘=0

(1 − 𝑐𝑞
𝑘
) , (𝑛 ≥ 1) ,

(𝑐; 𝑞)
∞

:=

∞

∏

𝑘=0

(1 − 𝑐𝑞
𝑘
) , (0 < 𝑞 < 1) .

(4)

For 𝑓 ∈ C [0, 1], 𝑞 > 0, 𝛼 ≥ 0, and each positive integer 𝑛,
we will investigate the following 𝑞-Bernstein-Stancu operator
introduced by Nowak in 2009 [1]:

𝐵
𝑞,𝛼

𝑛
(𝑓; 𝑥) =

𝑛

∑

𝑘=0

𝐵
𝑞,𝛼

𝑛,𝑘
(𝑥) 𝑓(

[𝑘]

[𝑛]
) , (5)

where

𝐵
𝑞,𝛼

𝑛,𝑘
(𝑥) = [

𝑛

𝑘
]

∏
𝑘−1

𝑖=0
(𝑥 + 𝛼 [𝑖])∏

𝑛−𝑘−1

𝑠=0
(1 − 𝑞

𝑠
𝑥 + 𝛼 [𝑠])

∏
𝑛−1

𝑖=0
(1 + 𝛼 [𝑖])

.

(6)

Note that empty product in (6) denotes 1.
In this case, when 𝛼 = 0, 𝐵𝑞,𝛼

𝑛
(𝑓; 𝑥) reduces to the well-

known 𝑞-Bernstein polynomials introduced by Phillips [2] in
1997:

𝐵𝑛,𝑞 (𝑓; 𝑥) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
] 𝑥
𝑘

𝑛−𝑘−1

∏

𝑖=0

(1 − 𝑞
𝑖
𝑥)𝑓(

[𝑘]

[𝑛]
) . (7)

When 𝑞 = 1, 𝐵𝑞,𝛼
𝑛

(𝑓; 𝑥) reduces to Bernstein-Stancu polyno-
mials introduced by Stancu [3] in 1968:

𝑆𝑛 (𝑓; 𝑥) =

𝑛

∑

𝑘=0

(
𝑛

𝑟
)

∏
𝑘−1

𝑖=0
(𝑥 + 𝛼𝑖)∏

𝑛−𝑘−1

𝑠=0
(1 − 𝑥 + 𝑠𝛼)

∏
𝑛−1

𝑖=0
(1 + 𝑖𝛼)

× 𝑓(
𝑘

𝑛
) .

(8)
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When 𝑞 = 1 and 𝛼 = 0, we obtain the classical Bernstein
polynomials defined by

𝐵𝑛 (𝑓; 𝑥) =

𝑛

∑

𝑘=0

(
𝑛

𝑟
)𝑥
𝑘
(1 − 𝑥)

𝑛−𝑘
𝑓(

𝑘

𝑛
) . (9)

Now, we review and state some general properties of 𝑞-
Bernstein-Stancu operators.

It follows directly from the definition that 𝑞-Bernstein-
Stancu operators possess the endpoint interpolation property,
that is,

𝐵
𝑞,𝛼

𝑛
(𝑓; 0) = 𝑓 (0) , 𝐵

𝑞,𝛼

𝑛
(𝑓; 1) = 𝑓 (1) ,

∀𝑞 > 0 and all 𝑛 ∈ N,

(10)

and leave invariant linear function:

𝐵
𝑞,𝛼

𝑛
(𝑎𝑡 + 𝑏) = 𝑎𝑥 + 𝑏, ∀𝑞 > 0 and all 𝑛 ∈ N. (11)

They are also degree reducing on polynomials; that is,
if P𝑚 is a polynomial of degree 𝑚, then 𝐵

𝑞,𝛼

𝑛
(P𝑚) is a

polynomials of degree ≤(𝑚, 𝑛).
Taking 𝑎 = 0, 𝑏 = 1 in (11), we conclude that

𝑛

∑

𝑘=0

𝐵
𝑞,𝛼

𝑛,𝑘
(𝑥) = 1, ∀𝑛 ∈ N. (12)

In 2009, Nowak proved that the 𝑞-Bernstein-Stancu
operators can be expressed in terms of 𝑞-differences [1]:

𝐵
𝑞,𝛼

𝑛
(𝑓; 𝑥) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]△
𝑘

𝑞
𝑓0

𝑘−1

∏

𝑠=0

𝑥 + 𝛼 [𝑠]

1 + 𝛼 [𝑠]
, (13)

where

△
𝑘

𝑞
𝑓0 =

[𝑘]!

[𝑛]
𝑘
𝑞
𝑘(𝑘−1)/2

𝑓[0;
1

[𝑛]
; ⋅ ⋅ ⋅ ;

[𝑘]

[𝑛]
] . (14)

At the same time, he still showed that, for 0 < 𝑞 < 1,
𝛼 ≥ 0,

𝐵
𝑞,𝛼

𝑛
(1; 𝑥) = 1, 𝐵

𝑞,𝛼

𝑛
(𝑡; 𝑥) = 𝑥,

𝐵
𝑞,𝛼

𝑛
(𝑡
2
; 𝑥) =

1

1 + 𝛼
(𝑥 (𝑥 + 𝛼) +

𝑥 (1 − 𝑥)

[𝑛]
) .

(15)

For a real-valued function 𝑓 on an interval 𝐼, we define
𝑆
−
(𝑓) to be the number of sign changes of 𝑓; that is,

𝑆
−
(𝑓) = sup 𝑆

−
(𝑓 (𝑥0) , . . . , 𝑓 (𝑥𝑚)) , (16)

where the supremum is taken over all increasing sequence
(𝑥0, . . . , 𝑥𝑚) in 𝐼, for all 𝑚. We say that 𝐿𝑛 is variation-
diminishing if

𝑆
−
(𝐿𝑛 (𝑓)) ≤ 𝑆

−
(𝑓) . (17)

Similarly, for a matrix T, we say T is variation-diminishing
if, for any vector V for which TV is defined, then 𝑆

−1
(TV) ≤

𝑆
−1

(V).

Let (𝐿𝑛)𝑛≥1 be a sequence of positive linear operators on
C[0, 1]. We say that 𝐿𝑛 is monotonicity preserving if 𝐿𝑛(𝑓)

is increasing (decreasing) for an increasing (decreasing)
function 𝑓 on [0, 1]. We say that 𝐿𝑛 is convexity preserving
if 𝐿𝑛(𝑓) is convex (concave) for a convex (concave) function
𝑓 on [0, 1].

Let 𝑞 ∈ (0, 1), 𝑥 ∈ [0, 1] and let 𝐵𝑞,𝛼
𝑛

= (𝐵
𝑞,𝛼

𝑛,0
(𝑥), 𝐵

𝑞,𝛼

𝑛,1
(𝑥),

. . . , 𝐵
𝑞,𝛼

𝑛,𝑛
(𝑥)) be the sequence of basic 𝑞-Bernstein-Stancu

polynomials, and denote by Π𝑛 the sequence of all polyno-
mials of degree at most 𝑛; then 𝐵

𝑞,𝛼

𝑛
is a basis for Π𝑛 (see

[1]). Hence, there exists a nonsingular transformation matrix
𝑆
𝑛,𝑞
1
,𝛼
1
;𝑞
2
,𝛼
2 from 𝐵

𝑞
1
,𝛼
1

𝑛
to 𝐵
𝑞
2
,𝛼
2

𝑛
such that

𝐵
𝑞
2
,𝛼
2

𝑛,0
(𝑥)

... 𝐵
𝑞
2
,𝛼
2

𝑛,𝑛
(𝑥) = 𝑆

𝑛,𝑞
1
,𝛼
1
;𝑞
2
,𝛼
2 (𝐵
𝑞
1
,𝛼
1

𝑛,0

... 𝐵
𝑞
1
,𝛼
1

𝑛,𝑛
) .

(18)

A matrix is said to be totally positivity (TP) if all its
minors are nonnegative. It is well known that totally positivity
matrix is various-diminishing.We say that a sequence 𝜙(𝑥) =

(𝜙0(𝑥), . . . , 𝜙𝑛(𝑥)) of real-value function is TP on an interval 𝐼
if, for any points 𝑥0 < 𝑥1 ⋅ ⋅ ⋅ < 𝑥𝑛 in 𝐼, the collocation matrix
(𝜙𝑗(𝑥𝑖))

𝑛

𝑖,𝑗=0
is TP on 𝐼. If 𝜙 is TP on 𝐼 and ∑

𝑛

𝑖=0
𝜙𝑖(𝑥) = 1,

𝑥 ∈ 𝐼, (so that its collocationmatrix is stochastic), we say that
𝜙 is normalized totally positive system on 𝐼.

Theorem 1. For 𝛼 > 0, 𝑞 ∈ (0, 1), 𝑞-Bernstein-Stancu basis
𝐵
𝑞,𝛼

𝑛
is a normalized totally positivity basis on [0, 1].

Theorem 2. For 𝛼 > 0, 𝑞 ∈ (0, 1), 𝑞-Bernstein-Stancu oper-
ators 𝐵

𝑞,𝛼

𝑛
(𝑓; 𝑥) are variation-diminishing, monotonicity pre-

serving, and convexity preserving.

2. Proof of Theorems 1 and 2

Lemma 3 (see [4]). A finite matrix is totally positive if and
only if it is a product of 1-banded matrices with nonnegative
elements, where a matrix 𝐴 = (𝑎𝑖,𝑗) is called 1-banded matrix
if, for some 𝑙, 𝑎𝑖,𝑗 ̸= 0, implies 𝑙 ≤ 𝑗 − 𝑖 ≤ 𝑙 + 1.

Lemma 4 (see [5]). Let 𝜙 = (𝜙0(𝑥), . . . , 𝜙𝑛(𝑥)) and 𝜓 =

(𝜓0(𝑥), . . . , 𝜓𝑛(𝑥)) be the base of Π𝑛 and let 𝑆 be the transfor-
mation matrix from 𝜓 to 𝜙; that is,

𝜙0 (𝑥)
... 𝜙𝑛 (𝑥) = 𝑆 (𝜓0 (𝑥)

... 𝜓𝑛 (𝑥)) . (19)

If 𝑆 is a totally positive matrix and 𝜓 is a totally positive system
on [0, 1], so is 𝜙.

Lemma 5 (see [6]). If the sequence 𝜙 = (𝜙0(𝑥), . . . , 𝜙𝑛(𝑥)) is
totally positivity on [0, 1], then, for any numbers 𝑎0, . . . , 𝑎𝑛,

𝑆
−1

(𝑎0𝜙0 (𝑥) + ⋅ ⋅ ⋅ + 𝑎𝑛𝜙𝑛 (𝑥)) ≤ 𝑆
−1

(𝑎0, . . . , 𝑎𝑛) . (20)
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Proof of Theorem 1. We recall that the 𝑞-Bernstein-Stancu
operators 𝐵𝑞,𝛼

𝑛
: C[0, 1] → P are defined by

𝐵
𝑞,𝛼

𝑛
(𝑥) (𝑓; 𝑥) =

𝑛

∑

𝑘=0

𝑓(
[𝑘]

[𝑛]
) 𝐵
𝑞,𝛼

𝑛,𝑘
, (21)

where

𝐵
𝑞,𝛼

𝑛,𝑘
(𝑥) = [

𝑛

𝑘
]

∏
𝑘−1

𝑗=0
(𝑥 + 𝛼 [𝑗])∏

𝑛−𝑘−1

𝑗=0
(1 − 𝑞

𝑗
𝑥 + 𝛼 [𝑗])

∏
𝑛−1

𝑗=0
(1 + 𝛼 [𝑗])

.

(22)

Thus

𝐵
𝑞,𝛼

𝑛,𝑘
(𝑥) = [

𝑛

𝑘
]

∏
𝑘−1

𝑗=0
(𝑥 + 𝛼 [𝑗])∏

𝑛−𝑘−1

𝑗=0
(1 − 𝑞

𝑗
𝑥 + 𝛼 [𝑗])

∏
𝑛−1

𝑗=0
(1 + 𝛼 [𝑗])

= [
𝑛

𝑘
]

∏
𝑛−𝑘−1

𝑗=0
(1 + 𝛼 [𝑗])

∏
𝑛−1

𝑗=0
(1 + 𝛼 [𝑗])

×

𝑘−1

∏

𝑗=0

(𝑥 + 𝛼 [𝑗])

𝑛−𝑘−1

∏

𝑗=0

(1 − 𝑠𝑗𝑥)

= [
𝑛

𝑘
]

𝑛−1

∏

𝑗=𝑛−𝑘

(1 + 𝛼 [𝑗])
−1
𝑘−1

∏

𝑗=0

(𝑥 + 𝑟𝑗)

𝑛−𝑘−1

∏

𝑗=0

(1 − 𝑠𝑗𝑥)

= [
𝑛

𝑘
]

𝑛−1

∏

𝑗=𝑛−𝑘

(1 + 𝛼 [𝑗])
−1

𝑝
𝑞,𝛼

𝑛,𝑘
,

(23)

where 𝑟𝑗 = 𝛼[𝑗], 𝑠𝑗 = (𝑞
𝑗
/(1 + 𝛼[𝑗])), and

𝑝
𝑞,𝛼

𝑛,𝑘
=

𝑘−1

∏

𝑗=0

(𝑥 + 𝑟𝑗)

𝑛−𝑘−1

∏

𝑗=0

(1 − 𝑠𝑗𝑥) . (24)

Clearly, from the definition we know that, for arbi-
trary positive numbers 𝑎0, . . . , 𝑎𝑛, if the sequence (𝜙0(𝑥),

. . . , 𝜙𝑛(𝑥)) is totally positive on [0, 1], then so is the sequence
(𝑎0𝜙0, . . . , 𝑎𝑛𝜙𝑛). We want to prove that 𝐵

𝑞,𝛼

𝑛
= (𝐵

𝑞,𝛼

𝑛,0
(𝑥),

𝐵
𝑞,𝛼

𝑛,1
(𝑥), . . . , 𝐵

𝑞,𝛼

𝑛,𝑛
(𝑥)) on [0, 1] is totally positive system, pro-

vided to prove that 𝑃
𝑞,𝛼

𝑛
= (𝑃
𝑞,𝛼

𝑛,0
(𝑥), . . . , 𝑃

𝑞,𝛼

𝑛,𝑛
(𝑥)) is totally

positivity system on [0, 1]; we use Heping Wang’s methods
(see [5]) to prove that 𝑃𝑞,𝛼

𝑛
= (𝑃
𝑞,𝛼

𝑛,0
(𝑥), . . . , 𝑃

𝑞,𝛼

𝑛,𝑛
(𝑥)) is totally

positivity systemon [0, 1]. For 0 ≤ 𝑖, 𝑘 ≤ 𝑛 andfixed 𝑞 ∈ (0, 1),

we define

𝑖
𝑅
𝑛

𝑘
(𝑥) =

{{{{{

{{{{{

{

𝑥
𝑘

𝑛−𝑘−1

∏

𝑗=0

(1 − 𝑠𝑗𝑥) , 𝑛 − 𝑘 ≤ 𝑖,

𝑥
𝑘
(1 − 𝑥)

𝑛−𝑘−𝑖

𝑖−1

∏

𝑗=0

(1 − 𝑠𝑗𝑥) , 𝑛 − 𝑘 > 𝑖,

𝑖
𝑃
𝑛

𝑘
(𝑥) =

{{{{{

{{{{{

{

𝑘−1

∏

𝑗=0

(𝑥 + 𝑟𝑗)

𝑛−𝑘−1

∏

𝑗=0

(1 − 𝑠𝑗𝑥) , 𝑘 ≤ 𝑖,

𝑥
𝑘−𝑖

𝑖−1

∏

𝑗=0

(𝑥 + 𝑟𝑗)

𝑛−𝑘−1

∏

𝑗=0

(1 − 𝑠𝑗𝑥) , 𝑘 > 𝑖,

(25)

where 𝑠𝑗, 𝑟𝑗, 𝑗 = 0, . . . , 𝑛 are given in (24). Clearly, for 0 ≤ 𝑘 ≤

𝑛,
𝑛
𝑃
𝑛

𝑘
(𝑥) = 𝑃

𝑞,𝛼

𝑛,𝑘
(𝑥) ,

0
𝑃
𝑛

𝑘
=
𝑛
𝑅
𝑛

𝑘
(𝑥) = 𝑥

𝑘

𝑛−𝑘−1

∏

𝑗=0

(1 − 𝑠𝑗𝑥) ,

0
𝑅
𝑛

𝑘
(𝑥) = 𝑥

𝑘
(1 − 𝑥)

𝑛−𝑘
.

(26)

For 0 ≤ 𝑖 < 𝑛, it follows from the definition of 𝑖𝑅𝑛
𝑘
(𝑥) that, for

𝑘 ≥ 𝑛 − 𝑖,

𝑖+1
𝑅
𝑛

𝑘
(𝑥) =

𝑖
𝑅
𝑛

𝑘
(𝑥) , (27)

and, for 𝑘 < 𝑛 − 𝑖,

𝑖+1
𝑅
𝑛

𝑘
(𝑥)

= 𝑥
𝑘
(1 − 𝑥)

𝑛−𝑘−𝑖−1

𝑖

∏

𝑗=0

(1 − 𝑠𝑗𝑥)

= 𝑥
𝑘
(1 − 𝑥)

𝑛−𝑘−𝑖
(1 − 𝑥)

−1
(1 − 𝑠𝑗𝑥)

𝑖−1

∏

𝑗=0

(1 − 𝑠𝑗𝑥)

= 𝑥
𝑘
(1 − 𝑥)

𝑛−𝑘−𝑖
(1 − 𝑥)

−1
((1 − 𝑥) + (1 − 𝑠𝑗) 𝑥)

×

𝑖−1

∏

𝑗=0

(1 − 𝑠𝑗𝑥)

= 𝑥
𝑘
(1 − 𝑥)

𝑛−𝑘−𝑖

𝑖−1

∏

𝑗=0

(1 − 𝑠𝑗𝑥)

+ 𝑥
𝑘+1

(1 − 𝑥)
𝑛−𝑘−𝑖−1

(1 − 𝑠𝑗)

𝑖−1

∏

𝑗=0

(1 − 𝑠𝑗𝑥)

=
𝑖
𝑅
𝑛

𝑘
(𝑥) + (1 − 𝑠𝑖)

𝑖
𝑅
𝑛

𝑘+1
(𝑥) .

(28)

Similarly, from the definition of 𝑖𝑃𝑛
𝑘
(𝑥), we get that, for 𝑘 ≤ 𝑖,

𝑖+1
𝑃
𝑛

𝑘
=
𝑖
𝑃
𝑛

𝑘
(𝑥) , (29)
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and, for 𝑘 > 𝑖,

𝑖+1
𝑃
𝑛

𝑘
(𝑥)

= 𝑥
𝑘−𝑖−1

𝑖

∏

𝑗=0

(𝑥 + 𝑟𝑗)

𝑛−𝑘−1

∏

𝑗=0

(1 − 𝑠𝑗𝑥)

= 𝑥
𝑘−𝑖−1

(𝑥 + 𝑟𝑖)

𝑖−1

∏

𝑗=0

(𝑥 + 𝑟𝑗)

𝑛−𝑘−1

∏

𝑗=0

(1 − 𝑠𝑗𝑥)

= 𝑥
𝑘−𝑖−1

(𝑟𝑖 − 𝑟𝑖𝑠𝑛−𝑘𝑥 + (1 + 𝑟𝑖𝑠𝑛−𝑘) 𝑥)

×

𝑖−1

∏

𝑗=0

(𝑥 + 𝑟𝑗)

𝑛−𝑘−1

∏

𝑗=0

(1 − 𝑠𝑗𝑥)

= 𝑟𝑖𝑥
𝑘−𝑖−1

𝑖−1

∏

𝑗=0

(𝑥 + 𝑟𝑗)

×

𝑛−𝑘

∏

𝑗=0

(1 − 𝑠𝑗𝑥) + (1 + 𝑟𝑖𝑠𝑛−𝑘) 𝑥
𝑘−𝑖

×

𝑖−1

∏

𝑗=0

(𝑥 + 𝑟𝑗)

𝑛−𝑘−1

∏

𝑗=0

(1 − 𝑠𝑗𝑥)

= 𝑟𝑖
𝑖
𝑃
𝑛

𝑘−1
(𝑥) + (1 + 𝑟𝑖𝑠𝑛−𝑘)

𝑖
𝑃
𝑛

𝑘
(𝑥) .

(30)

Hence, if we let

[
[

[

𝑖+1
𝑃
𝑛

0
(𝑥)

...
𝑖+1

𝑃
𝑛

𝑛
(𝑥)

]
]

]

= 𝑆
(𝑖) [

[

[

𝑖
𝑃
𝑛

0
(𝑥)

...
𝑖
𝑃
𝑛

𝑛
(𝑥)

]
]

]

, (31)

[
[

[

𝑖+1
𝑅
𝑛

0
(𝑥)

...
𝑖+1

𝑅
𝑛

𝑛
(𝑥)

]
]

]

= 𝑇
(𝑖) [

[

[

𝑖
𝑅
𝑛

0
(𝑥)

...
𝑖
𝑅
𝑛

𝑛
(𝑥)

]
]

]

, (32)

then

𝑆
(𝑖)

= (

(

1

d
1

𝑟𝑖 1 + 𝑟𝑖𝑆𝑛−𝑖−1

d d
𝑟𝑖 1 + 𝑟𝑖𝑆0

)

)

,

𝑇
(𝑖)

=

[
[
[
[
[
[
[

[

1 1 − 𝑆𝑖

d d
1 1 − 𝑆𝐽

1

d
1

]
]
]
]
]
]
]

]

.

(33)

From (26) and (31), we obtain

𝑃
𝑞,𝛼

𝑛,0

... 𝑃
𝑞,𝛼

𝑛,𝑛
(𝑥)

=

[
[
[
[
[

[

𝑃
𝑞,𝛼

𝑛,0
(𝑥)

𝑃
𝑞,𝛼

𝑛,1
(𝑥)

...
𝑃
𝑞,𝛼

𝑛,𝑛
(𝑥)

]
]
]
]
]

]

=

[
[
[
[
[

[

𝑛
𝑃
𝑛

0
(𝑥)

𝑛
𝑃
𝑛

1,𝑛
(𝑥)

...
𝑛
𝑃
𝑛

𝑛,𝑛
(𝑥)

]
]
]
]
]

]

= 𝑆
(𝑛−1)

[
[
[
[
[
[

[

𝑛−1
𝑃
𝑛

0
(𝑥)

𝑛−1
𝑃
𝑛

1,𝑛
(𝑥)

...
𝑛−1

𝑃
𝑛

𝑛,𝑛
(𝑥)

]
]
]
]
]
]

]

= 𝑆
(𝑛−1)

𝑆
(𝑛−2)

⋅ ⋅ ⋅ 𝑆
(1)

𝑆
(0)

[
[
[
[
[
[

[

0
𝑃
𝑛

0
(𝑥)

0
𝑃
𝑛

1
(𝑥)

...
0
𝑃
𝑛

𝑛
(𝑥)

]
]
]
]
]
]

]

= 𝑆
(𝑛−1)

𝑆
(𝑛−2)

⋅ ⋅ ⋅ 𝑆
(1)

𝑆
(0)

[
[
[
[
[

[

𝑛
𝑅
𝑛

0
(𝑥)

𝑛
𝑅
𝑛

1
(𝑥)

...
𝑛
𝑅
𝑛

𝑛
(𝑥)

]
]
]
]
]

]

= 𝑆
(𝑛−1)

𝑆
(𝑛−2)

⋅ ⋅ ⋅ 𝑆
(1)

𝑆
(0)

𝑇
(𝑛−1)

[
[
[
[
[
[

[

(𝑛−1)
𝑅
𝑛

0
(𝑥)

(𝑛−1)
𝑅
𝑛

1
(𝑥)

...
(𝑛−1)

𝑅
𝑛

𝑛
(𝑥)

]
]
]
]
]
]

]

= 𝑆
(𝑛−1)

𝑆
(𝑛−2)

⋅ ⋅ ⋅ 𝑆
(1)

𝑆
(0)

𝑇
(𝑛−1)

𝑇
(𝑛−2)

[
[
[
[
[
[

[

(𝑛−2)
𝑅
𝑛

0
(𝑥)

(𝑛−2)
𝑅
𝑛

1
(𝑥)

...
(𝑛−2)

𝑅
𝑛

𝑛
(𝑥)

]
]
]
]
]
]

]

= 𝑆
(𝑛−1)

𝑆
(𝑛−2)

⋅ ⋅ ⋅ 𝑆
(1)

𝑆
(0)

𝑇
(𝑛−1)

𝑇
(𝑛−2)

⋅ ⋅ ⋅ 𝑇
(1)

𝑇
(0)

×

[
[
[
[
[
[

[

0
𝑅
𝑛

0
(𝑥)

0
𝑅
𝑛

1
(𝑥)

...
0
𝑅
𝑛

𝑛
(𝑥)

]
]
]
]
]
]

]

= 𝑆
(𝑛−1)

𝑆
(𝑛−2)

⋅ ⋅ ⋅ 𝑆
(1)

𝑆
(0)

𝑇
(𝑛−1)

𝑇
(𝑛−2)

⋅ ⋅ ⋅ 𝑇
(1)

𝑇
(0)

×
0
𝑅
𝑛

0
(𝑥)

... 0𝑅𝑛
0
(𝑥) .

(34)

Obviously, 𝑆
(𝑖), 𝑇
(𝑖), 𝑖 = 0, 1, . . . , 𝑛 − 1 are 1-banded

matrixes with nonnegative elements. Since the sequence of
functions,

((1 − 𝑥)
𝑛
, 𝑥(1 − 𝑥)

𝑛−1
, 𝑥
2
(1 − 𝑥)

𝑛−2
, . . . , 𝑥

𝑛−1
(1 − 𝑥) , 𝑥

𝑛
) ,

(35)

is totally positive on [0, 1], by (26), (34) and Lemmas 3 and 4,
we obtain that 𝑃𝑞,𝛼

𝑛
is a totally positive system on [0, 1]. The

proof of Theorem 1 is complete.
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Proof of Theorem 2. The proof of Theorem 2 follows from
Theorem 1. From Theorem 1, we know that 𝑞-Bernstein-
Stancu basis

𝐵
𝑞,𝛼

𝑛
= (𝐵
𝑞,𝛼

𝑛,0
(𝑥) , . . . , 𝐵

𝑞,𝛼

𝑛,𝑛
) (36)

is totally positive for 𝑥 ∈ [0, 1]. By Lemma 5 we obtain that

𝑆
−1

(𝐵
𝑞,𝛼

𝑛
(𝑓; 𝑥))

= 𝑆
−1

(

𝑛

∑

𝑟=0

𝑓(
[𝑘]𝑞

[𝑛]𝑞

)𝐵
𝑞,𝛼

𝑛,𝑘
(𝑥))

≤ 𝑆
−1

(𝑓(
[0]𝑞

[𝑛]𝑞

) , 𝑓(
[1]𝑞

[𝑛]𝑞

) , . . . , 𝑓(
[𝑛]𝑞

[𝑛]𝑞

))

≤ 𝑆
−1

(𝑓 (𝑥)) ,

(37)

which means that the 𝑞-Bernstein-Stancu operators 𝐵
𝑞,𝛼

𝑛
are

variation-diminishing. Since 𝑞-Bernstein-Stancu polynomi-
als reproduce linear functions, we get for any function 𝑓 and
any linear polynomial 𝑃,

𝑆
−1

(𝐵
𝑞,𝛼

𝑛
(𝑓) − 𝑝) = 𝑆

−1
(𝐵
𝑞,𝛼

𝑛
(𝑓 − 𝑝))

≤ 𝑆
−1

(𝑓 − 𝑝) .

(38)

A standard reasoning based on (38) and endpoint inter-
polation property of 𝐵

𝑞,𝛼

𝑛
yields that 𝐵

𝑞,𝛼

𝑛
are monotonicity

preserving and convexity preserving (see [7], pp. 287-288).
Theorem 2 is proved.
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