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Thepurpose of the present paper is to introduce two subclasses of𝑝-valent functions by using the integral operator and to investigate
various properties for these subclasses.

1. Introduction

LetA(𝑝) denote the class of functions of the following form:

𝑓 (𝑧) = 𝑧
𝑝
+

∞

∑

𝑗=1

𝑎𝑝+𝑗𝑧
𝑝+𝑗
, (𝑝 ∈ N = {1, 2, 3, ...}) , (1)

which are analytic and𝑝-valent in the open unit discU = {𝑧 ∈
C : |𝑧| < 1}. LetP𝑘(𝑝, 𝛾) be the class of functions 𝑔 analytic
in U satisfying 𝑔(0) = 𝑝 and

∫

2𝜋

0



R {𝑔 (𝑧)} − 𝛾

𝑝 − 𝛾



𝑑𝜃 ≤ 𝑘𝜋, (𝑧 = 𝑟𝑒
𝑖𝜃
; 𝑘 ≥ 2; 0 ≤ 𝛾 < 𝑝) .

(2)

The class P𝑘(𝑝, 𝛾) was introduced by Aouf [1] and we note
the following:

(i) the class P𝑘(1, 𝛾) = P𝑘(𝛾) was introduced by Pad-
manabhan and Parvatham [2];

(ii) the class P𝑘(1, 0) = P𝑘 was introduced by Pinchuk
[3];

(iii) P2(𝑝, 𝛾) = P(𝑝, 𝛾) is the class of functions with pos-
itive real part greater than 𝛾 (0 ≤ 𝛾 < 𝑝);

(iv) P2(1, 𝛾) = P(𝛾) is the class of functions with positive
real part greater than 𝛾 (0 ≤ 𝛾 < 1);

(v) P2(1, 0) = P is the class of functions with positive
real part.

From (1), we have 𝑔 ∈ P𝑘(𝑝, 𝛾) if and only if there exists
𝑔1, 𝑔2 ∈ P(𝑝, 𝛾) such that

𝑔 (𝑧) = (
𝑘

4
+
1

2
)𝑔1 (𝑧) − (

𝑘

4
−
1

2
)𝑔2 (𝑧) , (𝑧 ∈ U) . (3)

It is known that [4] the classP𝑘(𝛾) is a convex set.
Motivated essentially by Jung et al. [5], Liu and Owa [6]

introduced the integral operator 𝑄𝛼
𝛽,𝑝
: A(𝑝) → A(𝑝) (𝛼 ≥

0; 𝛽 > −𝑝; 𝑝 ∈ N) as follows:

𝑄
𝛼

𝛽,𝑝
𝑓 (𝑧)

=

{{{

{{{

{

(
𝑝+𝛼 + 𝛽−1

𝑝+𝛽−1
)
𝛼

𝑧𝛽
∫

𝑧

0

(1−
𝑡

𝑧
)

𝛼−1

𝑡
𝛽−1
𝑓 (𝑡) 𝑑𝑡 (𝛼>0) ,

𝑓 (𝑧) (𝛼=0) .

(4)

For 𝑓 ∈ A(𝑝) given by (1) and then from (4), we deduce that

𝑄
𝛼

𝛽,𝑝
𝑓 (𝑧) = 𝑧

𝑝
+
Γ (𝛼+𝛽+𝑝)

Γ (𝛽+𝑝)

∞

∑

𝑗=1

Γ (𝛽+𝑝+𝑗)

Γ (𝛼+𝛽+𝑝+𝑗)
𝑎𝑝+𝑗𝑧
𝑝+𝑗

(𝛼 ≥ 0; 𝛽 > −𝑝) .

(5)

It is easily verified from (5) that (see [6])

𝑧(𝑄
𝛼+1

𝛽,𝑝
𝑓(𝑧))



= (𝛼 + 𝛽 + 𝑝)𝑄
𝛼

𝛽,𝑝
𝑓 (𝑧) − (𝛼 + 𝛽)𝑄

𝛼

𝛽,𝑝
𝑓 (𝑧) .

(6)
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We note that (i) the one-parameter family of integral operator
𝑄
𝛼

𝛽,1
= 𝑄
𝛼

𝛽
was defined by Jung et al. [5] and studied by Aouf

[7] and Gao et al. [8].
(ii) Consider

𝑄
1

𝑐,𝑝
𝑓 (𝑧) = 𝐹𝑐,𝑝 (𝑓) (𝑧) =

𝑐 + 𝑝

𝑧𝑐
∫ 𝑡
𝑐−1
𝑓 (𝑧) 𝑑𝑡, (𝑐 > −𝑝) ,

(7)

where the operator 𝐹𝑐,𝑝 is the generalized Bernardi-Libera-
Livingston integral operator (see [9]).

We have the following known subclasses S𝑘(𝑝, 𝛾) and
C𝑘(𝑝, 𝛾) of the classA(𝑝) for 0 ≤ 𝛾, 𝜂 < 𝑝, and 𝑘 ≥ 2 which
are defined by

S𝑘 (𝑝, 𝛾) = {𝑓 ∈ A (𝑝) :
𝑧𝑓

(𝑧)

𝑓 (𝑧)
∈ P𝑘 (𝑝, 𝛾) , 𝑧 ∈ U} ,

C𝑘 (𝑝, 𝛾) =
{

{

{

𝑓 ∈ A (𝑝) :
(𝑧𝑓

(𝑧))


𝑓 (𝑧)
∈ P𝑘 (𝑝, 𝛾) , 𝑧 ∈ U

}

}

}

.

(8)

Next, by using the integral operator 𝑄𝛼
𝛽,𝑝

, we introduce
the following classes of analytic functions for 0 ≤ 𝛾 < 𝑝 and
𝑘 ≥ 2:

S𝑘 (𝑝, 𝛼; 𝛾) = {𝑓 ∈ A (𝑝) : 𝑄
𝛼

𝛽,𝑝
𝑓 (𝑧) ∈ S𝑘 (𝑝, 𝛾)} ,

C𝑘 (𝑝, 𝛼; 𝛾) = {𝑓 ∈ A (𝑝) : 𝑄
𝛼

𝛽,𝑝
𝑓 (𝑧) ∈ C𝑘 (𝑝, 𝛾)} .

(9)

We also note that

𝑓 ∈ C𝑘 (𝑝, 𝛼; 𝛾) ⇐⇒
𝑧𝑓


𝑝
∈ S𝑘 (𝑝, 𝛼; 𝛾) . (10)

In particular, we set S𝑘(1, 𝛼; 𝛾) = S𝑘(𝛼; 𝛾) and C𝑘(1, 𝛼; 𝛾) =
C𝑘(𝛼; 𝛾).

The following lemmawill be required in our investigation.

Lemma 1 (see [10]). Let 𝑢 = 𝑢1 + 𝑖𝑢2 and V = V1 + 𝑖V2 and let
Ψ(𝑢, V) be a complex-valued function satisfying the following
conditions:

(i) Ψ(𝑢, V) is continuous in a domain𝐷 ∈ C2;
(ii) (0, 1) ∈ 𝐷 and Ψ(1, 0) > 0;
(iii) R{Ψ(𝑖𝑢2, V1)} > 0 whenever (𝑖𝑢2, V1) ∈ 𝐷 and V1 ≤

−(1/2)(1 + 𝑢
2

2
).

If ℎ(𝑧) = 1 + 𝑐1𝑧 + 𝑐2𝑧2 + ⋅ ⋅ ⋅ is analytic in U such that
(ℎ(𝑧), 𝑧ℎ


(𝑧)) ∈ 𝐷 and R{Ψ(ℎ(𝑧), 𝑧ℎ(𝑧))} > 0 for 𝑧 ∈ U,

thenR{Ψ(ℎ(𝑧), 𝑧ℎ(𝑧))} > 0 in U.

Lemma 2 (see [11]). Let 𝑝(𝑧) be analytic in U with 𝑝(0) = 𝑎
andR{𝑝(𝑧)} > 0, 𝑧 ∈ U. Then, for 𝑠 > 0 and 𝜇 ∈ C \ {−1},

R{𝑝 (𝑧) +
𝑠𝑧𝑝

(𝑧)

𝑝 (𝑧) + 𝜇
} > 0, (|𝑧| < 𝑟0) , (11)

where 𝑟0 is given by

𝑟0 =

𝜇 + 1


√𝐴 + (𝐴2 −
𝜇
2 − 1

)
1/2

, 𝐴 = 2(𝑠 + 1)
2
+
𝜇

2
− 1,

(12)

and this radius is the best possible.

Lemma 3 (see [12]). Let𝜓 be convex and let 𝑔 be starlike inU.
Then, for 𝐹 analytic in U with 𝐹(0) = 1, ((𝜓 ∗ 𝐹𝑔)/(𝜓 ∗ 𝑔)) is
contained in the convex hull of 𝐹(U).

In this paper, we obtain several inclusion properties of
the classes S𝑘(𝑝, 𝛼; 𝛾) and C𝑘(𝑝, 𝛼; 𝛾) associated with the
operator 𝑄𝛼

𝛽,𝑝
.

2. Main Results

Unless otherwise mentioned, we assume throughout this
paper that 𝑘 ≥ 2, 𝛼 ≥ 0, 𝛽 > 0, 0 ≤ 𝛾 < 𝑝, and 𝑝 ∈ N.

Theorem 4. One has

S𝑘 (𝑝, 𝛼 + 1; 𝛾) ⊂ S𝑘 (𝑝, 𝛼; 𝛾) . (13)

Proof. We begin by setting

𝑧(𝑄
𝛼+1

𝛽,𝑝
𝑓(𝑧))



𝑄𝛼+1
𝛽,𝑝
𝑓 (𝑧)

= (𝑝 − 𝛾) ℎ (𝑧) + 𝛾

= (
𝑘

4
+
1

2
) {(𝑝 − 𝛾) ℎ1 (𝑧) + 𝛾}

− (
𝑘

4
−
1

2
) {(𝑝 − 𝛾) ℎ2 (𝑧) + 𝛾} ,

(14)

where ℎ𝑖 is analytic in U with ℎ𝑖(0) = 1, 𝑖 = 1, 2. Using the
identity (6) in (14) and differentiating the resulting equation
with respect to 𝑧, we obtain

𝑧(𝑄
𝛼

𝛽,𝑝
𝑓(𝑧))



𝑄𝛼
𝛽,𝑝
𝑓 (𝑧)

= {𝛾 + (𝑝 − 𝛾) ℎ (𝑧)

+
(𝑝 − 𝛾) 𝑧ℎ


(𝑧)

(𝑝 − 𝛾) ℎ (𝑧) + 𝛾 + 𝛼 + 𝛽
} ∈ P𝑘 (𝑝, 𝛾) .

(15)

This implies that

ℎ𝑖 (𝑧) +
𝑧ℎ


𝑖
(𝑧)

(𝑝 − 𝛾) ℎ𝑖 (𝑧) + 𝛾 + 𝛼 + 𝛽
∈ P, (𝑧 ∈ U; 𝑖 = 1, 2) .

(16)

We form the functional Ψ(𝑢, V) by choosing 𝑢 = ℎ𝑖(𝑧) and
V = 𝑧ℎ

𝑖
(𝑧):

Ψ (𝑢, V) = 𝑢 +
V

(𝑝 − 𝛾) 𝑢 + 𝛾 + 𝛼 + 𝛽
. (17)
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Clearly, the first two conditions of Lemma 1 are satisfied.
Now, we verify condition (iii) as follows:

R {Ψ (𝑖𝑢2, V1)} = R{
V1

(𝑝 − 𝛾) 𝑖𝑢2 + 𝛾 + 𝛼 + 𝛽
}

≤ −
(𝛾 + 𝛼 + 𝛽) (1 + 𝑢

2

2
)

2 [(𝑝 − 𝛾)
2
𝑢2
2
+ (𝛾 + 𝛼 + 𝛽)

2
]
< 0.

(18)

Therefore applying Lemma 1, ℎ𝑖 ∈ P (𝑖 = 1, 2) and
consequently ℎ ∈ P𝑘 for 𝑧 ∈ U. This completes the proof
of Theorem 4.

Theorem 5. One has
C𝑘 (𝑝, 𝛼 + 1; 𝛾) ⊂ C𝑘 (𝑝, 𝛼; 𝛾) . (19)

Proof. Applying (10) andTheorem 4, we observe that

𝑓 ∈ C𝑘 (𝑝, 𝛼 + 1; 𝛾)

⇐⇒
𝑧𝑓


𝑝
∈ S𝑘 (𝑝, 𝛼 + 1; 𝛾) ⇒

𝑧𝑓


𝑝
∈ S𝑘 (𝑝, 𝛼; 𝛾)

⇐⇒ 𝑓 ∈ C𝑘 (𝑝, 𝛼; 𝛾) ,

(20)

which evidently proves Theorem 5.

Theorem 6. If 𝑓 ∈ S𝑘(𝑝, 𝛼; 𝛾), then 𝐹𝑐,𝑝(𝑓) ∈ S𝑘(𝑝, 𝛼;

𝛾) (𝑐 ≥ 0), where the generalized Libera integral operator 𝐹𝑐,𝑝
is defined by (7).

Proof. Let 𝑓 ∈ S𝑘(𝑝, 𝛼; 𝛾) and set

𝑧(𝑄
𝛼

𝛽,𝑝
𝐹𝑐,𝑝 (𝑓) (𝑧))



𝑄𝛼
𝛽,𝑝
𝐹𝑐,𝑝 (𝑓) (𝑧)

= (𝑝 − 𝛾) ℎ (𝑧) + 𝛾

= (
𝑘

4
+
1

2
) {(𝑝 − 𝛾) ℎ1 (𝑧) + 𝛾}

− (
𝑘

4
−
1

2
) {(𝑝 − 𝛾) ℎ2 (𝑧) + 𝛾} ,

(21)

where ℎ is analytic in U with ℎ(0) = 1. From (21), we have

𝑧(𝑄
𝛼

𝛽,𝑝
𝐹𝑐,𝑝 (𝑓) (𝑧))



= (𝑐 + 𝑝)𝑄
𝛼

𝛽,𝑝
𝑓 (𝑧) − 𝑐𝑄

𝛼

𝛽,𝑝
𝐹𝑐,𝑝 (𝑓) (𝑧) .

(22)

Then, by using (21) and (22), we obtain

(𝑐 + 𝑝)
𝑄
𝛼

𝛽,𝑝
𝑓 (𝑧)

𝑄𝛼
𝛽,𝑝
𝐹𝑐,𝑝 (𝑓) (𝑧)

= (𝑝 − 𝛾) ℎ (𝑧) + 𝛾 + 𝑐. (23)

Taking the logarithmic differentiation on both sides of (23)
with respect to 𝑧 and multiplying by 𝑧, we have

1

𝑝 − 𝛾
(
𝑧(𝑄
𝛼

𝛽,𝑝
𝑓 (𝑧))



𝑄𝛼
𝛽,𝑝
𝑓 (𝑧)

− 𝛾)

= ℎ (𝑧) +
𝑧ℎ

(𝑧)

(𝑝 − 𝛾) ℎ (𝑧) + 𝛾 + 𝑐
∈ P𝑘.

(24)

This implies that

{ℎ𝑖 (𝑧) +
𝑧ℎ


𝑖
(𝑧)

(𝑝 − 𝛾) ℎ𝑖 (𝑧) + 𝛾 + 𝑐
} ∈ P, (𝑧 ∈ U; 𝑖 = 1, 2) .

(25)

We form the functional Ψ(𝑢, V) by choosing 𝑢 = ℎ𝑖(𝑧) and
V = 𝑧ℎ

𝑖
(𝑧):

Ψ (𝑢, V) = 𝑢 +
V

(𝑝 − 𝛾) 𝑢 + 𝛾 + 𝑐
. (26)

Then clearly Ψ(𝑢, V) satisfies all the properties of Lemma 1.
Hence, ℎ𝑖 ∈ P (𝑖 = 1, 2) and consequently ℎ ∈ P𝑘 for 𝑧 ∈
U, which implies that 𝐹𝑐,𝑝(𝑓) ∈ S𝑘(𝑝, 𝛼; 𝛾).

Next, we derive an inclusion property for the subclass
C𝑘(𝛼; 𝛾) involving 𝐹𝑐,𝑝(𝑓), which is given by the following
theorem.

Theorem 7. If 𝑓 ∈ C𝑘(𝑝, 𝛼; 𝛾), then 𝐹𝑐,𝑝(𝑓) ∈ C𝑘(𝑝, 𝛼;
𝛾) (𝑐 ≥ 0), where 𝐹𝑐,𝑝 is defined by (7).

Proof. By applyingTheorem 6, it follows that

𝑓 ∈ C𝑘 (𝑝, 𝛼; 𝛾) ⇐⇒
𝑧𝑓


𝑝
∈ S𝑘 (𝑝, 𝛼; 𝛾)

⇒ 𝐹𝑐,𝑝 (
𝑧𝑓


𝑝
) ∈ S𝑘 (𝑝, 𝛼; 𝛾)

(by Theorem 5)

⇐⇒
𝑧(𝐹𝑐,𝑝 (𝑓))



𝑝
∈ S𝑘 (𝑝, 𝛼; 𝛾)

⇐⇒ 𝐹𝑐,𝑝 (𝑓) ∈ C𝑘 (𝑝, 𝛼; 𝛾) ,

(27)

which proves Theorem 7.

Theorem 8. If 𝑓 ∈ C𝑘(𝑝, 𝛼 + 1; 𝛾), for 𝑧 ∈ U, then 𝑓 ∈

C𝑘(𝑝, 𝛼; 𝛾) for

|𝑧| < 𝑟0 =

𝜇 + 1


√𝐴 + (𝐴2 −
𝜇
2 − 1

)
1/2

, (28)

where𝐴 = 2(𝑠 + 1)2+|𝜇|2−1, with𝜇 = ((𝛾+𝛼+𝛽)/(𝑝−𝛾)) ̸= −1
and 𝑠 = (1/(𝑝 − 𝛾)). This radius is the best possible.

Proof. Let 𝑓 ∈ C𝑘(𝑝, 𝛼 + 1; 𝛾) for 𝑧 ∈ U and let

𝑧(𝑄
𝛼+1

𝛽,𝑝
𝑓(𝑧))



𝑄𝛼+1
𝛽,𝑝
𝑓 (𝑧)

= (𝑝 − 𝛾) ℎ (𝑧) + 𝛾

= (
𝑘

4
+
1

2
) {(𝑝 − 𝛾) ℎ1 (𝑧) + 𝛾}

− (
𝑘

4
−
1

2
) {(𝑝 − 𝛾) ℎ2 (𝑧) + 𝛾} ,

(29)
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where ℎ𝑖 is analytic in U with ℎ𝑖(0) = 1 andR{ℎ𝑖(𝑧)} > 0 for
𝑖 = 1, 2. Using the identity (6) in (29) and differentiating the
resulting equation with respect to 𝑧, we obtain

1

𝑝 − 𝛾

{

{

{

𝑧(𝑄
𝛼

𝛽,𝑝
𝑓 (𝑧))



𝑄𝛼
𝛽,𝑝
𝑓 (𝑧)

− 𝛾
}

}

}

= ℎ (𝑧) +
(1/ (𝑝 − 𝛾)) 𝑧ℎ


(𝑧)

ℎ (𝑧) + ((𝛾 + 𝛼 + 𝛽) / (𝑝 − 𝛾))

= (
𝑘

4
+
1

2
){ℎ1 (𝑧) +

(1/ (𝑝 − 𝛾)) 𝑧ℎ


1
(𝑧)

ℎ1 (𝑧) + ((𝛾 + 𝛼 + 𝛽) / (𝑝 − 𝛾))
}

− (
𝑘

4
−
1

2
){ℎ2 (𝑧)

+
(1/ (𝑝 − 𝛾)) 𝑧ℎ



2
(𝑧)

ℎ2 (𝑧) + ((𝛾 + 𝛼 + 𝛽) / (𝑝 − 𝛾))
} ,

(30)

whereR{ℎ𝑖(𝑧)} > 0 for 𝑖 = 1, 2. Applying Lemma 2 with 𝑠 =
((𝛾 + 𝛼 + 𝛽)/(𝑝 − 𝛾)) and 𝜇 = ((𝛾 + 𝛼 + 𝛽)/(𝑝 − 𝛾)) ̸= − 1, we
get

R{ℎ𝑖 (𝑧) +
(1/ (𝑝 − 𝛾)) 𝑧ℎ



𝑖
(𝑧)

ℎ𝑖 (𝑧) + ((𝛾 + 𝛼 + 𝛽) / (𝑝 − 𝛾))
} > 0

for |𝑧| < 𝑟0,

(31)

where 𝑟0 is given by (28). This completes the proof of
Theorem 8.

Theorem 9. Let 𝜙 be a convex function and 𝑓 ∈ S2(𝛼; 𝛾).
Then 𝐺 ∈ S2(𝛼; 𝛾), where 𝐺 = 𝜙 ∗ 𝑓.

Proof. Let = 𝜙 ∗ 𝑓. Then

𝑄
𝛼

𝛽,𝑝
𝐺 (𝑧) = 𝑄

𝛼

𝛽,𝑝
(𝜙 ∗ 𝑓) (𝑧) = 𝜙 (𝑧) ∗ 𝑄

𝛼

𝛽,𝑝
𝑓 (𝑧) . (32)

Also, 𝑓 ∈ S2(𝛼; 𝛾). Therefore,𝑄𝛼
𝛽,𝑝
𝑓 ∈ S2(𝛾). By logarithmic

differentiation of (32) and after some simplification, we
obtain

𝑧(𝑄
𝛼

𝛽,𝑝
𝐺 (𝑧))



𝑝𝑄𝛼
𝛽,𝑝
𝐺 (𝑧)

=
𝜙 (𝑧) ∗ 𝐹 (𝑧)𝑄

𝛼

𝛽,𝑝
𝑓 (𝑧)

𝜙 (𝑧) ∗ 𝑄𝛼
𝛽,𝑝
𝑓 (𝑧)

, (33)

where 𝐹 = 𝑧(𝑄
𝛼

𝛽,𝑝
𝑓(𝑧))

/𝑝𝑄
𝛼

𝛽,𝑝
𝑓(𝑧) is analytic in U and

𝐹(0) = 1. From Lemma 3, we can see that 𝑧(𝑄𝛼
𝛽,𝑝
𝐺(𝑧))

/

𝑝𝑄
𝛼

𝛽,𝑝
𝐺(𝑧) is contained in the convex hull of 𝐹(U). Since

𝑧(𝑄
𝛼

𝛽,𝑝
𝐺(𝑧))

/𝑝𝑄
𝛼

𝛽,𝑝
𝐺(𝑧) is analytic in U and

𝐹 (U) = Ω =
{

{

{

𝑤 :
𝑧(𝑄
𝛼

𝛽,𝑝
𝑤 (𝑧))



𝑝𝑄𝛼
𝛽,𝑝
𝑤 (𝑧)

∈ P (𝛾)
}

}

}

, (34)

then 𝑧(𝑄𝛼
𝛽,𝑝
𝐺(𝑧))

/𝑝𝑄
𝛼

𝛽,𝑝
𝐺(𝑧) lies in Ω; this implies that 𝐺 =

𝜙 ∗ 𝑓 ∈ S2(𝛼; 𝛾).

Remark 10. Putting 𝑝 = 1 in the above results, we obtain
corresponding results for the operator 𝑄𝛼

𝛽
.
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