
Research Article
On the Range of the Radon Transform on Z𝑛 and the Related
Volberg’s Uncertainty Principle

Ahmed Abouelaz,1 Abdallah Ihsane,1 and Takeshi Kawazoe2

1Department of Mathematics and Computer Science, University Hassan II of Casablanca, Faculty of Sciences Aı̈n Chock,
Route d’El Jadida Km 8, BP 5366, Maârif, 20100 Casablanca, Morocco
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We characterize the image of exponential type functions under the discrete Radon transform R on the lattice Z𝑛 of the Euclidean
space R𝑛 (𝑛 ≥ 2). We also establish the generalization of Volberg’s uncertainty principle on Z𝑛, which is proved by means of this
characterization. The techniques of which we make use essentially in this paper are those of the Diophantine integral geometry as
well as the Fourier analysis.

1. Introduction

First of all, we recall briefly that the uncertainty principle
states, roughly speaking, that a nonzero function and its
Fourier transform cannot both be sharply localized, which
can be interpreted topologically by the fact that they cannot
have simultaneously their supports in a same too small
compact (see the Heisenberg uncertainty principle in [1]).
Considerable attention has been devoted to discovering
different forms of the uncertainty principle on many settings
such as certain types of Lie groups and homogeneous trees.
Several versions of the uncertainty principle have been
established by many authors in the last few decades. Among
the contributions dealing with this important topic, let us
quote principally [1–4]. On the other hand, we note that
the uncertainty principle is one of the major themes of the
classical Fourier analysis as well as its neighboring parts of
the mathematical analysis.

We consider here the lattice Z𝑛 of the Euclidean space
R𝑛 (𝑛 ≥ 2). For 𝑎 = (𝑎

1
, . . . , 𝑎

𝑛
) ∈ Z𝑛 \ {0} and 𝑘 ∈ Z,

the linear Diophantine equation 𝑎𝑥 = 𝑘 has an infinity of
solutions in Z𝑛 if and only if 𝑘 is an integral multiple of the
greatest common divisor 𝑑(𝑎) of the integers 𝑎

1
, . . . , 𝑎

𝑛
, where

𝑎𝑥 denotes the usual inner product of 𝑎 and 𝑥 regarded as two

vectors of the Euclidean space R𝑛 (see [5] for more details).
Therefore, for 𝑎 ∈ P = {𝑚 ∈ Z𝑛 \ {0} | 𝑑(𝑚) = 1}, the
set 𝐻(𝑎, 𝑘) = {𝑥 ∈ Z𝑛 | 𝑎𝑥 = 𝑘} of all its solutions in
Z𝑛 is infinite and forms a discrete hyperplane in Z𝑛. Let G
be the set consisting of all hyperplanes 𝐻(𝑎, 𝑘) in Z𝑛, where
(𝑎, 𝑘) ∈ P × Z. We note that G plays a role as discrete
Grassmannian and can be parametrized as P × Z/ ± 1 (see
[5, Section 2]). Moreover, G can be written as the following
disjoint union:

G = G
(1)

∪ G
(2)

, (1)

where

G
(1)

= {𝐻 (𝑎, 𝑘) | (𝑎, 𝑘) ∈ P × Z, ‖𝑎‖
2

| 𝑘}

= {𝐻 (𝑎, ‖𝑎‖
2

𝑘) | (𝑎, 𝑘) ∈ P × Z} ,

G
(2)

= {𝐻 (𝑎, 𝑘) | (𝑎, 𝑘) ∈ P × Z, ‖𝑎‖
2

∤ 𝑘}

= {𝐻 (𝑎, 𝑘) | (𝑎, 𝑘) ∈ P × Z, 𝑘 ∉ ‖𝑎‖
2

Z} ,

(2)

with ‖𝑎‖
2

= ∑
𝑛

𝑖=1
𝑎
2

𝑖
, for all 𝑎 = (𝑎

1
, . . . , 𝑎

𝑛
) ∈ P.
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As an analogue of the Euclidean case, the discrete Radon
transform 𝑅 on Z𝑛, which maps a function 𝑓 ∈ 𝑙

1

(Z𝑛) to a
function 𝑅𝑓 on G, is defined by

𝑅𝑓 (𝐻 (𝑎, 𝑘)) = ∑

𝑚∈𝐻(𝑎,𝑘)

𝑓 (𝑚) , (3)

for all (𝑎, 𝑘) ∈ P×Z, where 𝑙1(Z𝑛) is the space of all complex-
valued functions 𝑓 defined on Z𝑛 such that ∑

𝑚∈Z𝑛 |𝑓(𝑚)| <

+∞ (see [5] for more details on this Radon transform).
In this paper, we are interested in developing the study of

the restriction of the Radon transform 𝑅𝑓 of 𝑓 ∈ 𝑙
1

(Z𝑛) to
G(1). By means ofTheorem 1 stated below, considered here as
the firstmain result, we succeeded in proving the secondmain
result concerning the generalization of Volberg’s UP on Z𝑛

(see Theorem 2). We precise that G(1) is the most important
subset of the discrete Grassmannian G for our study of both
fundamental results (see Sections 3 and 4).

The purpose of this paper is to study the characterization
of the image of exponential type functions under 𝑅, as well as
the generalization of Volberg’s UP on Z𝑛.

Our work is motivated by the fact that the uncertainty
principle for the discrete Radon transform 𝑅 on Z𝑛 plays a
fundamental role in the field of physics, especially in quantum
mechanics.

Our paper is organized as follows.
In Section 2, we fix, once and for all, some notation and

also give certain properties of the discrete Radon transform
𝑅 on Z𝑛, which will be useful in the sequel of this paper.
Moreover, we recall Volberg’s theorem on Z in the same
section.

Section 3 deals with the characterization of the image of
exponential type functions under 𝑅, which is given by the
following main theorem (seeTheorem 4).

Theorem 1 (characterization of the image of exponential type
functions under 𝑅). Let 𝑓 be a positive function of 𝑙1(Z𝑛).
Then

(i) the following two conditions are equivalent:

(1) 𝑓(𝑚) = 𝑂(𝑒
−𝛼‖𝑚‖

2

),

(2) 𝑅𝑓(𝐻(𝑎, ‖𝑎‖
2

𝑘)) = 𝑂(𝑒
−𝛼𝑘
2

), ∀𝑎 ∈ P,

where 𝛼 > 1 is an absolute constant;
(ii) the following two equivalences hold:

(3) [|𝑅𝑓(𝐻(𝑎, 𝑘))| ≤ exp(−𝛽𝑘2), ∀(𝑎, 𝑘) ∈ P ×

Z] ⇔ [𝑓(𝑚) = 0, ∀𝑚 ∈ Z𝑛 \ {0}],

where 𝛽 > 0 is an absolute constant,

(4) [|𝑅𝑓(𝐻(𝑎, 𝑘))| ≤ |𝑘| exp(−𝛾𝑘2), ∀(𝑎, 𝑘) ∈ P ×

Z] ⇔ 𝑓 = 0,

where 𝛾 > 0 is an absolute constant.

Section 4 is devoted to establishing the generalization of
Volberg’s UP on the lattice Z𝑛 (see Theorem 2 below). We
make here use of the discrete Fourier transform F, which
maps a function 𝑓 ∈ 𝑙

1

(Z𝑛) to a functionF𝑓 on T𝑛 defined
by

F𝑓 (𝜆) = ∑

𝑚∈Z𝑛

𝑓 (𝑚) exp (−2𝑖𝜋𝜆𝑚) , ∀𝜆 ∈ T
𝑛

, (4)

where T𝑛 = R𝑛/Z𝑛 is the 𝑛-dimensional torus.
For 𝑎 ∈ P and 𝑓 ∈ 𝑙

1

(Z𝑛), we denote by
𝐵(𝑎) (resp., 𝑓

|𝐵(𝑎)
) the set

𝐵 (𝑎) = {𝑚 ∈ Z
𝑛

|

𝑎𝑚

‖𝑎‖
2
∈ Z} , (5)

(resp., the restriction of 𝑓 to 𝐵(𝑎)), where 𝑎𝑚 = ∑
𝑛

𝑖=1
𝑎
𝑖
𝑚
𝑖
by

putting 𝑎 = (𝑎
1
, . . . , 𝑎

𝑛
) and𝑚 = (𝑚

1
, . . . , 𝑚

𝑛
).

In this section, we consider the function𝜓 defined onP×

T by

𝜓 (𝑎, 𝑠) =

𝑎𝑠

‖𝑎‖
2
, ∀ (𝑎, 𝑠) ∈ P × T , (6)

and also F(𝑓
|𝐵(⋅)

)(𝜓(⋅, 𝑠)) (where 𝑠 ∈ T) and
‖F(𝑓
|𝐵(⋅)

)(𝜓(⋅, 𝑠))‖
∞
, respectively, given by

F (𝑓
|𝐵(⋅)

) (𝜓 (⋅, 𝑠)) (𝑎) = F (𝑓
|𝐵(𝑎)

) (

𝑎𝑠

‖𝑎‖
2
)

= ∑

𝑚∈𝐵(𝑎)

𝑓 (𝑚) exp(−2𝑖𝜋𝑎𝑚𝑠

‖𝑎‖
2
) ,

(7)

for all (𝑎, 𝑠) ∈ P × T , with 𝐵(𝑎) = {𝑚 ∈ Z𝑛 | 𝑎𝑚/‖𝑎‖
2

∈ Z},
respectively,




F (𝑓
|𝐵(⋅)

) (𝜓(⋅, 𝑠))



∞

= sup
𝑎∈P





F (𝑓
|𝐵(𝑎)

) (𝜓 (𝑎, 𝑠))




, ∀𝑠 ∈ T ,

(8)

T being the one-dimensional torus. Now, we state the follow-
ing main theorem (see Theorem 10).

Theorem 2 (generalization of Volberg’s UP on the latticeZ𝑛).
Let 𝑓 ∈ 𝑙

1

(Z𝑛) satisfying the following three conditions

(1) |𝑓(𝑚)| ≤ 𝐶
0
exp(−𝛼‖𝑚‖), for all𝑚 ∈ Z𝑛, where 𝐶

0
, 𝛼

are strictly positive absolute constants.
(2) The function T ∋ 𝑠 → ‖F(𝑓

|𝐵(⋅)
)(𝜓(⋅, 𝑠))‖

∞
belongs to

𝐿
1

(T).
(3) ∫

T
Log (‖F(𝑓

|𝐵(⋅)
)(𝜓(⋅, 𝑠))‖

∞
)𝑑𝑠 = −∞.

Then 𝑓 = 0.

2. Notations and Preliminaries

In this section, we fix some notation which will be useful
in the sequel of this paper and recall certain properties of
the discrete Radon transform on Z𝑛 (𝑛 ≥ 2). We also
introduce various functional spaces. For 1 ≤ 𝑝 < +∞,
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let 𝑙𝑝(Z𝑛) (resp., 𝑙∞(Z𝑛)) be the space of all complex-valued
functions 𝑓 defined on Z𝑛 such that ∑

𝑚∈Z𝑛 |𝑓(𝑚)|
𝑝

<

+∞ (resp., sup
𝑚∈Z𝑛 |𝑓(𝑚)| < +∞). Let us denote by 𝐶

0
(Z𝑛)

the space of all complex-valued functions 𝑓 defined on Z𝑛

such that 𝑓(𝑚) → 0 as ‖𝑚‖ → +∞, with ‖𝑚‖
2

= 𝑚
2

1
+

⋅ ⋅ ⋅ + 𝑚
2

𝑛
for all 𝑚 = (𝑚

1
, . . . , 𝑚

𝑛
) ∈ Z𝑛. It is clear that, for

1 ≤ 𝑝 < 𝑞 < +∞, we have the following inclusions:

𝑙
1

(Z
𝑛

) ⊂ 𝑙
2

(Z
𝑛

) ⊂ ⋅ ⋅ ⋅ ⊂ 𝑙
𝑝

(Z
𝑛

) ⊂ ⋅ ⋅ ⋅ ⊂ 𝑙
𝑞

(Z
𝑛

)

⊂ 𝐶
0
(Z
𝑛

) ⊂ 𝑙
∞

(Z
𝑛

) .

(9)

For 1 ≤ 𝑝 < +∞, we denote by ‖ ⋅ ‖
𝑝
the discrete norm on

the space 𝑙𝑝(Z𝑛) defined by





𝑓



𝑝

= ( ∑

𝑚∈Z𝑛





𝑓(𝑚)






𝑝

)

1/𝑝

, ∀𝑓 ∈ 𝑙
𝑝

(Z
𝑛

) . (10)

We define the discrete Radon transform 𝑅 on Z𝑛 as
follows:

𝑅𝑓 (𝐻 (𝑎, 𝑘)) = ∑

𝑚∈𝐻(𝑎,𝑘)

𝑓 (𝑚)

= ∑

𝑚∈Z𝑛,𝑎𝑚=𝑘

𝑓 (𝑚) ,

(11)

for all (𝑎, 𝑘) ∈ P × Z and 𝑓 ∈ 𝑙
1

(Z𝑛), where 𝐻(𝑎, 𝑘) is the
hyperplane in Z𝑛 defined by

𝐻(𝑎, 𝑘) = {𝑚 ∈ Z
𝑛

| 𝑎𝑚 = 𝑘} (12)

and

P = {𝑎 = (𝑎
1
, . . . , 𝑎

𝑛
) ∈ Z
𝑛

\ {0} | 𝑑 (𝑎) = 1} , (13)

𝑑(𝑎) being the greatest common divisor of the integers
𝑎
1
, . . . , 𝑎

𝑛
(see [5] for more details), and 𝑎𝑥 denotes the usual

inner product of 𝑎 and 𝑥 regarded as two vectors of the
Euclidean space R𝑛.

The set 𝐵(𝑎) = {𝑚 ∈ Z𝑛 | 𝑎𝑚/‖𝑎‖
2

∈ Z} can be written as
follows:

𝐵 (𝑎) = ⋃

𝛼∈Z

𝐻(𝑎, 𝛼 ‖𝑎‖
2

) (disjoint union) . (14)

Because, for all (𝛼, 𝛽) ∈ Z2 such that 𝛼 ̸= 𝛽, we have

𝐻(𝑎, 𝛼 ‖𝑎‖
2

)⋂𝐻(𝑎, 𝛽 ‖𝑎‖
2

) = ⌀. (15)

We note that

⋃

𝑎∈P

𝐵 (𝑎) = Z
𝑛

. (16)

Indeed, for𝑚 ∈ Z𝑛 \ {0}, we can take 𝑎 = 𝑚/𝑑(𝑚) ∈ P, then
𝑎𝑚/‖𝑎‖

2

= 𝑑(𝑚) ∈ Z. Moreover, 0 ∈ 𝐵(𝑎) for all 𝑎 ∈ P.
For a function 𝑓 ∈ 𝑙

1

(Z𝑛), we define its discrete Fourier
transformF𝑓 on the 𝑛-dimensional torus T𝑛 as follows:

F𝑓 (𝜆) = ∑

𝑚∈Z𝑛

𝑓 (𝑚) exp (−2𝑖𝜋𝜆𝑚) , ∀𝜆 ∈ T
𝑛

. (17)

We define the discrete one-dimensional Fourier trans-
formF

1
by

F
1
𝑔 (𝑥) = ∑

𝑡∈Z

𝑔 (𝑡) exp (−2𝑖𝜋𝑡𝑥) , ∀𝑥 ∈ T , (18)

where T is the one-dimensional torus.
For 𝑓 ∈ 𝐿

1

(T𝑛), the Fourier coefficients of 𝑓 are denoted
by ̂

𝑓(𝑚) (𝑚 ∈ Z𝑛) and defined by

̂
𝑓 (𝑚) = ∫

T𝑛
𝑓 (𝑥) exp (2𝑖𝜋𝑚𝑥) 𝑑𝑥, ∀𝑚 ∈ Z

𝑛

. (19)

Let 𝑎
𝑗
= (1, 𝑗, 𝑗

2

, . . . , 𝑗
𝑛−1

) ∈ P, with 𝑗 ∈ N \ {0}. The
inversion formula for the discrete Radon transform is given
by

lim
𝑗→∞

𝑅𝑓 (𝐻(𝑎
𝑗
, 𝑎
𝑗
𝑚)) = 𝑓 (𝑚) , (20)

for all 𝑚 ∈ Z𝑛 and 𝑓 ∈ 𝑙
1

(Z𝑛) (see [5, Theorem 4.1] and also
[6]).

At the end of this section, we recall Volberg’s theorem on
Z.

Theorem 3 (Volberg’s theorem, see [1]). Let 𝛼 > 0 and
suppose that 𝑓 is a nontrivial function on Z such that 𝑓(𝑡) =
𝑂(exp(−𝛼|𝑡|)) as 𝑡 → −∞. Moreover, suppose that its Fourier
transform F

1
𝑓 is integrable on the one-dimensional torus T .

Then ∫
T
Log |F

1
𝑓(𝑥)|𝑑𝑥 > −∞.

3. Characterization of the Image of
Exponential Type Functions under 𝑅

In this section, we study the characterization of the image
of exponential type functions under the discrete Radon
transform 𝑅 on Z𝑛. More precisely, we state the following
main theorem which will be proved after introducing some
intermediate lemmas.

Theorem4 (characterization of the image of exponential type
functions under 𝑅). Let 𝑓 be a positive function of 𝑙1(Z𝑛).
Then

(i) the following two conditions are equivalent:

(1) 𝑓(𝑚) = 𝑂(𝑒
−𝛼‖𝑚‖

2

),
(2) 𝑅𝑓(𝐻(𝑎, ‖𝑎‖

2

𝑘)) = 𝑂(𝑒
−𝛼𝑘
2

), ∀𝑎 ∈ P,

where 𝛼 > 1 is an absolute constant;
(ii) the following two equivalences hold:

(3) [|𝑅𝑓(𝐻(𝑎, 𝑘))| ≤ exp(−𝛽𝑘2), ∀(𝑎, 𝑘) ∈ P ×

Z] ⇔ [𝑓(𝑚) = 0, ∀𝑚 ∈ Z𝑛 \ {0}],

where 𝛽 > 0 is an absolute constant,

(4) [|𝑅𝑓(𝐻(𝑎, 𝑘))| ≤ |𝑘| exp(−𝛾𝑘2), ∀(𝑎, 𝑘) ∈ P ×

Z] ⇔ 𝑓 = 0,

where 𝛾 > 0 is an absolute constant.
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In order to avoid any too long proof of Theorem 4 and
then prove it clearly, we need the following useful lemmas.

Lemma 5. Let 𝛼 > 0 and 𝑓 be the function defined on Z𝑛

by: 𝑓(𝑚) = exp(−𝛼‖𝑚‖
2

), for all 𝑚 ∈ Z𝑛. Then there exists a
constant 𝐶 > 0 (which depends only on 𝛼 and 𝑛) such that, for
all (𝑎, 𝑘) ∈ P × Z, we have

0 < 𝑅𝑓 (𝐻(𝑎, 𝑘 ‖𝑎‖
2

)) ≤ 𝐶 exp (−𝛼𝑘2) . (21)

Proof. Let 𝑆(𝑎, 𝑘) = ∑
𝑚∈Z𝑛,𝑎𝑚=𝑘‖𝑎‖2 exp(𝛼(𝑘

2

−‖𝑚‖
2

)).The left
inequality of (21) is trivial since 𝑓 > 0 implies clearly that
𝑅𝑓 > 0. To show the right inequality of (21), it suffices to
prove the inequality 𝑆(𝑎, 𝑘) < 𝐶, for all (𝑎, 𝑘) ∈ P × Z. For
this, we distinguish two cases.

(1) The Case When ‖𝑎‖
2

≥ 2. We have 𝑎𝑚 = 𝑘‖𝑎‖
2 and 𝑎 ̸=

0; then, by the Cauchy-Schwarz inequality, 𝑘‖𝑎‖ ≤ ‖𝑚‖. It
follows that 𝑘 ≤ ‖𝑎‖

−1

‖𝑚‖; thus

𝑆 (𝑎, 𝑘) ≤ ∑

𝑚∈Z𝑛,𝑎𝑚=𝑘‖𝑎‖
2

exp (𝛼 ‖𝑚‖
2

(‖𝑎‖
−2

− 1)) , (22)

since ‖𝑎‖
2

≥ 2 by hypothesis. The above inequality can be
transformed as follows:

𝑆 (𝑎, 𝑘) ≤ ∑

𝑚∈Z𝑛

exp(−𝛼
2

‖𝑚‖
2

) = 𝐶
1
, (23)

which implies (21).

(2) The Case When ‖𝑎‖2 < 2,That Is, ‖𝑎‖2 = 1. Since 𝑎 ∈ P ⊂

Z𝑛 \ {0}, we can change the order of the coordinates of 𝑎, then
we can take 𝑎 = (0, . . . , 0, 1), and thus 𝑎𝑚 = 𝑚

𝑛
= 𝑘, with

𝑚 = (𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
). It follows that

𝑆 (𝑎, 𝑘) = ∑

𝑚∈Z𝑛−1

exp (−𝛼 ‖𝑚‖
2

) = 𝐶
2
. (24)

Let𝐶 = Max(𝐶
1
, 𝐶
2
). From (23) and (24), we have 𝑆(𝑎, 𝑘) ≤ 𝐶

for all (𝑎, 𝑘) ∈ P × Z. Consequently,

∑

𝑚∈Z𝑛,𝑎𝑚=𝑘‖𝑎‖
2

exp (𝛼 (𝑘2 − ‖𝑚‖
2

))

= (exp (𝛼𝑘2))( ∑

𝑚∈𝐻(𝑎,‖𝑎‖
2

𝑘)

𝑓 (𝑚)) ≤ 𝐶,

(25)

where 𝑓(𝑚) = exp(−𝛼‖𝑚‖
2

). Then by the above inequality,
we obtain

∑

𝑚∈𝐻(𝑎,‖𝑎‖
2

𝑘)

exp (−𝛼 ‖𝑚‖
2

) ≤ 𝐶 exp (−𝛼𝑘2) ,

∀ (𝑎, 𝑘) ∈ P × Z.

(26)

And Lemma 5 is proved.

Lemma 6. Let 𝑓 ∈ 𝑙
1

(Z𝑛). We assume that there exists a
function 𝜑 : N → [0, +∞[ such that 𝜑(𝑡) → 0 as 𝑡 → +∞,
satisfying the following condition:





𝑅𝑓 (𝐻 (𝑎, 𝑘))





≤ 𝜑 (|𝑘|) , ∀ (𝑎, 𝑘) ∈ P × Z. (27)

Then 𝑓 is supported at the origin; that is, 𝑓(𝑚) = 0 for all
𝑚 ∈ Z𝑛 \ {0}.

Proof. Let 𝑚 = (𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
) ∈ Z𝑛 \ {0}. Permuting the

coordinates of 𝑚, we can assume that 𝑚
𝑛

̸= 0. Applying
hypothesis (27) to 𝑎 = 𝑎

𝑗
= (1, 𝑗, 𝑗

2

, . . . , 𝑗
𝑛−1

) and 𝑘 = 𝑎
𝑗
𝑚 =

𝑚
1
+ 𝑚
2
𝑗 + ⋅ ⋅ ⋅ + 𝑚

𝑛
𝑗
𝑛−1, where 𝑗 ∈ N \ {0}, we obtain






𝑅𝑓 (𝐻 (𝑎

𝑗
, 𝑎
𝑗
𝑚))






≤ 𝜑 (






𝑎
𝑗
𝑚






) , ∀𝑗 ∈ N \ {0} . (28)

Since 𝑚
𝑛

̸= 0, this implies that |𝑎
𝑗
𝑚| → +∞ as 𝑗 → +∞;

therefore, the right hand side of inequality (28) tends to zero
as 𝑗 → +∞. By the inversion formula (see [5,Theorem 4.1]),
the left hand side of the same inequality converges to |𝑓(𝑚)|

as 𝑗 → +∞. Then 𝑓(𝑚) = 0. And Lemma 6 is proved.

We cannot hope to obtain more than this result: given a
function𝑓 onZ𝑛 such that 𝑓(𝑚) = 0 for𝑚 ̸= 0 and 𝑓(0) = 1,
we have 𝑅𝑓(𝐻(𝑎, 𝑘)) = 0 if 𝑘 ̸= 0, and 𝑅𝑓(𝐻(𝑎, 0)) =

1. Inequality (27) is verified for every function 𝜑 such that
𝜑(0) = 1.

Lemma 7. Let 𝑓 ∈ 𝑙
1

(Z𝑛) verifying the following condition:





𝑅𝑓 (𝐻 (𝑎, 𝑘))





≤ |𝑘| 𝑒

−𝛼𝑘
2

, ∀ (𝑎, 𝑘) ∈ P × Z, (29)

where 𝛼 is a strictly positive absolute constant. Then 𝑓 = 0.

Proof. By applying Lemma 6, we obtain 𝑓(𝑚) = 0, for all𝑚 ∈

Z𝑛 \ {0}. Now, we show that 𝑓(0) = 0. Condition (29) implies
that 𝑅𝑓(𝐻(𝑎, 0)) = 0, for all 𝑎 ∈ P. Then, since we have

𝑅𝑓 (𝐻 (𝑎, 0)) = ∑

𝑎𝑚=0

𝑚∈Z𝑛

𝑓 (𝑚) = 𝑓 (0) + ∑

𝑎𝑚=0

𝑚∈Z𝑛\{0}

𝑓 (𝑚) ,

∀𝑎 ∈ P,

(30)

with ∑
𝑎𝑚=0,𝑚∈Z𝑛\{0} 𝑓(𝑚) = 0, we infer that 𝑓(0) = 0. Thus,

𝑓(𝑚) = 0, for all𝑚 ∈ Z𝑛. And this proves Lemma 7.

We now return to the proof of Theorem 4.

Proof of Theorem 4. The implication (1) ⇒ (2) of Theorem 4
follows from Lemma 5. On the other hand, we deduce
equivalence (3) (resp., (4)) of Theorem 4 from Lemma 6
(resp., Lemma 7). Consequently, to complete the proof of
Theorem 4, it remains to prove the implication (2) ⇒ (1) of
this theorem. For this, suppose that (2) is satisfied and prove
(1). Under our assumption, we have

0 < 𝑅𝑓 (𝐻(𝑎, ‖𝑎‖
2

𝑘)) < 𝐶 exp (−𝛼𝑘2) , ∀𝑎 ∈ P, (31)
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where 𝐶 > 0 is an absolute constant. Multiplying the
members of (31) by 𝑘

2𝛽

/𝛽!, with 𝑘 ̸= 0 and 𝛽 ∈ N, (31)
becomes

0 <

𝑘
2𝛽

𝛽!

𝑅𝑓 (𝐻(𝑎, ‖𝑎‖
2

𝑘)) < 𝐶

𝑘
2𝛽

𝛽!

exp (−𝛼𝑘2) , ∀𝑎 ∈ P,

(32)

but

𝑘
2𝛽

𝛽!

=

(𝑘
2

)

𝛽

𝛽!

≤ 𝑒
𝑘
2

, ∀𝛽 ∈ N. (33)

Then (32) can be transformed as follows:

0 <

𝑘
2𝛽

𝛽!

𝑅𝑓 (𝐻(𝑎, ‖𝑎‖
2

𝑘)) < 𝐶𝑒
(1−𝛼)𝑘

2

, ∀ (𝑎, 𝛽) ∈ P × N.

(34)

Since 𝛼 > 1, there exists a constant 𝐶
0
> 0 (which does not

depend on 𝛽) such that

0 < ∑

𝑘∈Z

𝑘
2𝛽

𝛽!

𝑅𝑓 (𝐻(𝑎, ‖𝑎‖
2

𝑘)) < 𝐶
0
, ∀𝑎 ∈ P, (35)

but

∑

𝑘∈Z

𝑘
2𝛽

𝛽!

𝑅𝑓 (𝐻(𝑎, ‖𝑎‖
2

𝑘))

= ∑

𝑘∈Z

(𝑘
2

)

𝛽

𝛽!

𝑅𝑓 (𝐻(𝑎, ‖𝑎‖
2

𝑘))

= ∑

𝑘∈Z

(𝑘
2

)

𝛽

𝛽!

( ∑

𝑎𝑚=‖𝑎‖
2

𝑘

𝑓 (𝑚)) < 𝐶
0
.

(36)

For ‖𝑎‖ = 1, equality (36) becomes

∑

𝑘∈Z

𝑘
2𝛽

𝛽!

𝑅𝑓 (𝐻(𝑒
𝑗
, 𝑘)) = ∑

𝑘∈Z

𝑘
2𝛽

𝛽!

( ∑

𝑒
𝑗
𝑚=𝑘

𝑓 (𝑚))

= ∑

𝑚∈Z𝑛

𝑚
2𝛽

𝑗

𝛽!

𝑓 (𝑚)

=

1

𝛽!

∑

𝑚∈Z𝑛

𝑚
2𝛽

𝑗
𝑓 (𝑚) < 𝐶

0
,

(37)

where (𝑒
𝑗
)
1≤𝑗≤𝑛

is the canonical orthonormal basis of R𝑛.
Moreover, (37) implies that the series ∑

𝑚∈Z𝑛 𝑚
2𝛽

𝑗
𝑓(𝑚) is

convergent; then there exists a constant 𝐶 > 0 (which does
not depend on 𝛽) such that

𝑚
2𝛽

𝑗
𝑓 (𝑚) < 𝐶, (38)

for all 𝑗 ∈ {1, 2, . . . , 𝑛} and 𝑚 ∈ Z𝑛 such that ‖𝑚‖
2

→ +∞.
Therefore, for all 𝛽 ∈ N and 𝑗 ∈ {1, 2, . . . , 𝑛}

(𝛼𝑛)
𝛽

𝛽!

𝑚
2𝛽

𝑗
𝑓 (𝑚) < 𝐶

(𝛼𝑛)
𝛽

𝛽!

, (39)

and thus

(𝛼𝑛𝑚
2

𝑗
)

𝛽

𝛽!

𝑓 (𝑚) < 𝐶

(𝛼𝑛)
𝛽

𝛽!

,
(40)

which gives by summing with respect to 𝛽

(

+∞

∑

𝛽=0

(𝑛𝛼𝑚
2

𝑗
)

𝛽

𝛽!

)𝑓 (𝑚) < 𝐶

+∞

∑

𝛽=0

(𝛼𝑛)
𝛽

𝛽!

. (41)

Inequality (41) can be transformed as follows:

𝑒
𝑛𝛼𝑚
2

𝑗
𝑓 (𝑚) < 𝐶𝑒

𝑛𝛼

, ∀𝑗 ∈ {1, 2, . . . , 𝑛} . (42)

Hence,

𝑓 (𝑚) < 𝐶𝑒
𝑛𝛼

𝑒
−𝑛𝛼𝑚

2

𝑗
, ∀𝑗 ∈ {1, 2, . . . , 𝑛} . (43)

Since 𝑓(𝑚) ≥ 0, inequality (43) implies

𝑓 (𝑚)
2

≤ 𝐶𝑒
𝑛𝛼

𝑒
−𝑛𝛼𝑚

2

𝑗
𝑓 (𝑚)

≤ (𝐶𝑒
𝑛𝛼

)
2

𝑒
−𝑛𝛼𝑚

2

𝑗
𝑒
−𝑛𝛼𝑚

2

𝑖
,

(44)

for all 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}. It follows from inequality (44) that

𝑓 (𝑚)
𝑛

≤ (𝐶𝑒
𝑛𝛼

)
𝑛

𝑒
−𝑛𝛼‖𝑚‖

2

, (45)

for all𝑚 ∈ Z𝑛 such that ‖𝑚‖
2

→ +∞. Thus,

𝑓 (𝑚) ≤ 𝐶𝑒
𝑛𝛼

𝑒
−𝛼‖𝑚‖

2

, (46)

for all 𝑚 ∈ Z𝑛 such that ‖𝑚‖
2

→ +∞, which proves
the implication (2) ⇒ (1). And this completes the proof of
Theorem 4.

Remark 8. Let 𝑓 be a positive function of 𝐿1(T𝑛) such that
̂
𝑓 ∈ 𝑙
1

(Z𝑛). Then

[






𝑅
̂
𝑓 (𝐻 (𝑎, 𝑘))






≤ |𝑘| exp (−𝛾𝑘2) , ∀ (𝑎, 𝑘) ∈ P × Z]

⇐⇒ 𝑓 = 0,

(47)

where 𝛾 > 0 is an absolute constant. It suffices to apply
Theorem 4 to ̂

𝑓.

Now, denote by 𝐴1(T𝑛) the subspace of 𝐿1(T𝑛) consisting
of all functions 𝐺 ∈ 𝐿

1

(T𝑛) such that ∑
𝑚∈Z𝑛 |𝐺(𝑚)| < +∞,

and let 𝐿1
∗
(G) be the subspace of 𝐿1(G) consisting of all

functions 𝐹 ∈ 𝐿
1

(G) such that there exists 𝐺 ∈ 𝐴
1

(T𝑛)

satisfying the condition

F
1
𝐹 (𝐻 (𝑎, ⋅)) (𝜃) = 𝐺 (𝜃𝑎) , ∀𝜃 ∈ T , (48)

where 𝐿1(G) is the space of all complex-valued functions 𝐹
defined on G such that ∑

𝑘∈Z |𝐹(𝐻(𝑎, 𝑘))| is finite for all 𝑎 ∈

P (see [5]), and T is the one-dimensional torus. The authors
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of [6] have proved that the discrete Radon transform 𝑅 is a
continuous bijection of 𝑙1(Z𝑛) onto 𝐿

1

∗
(G) (see [6, Corollary

7]).
For 𝛼 > 0, we put

A
𝛼
= {𝑓 ∈ 𝑙

1

(Z
𝑛

) | 𝑓 (𝑚) = 𝑂(𝑒
−𝛼‖𝑚‖

2

)} ,

B
𝛼
= {𝑅𝑓 : G → C | 𝑅𝑓 (𝐻 (𝑎, ‖𝑎‖

2

𝑘)) = 𝑂(𝑒
−𝛼𝑘
2

) ,

with 𝑓 ∈ A
𝛼
} .

(49)

Since the map: 𝑙1(Z𝑛) ∋ 𝑓 → 𝑅𝑓|G(1) is not injective, we
define here two equivalence relationsR on 𝑙

1

(Z𝑛) andT on
𝐿
1

∗
(G) as follows:

[𝑓R𝑔 ⇐⇒




(𝑓 − 𝑔) (𝑚)





= 𝑂 (𝑒

−𝛼‖𝑚‖
2

)] ,

∀𝑓, 𝑔 ∈ 𝑙
1

(Z
𝑛

) ,

(50)

[(𝑅𝑓)T(𝑅𝑔) ⇐⇒ 𝑅(




𝑓 − 𝑔





) (𝐻 (𝑎, ‖𝑎‖

2

𝑘))=𝑂(𝑒
−𝛼𝑘
2

)] ,

∀𝑅𝑓, 𝑅𝑔 ∈ 𝐿
1

∗
(G) ,

(51)

in order to state the following interesting theorem which
gives a one-to-one correspondence between the quotient sets
𝑙
1

(Z𝑛)/A
𝛼
and 𝐿

1

∗
(G)/B

𝛼
.

Theorem 9. The function Ψ : 𝑙
1

(Z𝑛)/A
𝛼

→ 𝐿
1

∗
(G)/B

𝛼
,

which maps each equivalence class ̇
𝑓 to the equivalence class

of 𝑅𝑓, is a bijection.

Proof. It suffices to prove the injectivity of the function Ψ. It
is easy to see that

Ψ(
̇

𝑓) = Ψ ( ̇𝑔) ⇐⇒ 𝑅 (




𝑓 − 𝑔





) = 𝑂 (𝑒

−𝛼𝑘
2

) . (52)

Then, fromTheorem 4, we infer that





(𝑓 − 𝑔) (𝑚)





= 𝑂 (𝑒

−𝛼‖𝑚‖
2

) . (53)

Therefore

̇
𝑓 = ̇𝑔. (54)

Hence, Ψ is injective. And the theorem is proved.

4. Generalization of Volberg’s Uncertainty
Principle on the Lattice Z𝑛

In this section which deals with the generalization of Vol-
berg’s UP on the lattice Z𝑛, we state the following main
theorem which will be proved after introducing some inter-
mediate lemmas.

Theorem 10 (generalization of Volberg’s UP on the lattice
Z𝑛). Let 𝑓 ∈ 𝑙

1

(Z𝑛) satisfying the following three conditions

(1) |𝑓(𝑚)| ≤ 𝐶
0
exp(−𝛼‖𝑚‖), for all 𝑚 ∈ Z𝑛, where 𝐶

0
, 𝛼

are strictly positive absolute constants.
(2) The function T ∋ 𝑠 → ‖F(𝑓

|𝐵(⋅)
)(𝜓(⋅, 𝑠))‖

∞
belongs to

𝐿
1

(T).
(3) ∫

T
Log (‖F(𝑓

|𝐵(⋅)
)(𝜓(⋅, 𝑠))‖

∞
)𝑑𝑠 = −∞.

Then 𝑓 = 0.

Here, for the definition of the function 𝜓 : P ×

T → C and the expression of F(𝑓
|𝐵(⋅)

)(𝜓(⋅, 𝑠)), as well as
‖F(𝑓
|𝐵(⋅)

)(𝜓(⋅, 𝑠))‖
∞
(where 𝑠 ∈ T), we just refer the reader to

the Introduction (see (6), (7), and (8)).
In order to proveTheorem 10 clearly, we need the follow-

ing useful lemmas.

Lemma 11. Let 𝛼 > 0 and 𝑓
0
be the function defined on Z𝑛

by: 𝑓
0
(𝑚) = exp(−𝛼‖𝑚‖), for all 𝑚 ∈ Z𝑛. Then there exists a

constant 𝐶 > 0 (which depends only on 𝛼 and 𝑛) such that, for
all (𝑎, 𝑘) ∈ P × Z, we have

0 < 𝑅𝑓
0
(𝐻 (𝑎, ‖𝑎‖

2

𝑘)) ≤ 𝐶 exp(−𝛼 |𝑘|

√2

) . (55)

Proof. Let 𝑆(𝑎, 𝑘) = ∑
𝑚∈Z𝑛,𝑎𝑚=𝑘‖𝑎‖2 exp(𝛼(|𝑘|/√2−‖𝑚‖)).The

left inequality of (55) is trivial since𝑓
0
> 0 implies clearly that

𝑅𝑓
0
> 0. To show the right inequality of (55), it suffices to

prove the inequality 𝑆(𝑎, 𝑘) < 𝐶, for all (𝑎, 𝑘) ∈ P × Z. For
this, we distinguish two possible cases.

(1) The Case When ‖𝑎‖ = 1. Since 𝑎 ∈ Z𝑛 \ {0}, we can take
𝑎 = (0, 0, . . . , 0, 1) by permuting the coordinates of 𝑎, which
implies that 𝑎𝑚 = 𝑚

𝑛
= 𝑘. Consequently

𝑅𝑓
0
(𝐻 (𝑎, ‖𝑎‖

2

𝑘)) = ∑

𝑚∈Z𝑛,𝑎𝑚=‖𝑎‖
2

𝑘

𝑓
0
(𝑚)

= ∑

𝑚
𝑛
=𝑘

(𝑚
1
,...,𝑚
𝑛−1
)∈Z𝑛−1

𝑓
0
(𝑚)

= ∑

𝑡=(𝑚
1
,...,𝑚
𝑛−1
)∈Z𝑛−1

exp (−𝛼√𝑘
2
+ ‖𝑡‖
2

) .

(56)

Since √‖𝑡‖
2
+ 𝑘
2

≥ (‖𝑡‖ + |𝑘|)/√2, it is clear that
−√‖𝑡‖

2
+ 𝑘
2
≤ −|𝑘|/√2 − ‖𝑡‖/√2. Thus, the left hand side of

(56) can be majorized as follows:

𝑅𝑓
0
(𝐻 (𝑎, ‖𝑎‖

2

𝑘))

≤ ∑

𝑡=(𝑚
1
,...,𝑚
𝑛−1
)∈Z𝑛−1

exp(−𝛼 ‖𝑡‖
√2

) ⋅ exp(−𝛼 |𝑘|

√2

) .

(57)

This inequality can be transformed as follows:

𝑆 (𝑎, 𝑘) < 𝐶
1
= ∑

𝑡=(𝑚
1
,...,𝑚
𝑛−1
)∈Z𝑛−1

exp(−𝛼 ‖𝑡‖
√2

) . (58)

And (55) holds in this first case.



Journal of Mathematics 7

(2) The Case When ‖𝑎‖ > 1, That Is, ‖𝑎‖ ≥ √2. In this case,
since 𝑎𝑚 = ‖𝑎‖

2

𝑘 and 𝑎 ̸= 0, we obtain

|𝑘| ‖𝑎‖
2

= ‖𝑎‖ ⋅ ‖𝑚‖ ⋅ |cos (𝑎,𝑚)| ≤ ‖𝑎‖ ‖𝑚‖ , (59)

by applying the Cauchy-Schwarz inequality. Therefore

|𝑘| ≤ ‖𝑎‖
−1

⋅ ‖𝑚‖ . (60)

It follows that

𝐴 (𝑎, 𝑘) = ∑

𝑚∈Z𝑛,𝑎𝑚=‖𝑎‖
2

𝑘

exp (𝛼 (|𝑘| − ‖𝑚‖))

≤ ∑

𝑚∈Z𝑛,𝑎𝑚=‖𝑎‖
2

𝑘

exp(𝛼 ‖𝑚‖(

1

‖𝑎‖

− 1)) .

(61)

Since ‖𝑎‖ ≥ √2, we have

‖𝑎‖
−1

− 1 ≤

√2

2

− 1 ≈ −0, 3 ≤ −

1

5

. (62)

Then

𝐴 (𝑎, 𝑘) ≤ ∑

𝑚∈Z𝑛

exp(−1
5

𝛼 ‖𝑚‖) = 𝐶
2
, (63)

but

𝑆 (𝑎, 𝑘) ≤ 𝐴 (𝑎, 𝑘) . (64)

Thus

𝑆 (𝑎, 𝑘) ≤ ∑

𝑚∈Z𝑛

exp(−1
5

𝛼 ‖𝑚‖) = 𝐶
2
. (65)

Consequently

𝑆 (𝑎, 𝑘) = ∑

𝑚∈Z𝑛,𝑎𝑚=‖𝑎‖
2

𝑘

exp(𝛼( |𝑘|

√2

− ‖𝑚‖))

= exp(𝛼 |𝑘|

√2

)( ∑

𝑚∈𝐻(𝑎,‖𝑎‖
2

𝑘)

𝑓
0
(𝑚)) ≤ 𝐶

2
,

(66)

where 𝑓
0
(𝑚) = exp(−𝛼‖𝑚‖); therefore

𝑅𝑓
0
(𝐻 (𝑎, ‖𝑎‖

2

𝑘)) = ∑

𝑚∈𝐻(𝑎,‖𝑎‖
2

𝑘)

𝑓
0
(𝑚) ≤ 𝐶

2
exp(−𝛼 |𝑘|

√2

) .

(67)

And (55) holds in this second case.
Now, by putting 𝐶 = Max(𝐶

1
, 𝐶
2
), it follows from

inequalities (57) and (67) that

𝑅𝑓
0
(𝐻 (𝑎, ‖𝑎‖

2

𝑘)) ≤ 𝐶 exp(−𝛼 |𝑘|

√2

) , ∀ (𝑎, 𝑘) ∈ P × Z.

(68)

This proves the lemma.

Lemma 12. Let𝑚
0
∈ Z𝑛 and 𝑓 ∈ 𝑙

1

(Z𝑛) satisfying conditions
(1), (2), and (3) of Theorem 10. Then 𝑒

𝛼
(𝑚
0
)(
𝑚
0

𝑓) verifies also
these conditions, where

𝑚
0

𝑓(𝑚) = 𝑓(𝑚 + 𝑚
0
) for all 𝑚 ∈ Z𝑛

and 𝑒
𝛼
(𝑚
0
) = exp(−𝛼‖𝑚

0
‖).

Proof. Let 𝑔
𝑚
0
,𝛼
(𝑚) = 𝑒

𝛼
(𝑚
0
)𝑓(𝑚+𝑚

0
) for all𝑚 ∈ Z𝑛. Since

𝑓 satisfies the condition |𝑓(𝑚)| ≤ 𝐶
0
exp(−𝛼‖𝑚‖) for all𝑚 ∈

Z𝑛, then we have




𝑓 (𝑚 + 𝑚

0
)




≤ 𝐶
0
exp (−𝛼 


𝑚 + 𝑚

0





) , ∀𝑚 ∈ Z

𝑛

. (69)

But ‖𝑚 + 𝑚
0
‖ ≥ ‖𝑚‖ − ‖𝑚

0
‖; then

exp (−𝛼 

𝑚 + 𝑚

0





) ≤ exp (−𝛼 ‖𝑚‖) ⋅ exp (𝛼 


𝑚
0





) . (70)

It follows from (69) that




𝑓 (𝑚 + 𝑚

0
)




≤ 𝐶
0
exp (−𝛼 ‖𝑚‖) ⋅ exp (𝛼 


𝑚
0





) . (71)

Therefore

𝑒
𝛼
(𝑚
0
)




𝑓 (𝑚 + 𝑚

0
)




=






𝑔
𝑚
0
,𝛼
(𝑚)






≤ 𝐶
0
exp (−𝛼 ‖𝑚‖) ,

∀𝑚 ∈ Z𝑛.

(72)

Show that 𝑔
𝑚
0
,𝛼
verifies condition (2) ofTheorem 10. Assume

that𝑚
0
∈ 𝐵(𝑎). Then we have

F (𝑔
𝑚
0
,𝛼|𝐵(𝑎)

) (

𝑎𝑠

‖𝑎‖
2
)

= ∑

𝑚∈𝐵(𝑎)

𝑔
𝑚
0
,𝛼
(𝑚) exp(−2𝑖𝜋𝑎𝑚𝑠

‖𝑎‖
2
)

= ∑

𝑚∈𝐵(𝑎)

𝑒
𝛼
(𝑚
0
) 𝑓 (𝑚 + 𝑚

0
) exp(−2𝑖𝜋𝑎𝑚𝑠

‖𝑎‖
2
) .

(73)

By putting 𝑚 + 𝑚
0
= 𝑡 for 𝑚 ∈ 𝐵(𝑎), we have 𝑡 ∈ 𝐵(𝑎), since

𝑚,𝑚
0
∈ 𝐵(𝑎) implies that 𝑎𝑡/‖𝑎‖2 = 𝑎𝑚/‖𝑎‖

2

+ 𝑎𝑚
0
/‖𝑎‖
2

∈

Z. Then

F (𝑔
𝑚
0
,𝛼|𝐵(𝑎)

) (

𝑎𝑠

‖𝑎‖
2
)

= 𝑒
𝛼
(𝑚
0
) ∑

𝑡∈𝐵(𝑎)

𝑓 (𝑡) exp(−2𝑖𝜋 𝑎𝑡𝑠

‖𝑎‖
2
) ⋅ exp(2𝑖𝜋

𝑚
0
𝑠

‖𝑎‖
2
)

= 𝑒
𝛼
(𝑚
0
) exp(2𝑖𝜋

𝑎𝑚
0
𝑠

‖𝑎‖
2
)F (𝑓

|𝐵(𝑎)
) (

𝑎𝑠

‖𝑎‖
2
)

= exp(−𝛼 

𝑚
0





+ 2𝑖𝜋

𝑎𝑚
0
𝑠

‖𝑎‖
2
)F (𝑓

|𝐵(𝑎)
) (

𝑎𝑠

‖𝑎‖
2
) .

(74)

We deduce from (74) that





F (𝑔
𝑚
0
,𝛼|𝐵(⋅)

) (𝜓 (⋅, 𝑠))





∞

≤




F (𝑓
|𝐵(⋅)

) (𝜓 (⋅, 𝑠))



∞

. (75)

Hence condition (2) of Theorem 10 is satisfied.
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It remains to show condition (3) ofTheorem 10. By using
(75) and the fact that 𝑓 satisfies condition (3), we get

∫

T

Log (

F (𝑔
𝑚
0
,𝛼|𝐵(⋅)

) (𝜓 (⋅, 𝑠))





∞

) 𝑑𝑠

≤ ∫

T

Log (

F (𝑓
|𝐵(⋅)

) (𝜓 (⋅, 𝑠))



∞

) 𝑑𝑠 = −∞.

(76)

It follows that

∫

T

Log (

F (𝑔
𝑚
0
,𝛼|𝐵(⋅)

) (𝜓 (⋅, 𝑠))





∞

) 𝑑𝑠 = −∞. (77)

This completes the proof of Lemma 12.

We now give the proof of Theorem 10.

Proof of Theorem 10. We prove this theorem by two steps as
follows.

(1) First Step: Show That 𝑓(0) = 0. Let 𝜑 be an arbitrary
function of 𝑙1(P), where 𝑙1(P) is the space of all complex-
valued functions 𝜙 defined on Z𝑛 such that ∑

𝑎∈P |𝜙(𝑎)| <

+∞. Define a function 𝜅
𝜑,𝑓

on Z as follows:

𝜅
𝜑,𝑓

(ℎ) = ∑

𝑎∈P

𝜑 (𝑎) 𝑅𝑓 (𝐻(𝑎, ‖𝑎‖
2

ℎ)) , ∀ℎ ∈ Z. (78)

Prove that 𝜅
𝜑,𝑓

satisfies the conditions of Volberg’s uncer-
tainty principle on Z. First, the function 𝜅

𝜑,𝑓
is clearly well

defined on Z, since 𝜑 ∈ 𝑙
1

(P) and






𝑅𝑓 (𝐻 (𝑎, ‖𝑎‖

2

ℎ))






=














∑

𝑚∈Z𝑛,𝑎𝑚=‖𝑎‖
2

ℎ

𝑓 (𝑚)














≤ ∑

𝑚∈Z𝑛





𝑓 (𝑚)





=




𝑓



1
.

(79)

It is easy to check the following estimate of 𝜅
𝜑,𝑓

(ℎ):






𝜅
𝜑,𝑓

(ℎ)






≤ ∑

𝑎∈P





𝜑 (𝑎)





( ∑

𝑚∈𝐻(𝑎,‖𝑎‖
2

ℎ)





𝑓 (𝑚)





) . (80)

But




𝑓 (𝑚)





≤ 𝐶
0
exp (−𝛼 ‖𝑚‖) , ∀𝑚 ∈ Z

𝑛

. (81)
It follows from (80) and Lemma 11 that






𝜅
𝜑,𝑓

(ℎ)






≤ 𝐶





𝜑



1
exp(−𝛼 |ℎ|

√2

) , ∀ℎ ∈ Z, (82)

where ‖𝜑‖
1
= ∑
𝑎∈P |𝜑(𝑎)| and 𝐶 > 0 is an absolute constant.

In addition, by Fubini theorem, we obtain the following
equalities for all 𝑠 ∈ T :

F𝜅
𝜑,𝑓

(𝑠) = ∑

ℎ∈Z

𝜅
𝜑,𝑓

(ℎ) exp (−2𝑖𝜋ℎ𝑠)

= ∑

ℎ∈Z

(∑

𝑎∈P

𝜑 (𝑎) 𝑅𝑓 (𝐻(𝑎, ‖𝑎‖
2

ℎ))) exp (−2𝑖𝜋ℎ𝑠)

= ∑

𝑎∈P

𝜑 (𝑎)F (𝑓
|𝐵(𝑎)

) (

𝑎𝑠

‖𝑎‖
2
) .

(83)

It remains to show that 𝜅
𝜑,𝑓

satisfies the following condition:

∫

T

Log 

F (𝜅
𝜑,𝑓

) (𝑠)






𝑑𝑠 = −∞. (84)

From (83), we have

∫

T

Log 

F (𝜅
𝜑,𝑓

) (𝑠)






𝑑𝑠

= ∫

T

Log











∑

𝑎∈P

𝜑 (𝑎)F (𝑓
|𝐵(𝑎)

) (

𝑎𝑠

‖𝑎‖
2
)












𝑑𝑠,

(85)

but

∫

T

Log











∑

𝑎∈P

𝜑 (𝑎)F (𝑓
|𝐵(𝑎)

) (

𝑎𝑠

‖𝑎‖
2
)












𝑑𝑠

≤ ∫

T

Log














𝜑



1

⋅ sup
𝑎∈P





F (𝑓
|𝐵(𝑎)

) (𝜓 (𝑎, 𝑠))















𝑑𝑠

≤ Log (

𝜑



1
) + ∫

T

Log (

F (𝑓
|𝐵(⋅)

) (𝜓 (⋅, 𝑠))



∞

) 𝑑𝑠

= −∞.

(86)

Then

∫

T

Log 

F (𝜅
𝜑,𝑓

) (𝑠)






𝑑𝑠 = −∞. (87)

Now, since the function 𝜅
𝜑,𝑓

: Z → C verifies Volberg’s
uncertainty principle on Z, then we conclude from [1,
Volberg’s Theorem, page 222] that 𝜅

𝜑,𝑓
= 0 for all 𝜑 ∈ 𝑙

1

(P).
It follows from (78) that 𝑅𝑓(𝐻(𝑎, ‖𝑎‖

2

ℎ)) = 0 for all (𝑎, ℎ) ∈
P × Z (since 𝜑 is arbitrary in 𝑙

1

(P)), which implies that
𝑅𝑓(𝐻(𝑎, 0)) = 0 for all 𝑎 ∈ P. In particular, 𝑅𝑓(𝐻(𝑎

𝑗
, 0)) = 0

for all 𝑗 ∈ N \ {0}, where 𝑎
𝑗
= (1, 𝑗, 𝑗

2

, . . . , 𝑗
𝑛−1

). By the
inversion formula (see [5,Theorem 4.1]), we infer that 𝑓(0) =
0.

(2) Second Step: ProveThat 𝑓 = 0 onZ𝑛. Let𝑚
0
∈ 𝐵(𝑎). From

Lemma 12 and the first step, we deduce that𝑔
𝑚
0
,𝛼
(0) = 0; then

𝑓(𝑚
0
) = 0. It follows that 𝑓

|𝐵(𝑎)
= 0 for all 𝑎 ∈ P. Since

Z𝑛 = ⋃
𝑎∈P 𝐵(𝑎) (see (16)), we infer that 𝑓 is identically zero.

And Volberg’s theorem on Z𝑛 is proved.
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