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Abstract. 
We give a new proof for a theorem of Ziv Ran which generalizes some results of Matsusaka and Hoyt. These results provide criteria for an Abelian variety to be a Jacobian or a product of Jacobians. The advantage of our method is
that it works in arbitrary characteristic.



1. Introduction
In the classical papers [1] (resp. [2]), Matsusaka and Hoyt gave a necessary and sufficient criterion for an Abelian variety  for being a Jacobian, respectively, a product of Jacobians. In [3], Ran reconsiders the subject and gives a more general and probably more natural criterion for this. However, his method seems unsatisfactory in positive characteristic.
The aim of this paper is to reprove Ran’s criterion, using results from [4] on the ring of the numerical algebraic cycles on . For the particular case of the Ran-Matsusaka criterion, another proof appeared in [5]. Both proofs are independent of the characteristic of the base field.
In the sequel, for an Abelian variety , we denote by  the -vector space of the algebraic cycles with -coefficients on  and by  the quotient by numerical equivalence. It is well known (cf. [6] or [4]) that on  there are two -algebra structures given by the usual product and by the Pontrjagin product.
Throughout this paper, the latter will be very useful thanks to its geometric definition and to the fact that it gives a ring structure not only on  but also on . Below, for , we will denote the usual product by  and the Pontrjagin product by .
Also, for the two subvarieties  and  in , we denote by  and  their sum and difference in the group law of , to avoid confusion with the corresponding operations on the cycles. In the current paper, the algebraic cycles will often be divisors and -cycles (the latter ones being formal sums of curves) and they will always have integer coefficients.
The term curve, is reserved for integral ones, and all -cycles will be considered effective. Finally, a prime cycle is an irreducible subvariety of  of a corresponding codimension.
2. Generating Curves on an Abelian Variety
Let  be an Abelian variety of dimension  and  be a curve on it containing the origin  of . We consider a sequence of closed subsets in , defined as follows: It is clear that this sequence is increasing,  and  for every . As long as  is a curve,  is irreducible and there is a first index  such that . Also, we have  for all  and . It follows that  is stable for the group law on  and the induced operation has  as unity. Using a result of Ramanujan in ([7, chapter II, Section ]),  is an Abelian subvariety of  and the points of  generate the group . We denote by  the subvariety . If , then  and we say that  is a generating curve on .
Remark 1. In [8] Matsusaka proves that every Abelian variety has a generating curve. Moreover, from his proof, for a projective embedding of , every linear section with a convenient linear subspace of appropriate dimension which contains  is a generating curve for .
Using the Pontrjagin product (for cycles, not for numerical classes) it is easy to deduce the following useful fact.
Lemma 2.  Let  be a curve in  with ,  the subvariety of  generated by  and . Then,  is the maximal number  such that  ( with  terms) is nonzero and  is the support of the cycle .
Let us now consider a curve  which does not necessarily contain the origin. It easily follows that for  the Abelian variety generated by  does not depend on ; it is in fact the subgroup of  generated by . This Abelian variety will also be denoted by . If  is an effective -cycle, we denote by  the Abelian subvariety given by  and we will say that  is a generating -cycle for .
Remark 3. From the definition above, we see that the construction of  is independent of the numbers . In particular,  and  generate the same subvariety and also for  and .
The next lemma will be useful in the sequel.
Lemma 4.  (a) For  with  subvariety and , a curve, both containing the origin, if  then . 
(b) For  Abelian subvarieties and  nonzero integers, if  and  are numerically equivalent, then .
 Proof. (a) We have  and from  we deduce that . So  and because  it follows .
(b) Let  be a generating curve for  (it exists cf. Remark 1). Then  and so . It follows that , and from the first point . The last inclusion implies that . In the same way the reversed inclusion is proved.
Remark 5. The point (b) above, in the case , is a result of Matsusaka in [8].
Proposition 6.  (a) For two curves  which are numerically equivalent, we have . 
(b) For a curve  and , a 1-cycle which is numerically equivalent with , we have . 
(c) Let  be an ample divisor and  a 1-cycle which is numerically equivalent with . Then  is a generating 1-cycle for .
 Proof. (a) Using convenient translations we can suppose that  and  contain . Let ,  be the dimensions of  for . Using Lemma 2 and the fact that  is numerically equivalent with  for all positive integers , we find . From Lemma 2 again,  is a multiple of both  and , and the conclusion follows from Lemma 4(b).
(b) As in (a), denoting  we can suppose that  and all  contain . By Lemma 2, for , we have . Now,  being numeric equivalent with , we find . But again from Lemma 2 we find a nonzero term in the development of . With Lemma 4(a), this term which is in fact a subvariety contains , because all terms in  are vanished by the Pontrjagin product with . On the other hand, this term is contained in  and so .
For the reverse inclusion, we consider the development of the left side of the equality . From Lemma 2   with  is an integer. We find ; therefore  for all  and then from Lemma 4(a), , so .
(c) Let  be a positive integer with  very ample. The cycles  and  are therefore numerical equivalents and there will exist an integer curve  in the same numeric class with  and so with . From (b) we have . But from Remark 1  , so  is a generating -cycle.
The point (c) above is a slight generalization of the result from Remark 1 and will be used to deduce the Matsusaka-Hoyt criterion from that of Ran.
3. Algebraic Cycles Constructed from Generating Curves
We recall a result from [4] which will be the main tool in the proof of Ran’s theorem. Let  be a generating curve of the -dimensional Abelian variety . We consider on  the following cycles:  and  for . From the definition of the Pontrjagin product,  is a cycle with irreducible support of codimension  on . In particular  is a divisor and there exists  such that , where  is the fundamental cycle on .
The result we need from [4] is the following.
Proposition 7.  All cycles  have integer coefficients and in particular , being evidently positive. Also,  for . In particular,  and so  is ample.
Remark 8. For  a smooth curve and  its Jacobian, these divisors are well-known.
A first application of the proposition above is point (b) in the following.
Proposition 9.  (a) Let  be an effective divisor and  a generating -cycle. Then . 
(b) If moreover  is ample, then .
 Proof. (a) We can suppose that  is a prime divisor. Let  be the components of . We have  for all , because the general translation of  cuts properly . It is therefore sufficient to find an  such that . Suppose there is no such . Then using a result from [7, chapter , Section ], translations with elements of the form  with  leave  invariant. But  is a generating -cycle, and therefore every element in  is a sum of elements of this form. So  is invariant with respect to any translation and then numerically equivalent with , in contradiction with its effectiveness.
(b) Consider a first case where  is a prime cycle (i.e.,  is a curve) and without loss of generality . Let  be a variable and consider the polynomial . Because  is ample and  is nondegenerate, the index theorem for Abelian varieties compare [7] asserts that all roots of  are real and negative. So the means inequality gives .
For the general case, let  with all , , and  be the restriction of  to . The projection formula gives  from the particular case above. So, , because  is a generating -cycle.
The following consequence of the above proposition will be useful in the last part of the paper.
Corollary 10.  Let  be an Abelian variety,  an ample effective divisor, and  a generating -cycle of  (the coefficients are supposed to be nonzero). If  then  for all .
 Proof. We have  because  is ample and one can apply Proposition 9(b). So  and because the last term is nonzero by Proposition 9(b), we find  for all .
In the same way,  because  remains a generator -cycle by Remark 3. So  and  being ample, the last term is positive. It results that  for all .
We can now prove the following result, which is nothing else but Ran’s version of the Matsusaka theorem.
Theorem 11.  Let  be an ample divisor on the Abelian variety  and let  be a generating curve such that . Then  is smooth,  is its Jacobian, and  is a translation of .
 Proof. In the proof of point (b) from Proposition 9 we have the inequality . If  we will have  and so . In this case the polynomial  from the same proposition becomes . It follows that the arithmetic and geometric means of the roots coincide and so all the roots have the form  for a positive value of . So  and by identification, . It follows that  and then . These relations imply that . The Hodge index theorem asserts that  is numerically equivalent with , and because  is a principal polarization (from Proposition 7 and equality ), one may deduce that  is a translation of .
Consider the normalization  for , and let  be a prolongation of , where  is a Jacobian of . If we choose a base point in the construction of , one on  which sits above ,  will be a morphism of Abelian varieties, sending origin to origin. Also,  is surjective because  is generating for  and for  genus of  we have .
Let us denote by  the canonical cycles on the Jacobian . Therefore  for : for  this is clear because  and for  it is a consequence of the definitions for  and  and also from the fact that  commute with the Pontrjagin product. In particular  and so  is the degree of the restriction of  to . Therefore this restriction is a birational morphism and has an inverse: . This inverse, considered as a rational map from  to  can be extended over all the  giving a morphism  compare [7]. As a consequence, the restriction  of  to  will be an isomorphism and  will be an Abelian subvariety of . But  contains  which generates  and so . In this case we have  and  is birational from  to  hence an isomorphism.
4. Proof of Ran Theorem
The purpose of this section is to give a proof for Ran’s full theorem. Some points are as in [3] and are included only for the sake of completeness. The modifications appear from the replacement of Lemma  from [3] with the result below whose proof is very simple.
Lemma 12.  Let  be a prime divisor on an Abelian variety . Then, there exists an Abelian variety , a surjective morphism of Abelian varieties  and an ample divisor  on  such that  as schemes.
 Proof. We consider the closed subgroup  of  defined by  and the Abelian subvariety  of  which is the connected component of  in . We denote by  the quotient  and by  the quotient morphism. Finally we denote by  the closed irreducible subset  with the reduced structure. We easily find , so  is a divisor on  and set theoretically  because . Let  such that . Applying  we find , and because  we find  and so . Therefore, the elements in  which leave  invariant by translations are from . They are then in a finite number, because the index  is finite. So  is an ample divisor on . Finally the equality  also holds at the schemes level, because  is smooth from its construction.
The result we are interested in is the following theorem of Ran.
Theorem 13.  Let  be an Abelian variety of dimension ,  an ample effective divisor, and  a generating 1-cycle such that . Then  for all ,  and there are  smooth curves  with Jacobians  and an isomorphism of Abelian varieties  such that, for every ,  is a translation of  ( on the th place) and  is a translation of (), where  is the canonical divisor  on .
 Proof. The fact that  for all  is Corollary 10. For the other points, the proof follows closely the one from [3] with some modifications of the arguments. We began with three preliminary steps.
Step 1. We prove that for every  there is a unique  such that . We translate the curves  such that they contain the origin and denote the result with the same letter. Let  and , so that  is a generating curve for . Denote by  the inclusion  and by the same letter  a translation of the divisor  which has a proper intersection with every . Therefore,  is defined as a cycle and is an ample divisor on . The projection formula gives and so  The first inequality comes from the fact that on  one has  according to Proposition 9(b), and the last one is due to the fact that  is a generating -cycle. So , and  being a generating curve for , from Theorem 11 one finds that  is smooth,  is its Jacobian, and  is a translation of the canonical divisor on ; so  is prime as any divisor numeric equivalent with it (it is a principal polarization).
Let us fix , and consider for any  a translation of  which cuts  properly. Every such translation, also denoted by , restricted to  either is an effective divisor or has an empty intersection with , in which case . But the sum of these restrictions is numerically equivalent with  and so there cannot be two indexes  with , because in such a case  which is prime would be the sum of two effective divisors. The existence of an  with  comes from the fact that  is ample.
Step 2. This part consists in the proof of the following fact: for an -dimensional Abelian variety , a prime ample divisor , and a generating -cycle  with  one has  (i.e.,  is ireducible and reduced).
The proof is due to Ran compare Lemma III.2 from [3]. Denote by . From the first step, we know that  is in fact the Jacobian of the smooth curve ; in particular it is principally polarized and isomorphic with its dual. It will suffice to prove that , because in this case  will be a generating curve, and the fact that  is ample together with the inequalities  implies that  as desired.
For the time being, we replace  with a translation whose restriction  is well defined as divisor on . As in the proof of Step ,  is numerically equivalent with . Let  the morphism given by  and  be the projections. Consider on  the line bundle  and on  the line bundle , where  are the projections on the factors of . Using the fact that  is a Jacobian (and therefore it is its own Picard variety whith the Poincare bundle equal to ), we deduce the existence of a morphism  and of a line bundle  on  such that Restricting (4) on the fiber , for , one finds an isomorphism where  is the embedding . Because  is a principal polarisation, the point  is uniquelly defined by the above property, which can be written in divisorial terms as , at least for  general such that the divisor  is well defined. From this one deduces that points in  are fixed by  and so  is surjective with , where  is the kernel of .
Because  cuts  only in , the sum morphism  is injective and so we will have . Now, for a general , we have . So, . But  is closed and so for any  we have .
Then for ,  and therefore . For  the connected component of the origin in , we have . But  is a divisor and  is prime, so the previous inclusion is an equality. Now, But ample  implies that  is finite and prime  implies that  which is equivalent with .
Step 3. Within this step we prove that for any  there is a unique  such that . For this, we consider for all , an Abelian variety , an ample divisor  on , and a surjective morphism  such that . Their existence follows from Lemma 12.
We have where  and the last inequality is from Proposition 9(b). We examine the last sum using the effective construction of ’s from Lemma 12. There,  is of the form  where  is an Abelian subvariety of . As consequence,  and so  (by definition of  and the ampleness of , the intersection  is finite).
It results in that and so . But  is a prime divisor and from Step  there is a unique  with  a curve. All the other curves from the support of  will be therefore contracted. We now fix  and compute . This last number is  if  and nonzero for  because  is ample. This conclude the third step.
From the first and third steps we find that  is a bijection and so . Also one can reorder the curves  (such that  will be numbered by ) and so we can suppose that for all  we have . To conclude the proof, we consider all the requirements supposed above.
In the first place we review ’s. Let  be the cycle . From the third step,  is in fact a curve, namely, . Also we have seen that  and therefore Theorem 11 implies that  is the Jacobian of . To see this, we need only to prove that  is a generating curve of  and this is implied by the fact that, as we have seen,  contracts all the curves  for  and as far as these contain , the contraction will be to . So  and because  generates ,  generates . So, by Theorem 11,  is a translation of the canonical divisor on .
Let us recall that in the first step we supposed (using appropriate translations) that all ’s cut properly the subvarieties ’s, which means that either  is an effective divisor on  or  is empty, in which case . The former case can happen only for , because in this situation  (more precisely, the projection formula gives ). So  and we have Let us consider the morphism . It sends the generating curve  of  on the generating curve  of , and therefore it is surjective; so . But, from the first and third steps, ; this implies that  has a finite nonzero degree. On the other hand  pull back the principal polarization  from  to the principal polarization  on . So its degree is  and it is an isomorphism with inverse denoted by .
Let  be defined by  and  be defined by . Then  is the identity, being the identity on every . Also,  is the identity, being the identity on every .
So  is an isomorphism,  is the Jacobian of , and the last part of the theorem concerning the form of the divisors  and curves  is obvious due to the fact that the transformations of  and  were translations.
Finally, we formulate the following corollary which is the result of Hoyt from [2].
Corollary 14.  Let  be an Abelian variety,  an ample divisor with , and  a 1-cycle such that  is numerically equivalent with . Then the conclusion of Theorem 13 holds true.
 Proof. We have , so . On the other hand, from Proposition 6(c),  is a generating 1-cycle and therefore  is a generating 1-cycle. Now everything is a consequence of Theorem 13.
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