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We propose a subconjecture that implies the semiampleness conjecture for quasi-numerically positive log canonical divisors and
prove the ampleness in some elementary cases.

1. Introduction

In this note, every algebraic variety is defined over the field C
of complex numbers.We follow the terminology andnotation
in [1].

Definition 1. Let 𝐷 be a Q-Cartier Q-divisor on a projective
variety 𝑋. The divisor 𝐷 is numerically positive (nup, for
short), if (𝐷, 𝐶) > 0 for every curve 𝐶 on 𝑋. The divisor 𝐷
is quasi-numerically positive (quasi-nup, for short), if it is nef
and if there exists a union 𝐹 of at most countably many prime
divisors on𝑋 such that (𝐷, 𝐶) > 0 for every curve𝐶 ̸⊆ 𝐹 (i.e.,
if𝐷 is nef and if (𝐷, 𝐶) > 0 for every very general curve 𝐶).

Remark 2. The quasi-nup divisors are the divisors “of maxi-
mal nef dimension” in the terminology of the “Eight Authors”
[2].

Ambro [3] and Birkar et al. [4] reduced the famous log
abundance conjecture to the termination conjecture for log
flips and the semiampleness conjecture (Conjecture 4) for
quasi-nup log canonical divisors 𝐾

𝑋
+ Δ, in the category of

Kawamata log terminal (klt, for short) pairs. In Section 2 we
propose a subconjecture (Subconjecture 1) that implies the
semiampleness Conjecture 4.

Remark 3. We state the history in detail (c.f. [5]). In the
category of klt pairs (𝑋, Δ), Fukuda [6] (2002) reduced
the log abundance to the existence and termination of log
flips, the existence of log canonical bundle formula, and the
semiampleness of quasi-nup log canonical divisors, by using

the numerically trivial fibrations (see [7]; see also [2]) due
to Tsuji and the semiampleness criterion (see [8, 9]; see also
Fujino [10]) for log canonical divisors due to Kawamata-
Nakayama. Ambro [3] gave and proved the celebrated log
canonical bundle formula. The existence of log flips is now
the theorem [4] due to Birkar et al. This history is along the
line of Reid’s philosophy stated in the famous Pagoda paper
[11].

We also note two relevant theorems. In Fukuda [12] (base
point free theorem of Reid type, 1999), we proved that if the
log canonical divisor on a Q-factorial divisorial log terminal
variety is nef and log big, then it is semiample. In Fukuda
[13] (2011), we proved that if the log canonical divisor on a
klt variety is numerically equivalent to some semiample Q-
divisor, then it is semiample.

There is another approach to the semiampleness
Conjecture 4. Let (𝑋, Δ) be a klt pair whose log canonical
divisor 𝐾

𝑋
+ Δ is quasi-nup. Hacon and McKernan (Lazic

[14], Theorem A.6) considered embedding (𝑋, Δ) into some
log canonical pair (𝑋, Δ) so that dim𝑋 = dim𝑋 + 1 and
Δ ≥ 𝑋, that the log canonical divisor 𝐾

𝑋
+ Δ is nef and big,

that (𝐾
𝑋
+ Δ)|
𝑋
= 𝐾
𝑋
+ Δ, and that 𝑋 is endowed with the

birational contraction morphism 𝜙 : 𝑋 → 𝑌 that contracts
the prime divisor 𝑋(= Exc(𝜙)) to some point. In Section 3,
motivated by this consideration, we prove the ampleness
(Theorem 18) for log canonical pairs in some elementary
cases.

In Appendix A, we survey the celebrated extension theo-
rem [15] which is recently proven by Demailly-Hacon-Păun.
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In Appendix B, we give a straightforward proof to the
theorem due to Boucksom et al. [16] and Birkar and Hu
[17] and Cacciola [18] that, for every divisorial log terminal
pair whose log canonical divisor is strongly log big, the log
canonical ring is finitely generated.

2. Subconjecture for klt Pairs

Conjecture 4. Let (𝑋, Δ) be a Kawamata log terminal pair
such that 𝑋 is projective. If the log canonical divisor 𝐾

𝑋
+ Δ

is quasi-nup, then it is semiample.

We give an approach towards the above-mentioned semi-
ampleness conjecture in this section. The approach repeats
the process of finding some (𝐾

𝑋
+ Δ)-trivial curve that

generates a (𝐾
𝑋
+ Γ)-extremal ray for some other klt pair

(𝑋, Γ) and contracting this extremal ray. The process would
terminate at the ample log canonical divisor. To run the
process, it is important not to require theQ-factoriality of𝑋.

Definition 5. One defines NE
𝐷=0(𝑋) := {𝑙 ∈ NE(𝑋) |

the intersection number (𝐷, 𝑙) = 0} and NE
𝐷≥0(𝑋) := {𝑙 ∈

NE(𝑋) | (𝐷, 𝑙) ≥ 0} for aQ-CartierQ-divisor𝐷 on𝑋.

Subconjecture 1. Let (𝑋, Δ) be a Kawamata log terminal pair
such that𝑋 is projective. Suppose that the log canonical divisor
𝐾
𝑋
+Δ is not ample but quasi-nup.Then there exists an effective

Q-Cartier divisor𝐸 such that the intersection number (𝐸, 𝑙) < 0
for some class 𝑙 ∈ 𝑁𝐸

𝐾𝑋+Δ=0(𝑋).

Procedure 1. Let (𝑋, Δ) be a Kawamata log terminal pair such
that 𝑋 is projective. Suppose that the log canonical divisor
𝐾
𝑋
+ Δ is not ample but quasi-nup. Assume the existence

of an effective Q-Cartier divisor 𝐸 on 𝑋 and a member 𝑙 of
NE
𝐾𝑋+Δ=0(𝑋) such that the intersection number (𝐸, 𝑙) < 0.

Let 𝜖 be a sufficiently small positive rational number. We can
write this class 𝑙 in the form 𝑙 = 𝑙0 + 𝑙1 + 𝑙2 + ⋅ ⋅ ⋅ + 𝑙𝑝 (𝑝 ≥ 1),
where 𝑙0 ∈ NE

𝐾𝑋+Δ+𝜖𝐸≥0(𝑋) and R
+
𝑙
𝑖
(𝑖 ≥ 1) are distinct

(𝐾
𝑋
+ Δ + 𝜖𝐸)-extremal rays. Then (𝐾

𝑋
+ Δ, 𝑙1) = 0, because

𝐾
𝑋
+ Δ is nef and (𝐾

𝑋
+ Δ, 𝑙) = 0. We consider the birational

contraction morphism 𝜙 : 𝑋 → 𝑋1 of the (𝐾𝑋 + Δ + 𝜖𝐸)-
extremal ray R

+
𝑙1. Put Δ 1 := 𝜙

∗
(Δ). We note that the Picard

number 𝜌(𝑋1) = 𝜌(𝑋) − 1, that 𝐾
𝑋
+ Δ = 𝜙

∗
(𝐾
𝑋1

+ Δ 1),
that (𝑋1, Δ 1) is Kawamata log terminal, and that𝐾

𝑋1
+ Δ 1 is

quasi-nup. Remark that we can permit each of the divisorial-
contraction case and the small-contraction case, because we
do not require the Q-factoriality of𝑋1.

Procedure 1 relates Subconjecture 1 to Conjecture 4. The
following is the main result of this section.

Theorem 6. Subconjecture 1 implies Conjecture 4.

Proof. Let (𝑋, Δ) be a Kawamata log terminal pair such that
𝑋 is projective and the log canonical divisor𝐾

𝑋
+ Δ is quasi-

nup. If Subconjecture 1 is true, then, by repeating Procedure
1, we obtain a Kawamata log terminal pair (𝑋󸀠, Δ󸀠) with the
birational morphism 𝜓 : 𝑋 → 𝑋

󸀠 such that 𝐾
𝑋
+ Δ =

𝜓
∗
(𝐾
𝑋
󸀠 + Δ

󸀠
) and 𝐾

𝑋
󸀠 + Δ

󸀠 is ample, because the Picard

numbers decrease 1 by 1 in the process of contraction of
extremal rays.

Corollary 7. Subconjecture 1 and the termination conjecture
for log flips imply the log abundance conjecture for klt pairs.

Proof. See Remark 3 andTheorem 6.

Remark 8. From the corollary above and the existence the-
orem [19] for extremal rational curves by Kawamata, we
can say that the log abundance conjecture is the existence
problem for some kind of rational curves, modulo the
termination of log flips.

We show that Subconjecture 1 is a part of Conjecture 4.

Lemma 9. Let (𝑋, Δ) be a Kawamata log terminal pair such
that𝑋 is projective. Suppose that𝐾

𝑋
+Δ is not ample but quasi-

nup and semiample. Then there exists an effective Q-Cartier
divisor 𝐸 such that the intersection number (𝐸, 𝑙) < 0 for some
class 𝑙 ∈ 𝑁𝐸

𝐾𝑋+Δ=0(𝑋).

Proof. Consider the surjective morphism 𝜙 : 𝑋 → 𝑌(=

Φ
|𝑘(𝐾𝑋+Δ)|

(𝑋)) induced by the linear system |𝑘(𝐾
𝑋
+ Δ)| for

a sufficiently large and divisible integer 𝑘. This morphism
𝜙 becomes birational, because of the Stein factorisation
theorem and the fact that the pullbacks of ample divisors by
finite morphisms are ample. Then 𝑘(𝐾

𝑋
+ Δ) = 𝜙

∗
𝐻 for

an ample divisor 𝐻 on 𝑌. By the Kodaira Lemma, if 𝑚 is
sufficiently large and divisible, then𝑚𝜙∗𝐻 = 𝐴 + 𝐸 for some
ample divisor 𝐴 and some effective divisor 𝐸. For every 𝜙-
exceptional curve 𝐶, we obtain the inequality that (𝐸, 𝐶) < 0,
because (𝑚𝜙∗𝐻,𝐶) = 0 and (𝐴, 𝐶) > 0. Here the class [𝐶]
belongs to NE

𝐾𝑋+Δ=0(𝑋).

Proposition 10. Conjecture 4 implies Subconjecture 1.

Proof. Lemma 9 gives the assertion.

3. Log Canonical Pairs in Some
Elementary Cases

We prove the ampleness for log canonical pairs in some
elementary cases.

Assumption 11. Let 𝑓 : 𝑋 → 𝑌 be a birational morphism
between normal projective varieties of dimension 𝑛 such that
𝐸 := Exc(𝑓) is a prime divisor and let (𝑋, Δ) and (𝑋, Δ+𝐸) be
divisorial log terminal pairs. Assume that 𝐾

𝑋
+ Δ + 𝐸 is nup.

Proposition 12. Under Assumption 11, the divisor 𝐾
𝑋
+ Δ +

(1 − 𝜖)𝐸 is nef for every small number 𝜖 > 0.

Proof. The result [19] of Kawamata for klt pairs and its variant
(see [20], Proposition 1) of Shokurov for dlt pairs give the
boundedness of the length of (𝐾

𝑋
+Δ)-extremal rays. By using

the argument in [21], we have ] := inf{(𝐾
𝑋
+Δ+𝐸, 𝐶)/−(𝐾

𝑋
+

Δ, 𝐶) | 𝐶 is an extremal rational curve for𝐾
𝑋
+ Δ} > 0. Thus

𝐾
𝑋
+ Δ + 𝐸 + ](𝐾

𝑋
+ Δ) is nef.
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Assumption 13. Furthermore assume that 𝐾
𝑌
+ 𝑓
∗
Δ is Q-

Cartier, that −𝐸 is 𝑓-ample, and that, in the case where 𝑓(𝐸)
is not a point, the divisor (𝐾

𝑌
+ 𝑓
∗
Δ)|
𝑓(𝐸)

is ample.

Remark 14. If 𝑌 is Q-factorial, then the condition that −𝐸 is
𝑓-ample in Assumption 13 is automatically satisfied, under
Assumption 11 (cf. Kollár and Mori [22], Lemma 2.62).

Definition 15. Under Assumptions 11 and 13, one defines the
number𝜆by the equation𝐾

𝑋
+Δ+𝐸 = 𝑓

∗
(𝐾
𝑌
+𝑓
∗
Δ)+(1+𝜆)𝐸.

Then 1 + 𝜆 < 0, because 𝐾
𝑋
+ Δ + 𝐸 is nup.

Proposition 16. Under Assumptions 11 and 13, the divisor
𝐾
𝑋
+ Δ + 𝐸 is big.

Proof. Assume that𝐾
𝑋
+Δ+ (1− 𝜖)𝐸 = 𝑓

∗
(𝐾
𝑌
+𝑓
∗
Δ) + (1+

𝜆 − 𝜖)𝐸 is not big for every small number 𝜖 > 0. Thus its self-
intersection number is zero for every 𝜖 from Proposition 12.
Therefore (−𝐸)dim𝐸−dim𝑓(𝐸) ⋅ (𝑓∗(𝐾

𝑌
+ 𝑓
∗
Δ)

dim𝑓(𝐸)
⋅ 𝐸) = 0.

This contradicts the 𝑓-ampleness of −𝐸. Consequently 𝐾
𝑋
+

Δ + (1 − 𝜖)𝐸 is big for every small number 𝜖 > 0 and so is
𝐾
𝑋
+ Δ + (1 − 𝜖)𝐸 + 𝜖𝐸.

Proposition 17. Under Assumptions 11 and 13, the divisor
(𝐾
𝑋
+ Δ + 𝐸)|

𝐸
is ample.

Proof. The divisor 𝑓∗(𝐾
𝑌
+ 𝑓
∗
Δ)|
𝐸
− 𝜖𝐸|
𝐸
on 𝐸 is ample for

every small number 𝜖 > 0 (cf. [22], Proposition 1.45).We also
recall that𝑓∗(𝐾

𝑌
+𝑓
∗
Δ)+(1+𝜆−𝜖)𝐸 = 𝐾

𝑋
+Δ+(1−𝜖)𝐸 is nef

by Proposition 12.Thus (𝐾
𝑋
+Δ+𝐸)|

𝐸
= (𝑓
∗
(𝐾
𝑌
+𝑓
∗
Δ)+(1+

𝜆)𝐸)|
𝐸
is ample, from the inequality−𝜖 > 1+𝜆 > 1+𝜆−𝜖.

We state the main result of this section.

Theorem 18. Under Assumptions 11 and 13, the divisor 𝐾
𝑋
+

Δ + 𝐸 is ample if and only if ((𝐾
𝑋
+ Δ + 𝐸)|

Γ
)
dimΓ

> 0 for
every minimal log canonical (i.e., minimal non-klt) center Γ
with respect to the pair (𝑋, Δ + 𝐸) such that Γ ∩ 𝐸 = 0.

For proof, we cite the following ampleness result.

Proposition 19 (see [23]). Let (𝑀, 𝑆) be a divisorial log
terminal pair which is not Kawamata log terminal such that
𝑀 is projective. Assume that the log canonical divisor 𝐾

𝑀
+ 𝑆

is nup and that ((𝐾
𝑀
+ 𝑆)|
Γ
)
dimΓ

> 0 for every minimal log
canonical (i.e., minimal non-klt) center Γ with respect to the
pair (𝑀, 𝑆). Then 𝐾

𝑀
+ 𝑆 is ample.

Proof of Theorem 18. The “only if ” part is trivial. So we prove
the “if ” part.

For every minimal log canonical center Γ with respect to
(𝑋, Δ+𝐸) such that Γ∩𝐸 ̸= 0, we have that Γ ⊂ 𝐸 fromAmbro
(see [24], Proposition 3.3) because 𝐸 is a log canonical center
with respect to (𝑋, Δ + 𝐸).

Thus ((𝐾
𝑋
+ Δ + 𝐸)|

Γ
)
dimΓ

> 0 for every minimal log
canonical center Γ with respect to the pair (𝑋, Δ + 𝐸) by
Proposition 17.

Consequently Proposition 19 implies that 𝐾
𝑋
+ Δ + 𝐸 is

ample.

Example 20. Let P𝑛 (𝑛 ≥ 3) be a projective space with
homogeneous coordinate (𝑥0 : 𝑥1 : 𝑥2 : ⋅ ⋅ ⋅ : 𝑥

𝑛
) and

hyperplane𝐺.We consider the hypersurface𝑌 (⊂ P𝑛) defined
by the irreducible homogeneous equation 𝑥𝑙1 +𝑥

𝑙

2 +𝑥
𝑙

3 + ⋅ ⋅ ⋅ +

𝑥
𝑙

𝑚
= 0 (3 ≤ 𝑚 ≤ 𝑛) (𝑙 ≥ 𝑛+1). We note that𝑌 is normal and

that𝐾
𝑌
= (−(𝑛+1)𝐺+𝑙𝐺)|

𝑌
= (𝑙−(𝑛+1))𝐺|

𝑌
is Cartier. Blow

up P𝑛 at the subspace {𝑥1 = 𝑥2 = ⋅ ⋅ ⋅ = 𝑥
𝑚
= 0} and obtain

the morphism 𝜙 : P󸀠 → P𝑛 and the exceptional divisor 𝐹.
Let 𝑋 be the strict transform of 𝑌 by 𝜙. We note that 𝑋 is
nonsingular. We have𝐾P󸀠 = 𝜙

∗
(−(𝑛 + 1)𝐺) + (𝑚 − 1)𝐹. Thus

𝐾
𝑋
= (𝐾P󸀠 + 𝑋)|

𝑋
= (𝜙
∗
(−(𝑛 + 1)𝐺) + (𝑚 − 1)𝐹 + 𝜙

∗
(𝑙𝐺) −

𝑙𝐹)|
𝑋
= (𝜙
∗
(𝑙 − (𝑛 + 1))𝐺 − (𝑙 − (𝑚 − 1))𝐹)|

𝑋
. Then𝐾

𝑋
+ (𝑛 −

𝑚 + 1)(𝜙∗𝐺)|
𝑋
+ 𝐹|
𝑋
= (𝑙 − 𝑚)(𝜙

∗
𝐺 − 𝐹)|

𝑋
is nef, because

the linear system |𝜙
∗
𝐺 − 𝐹| is base-point-free. Consequently

𝐾
𝑋
+(𝜙
∗
(𝑛−𝑚+2)𝐺)|

𝑋
+𝐹|
𝑋
= ((𝑙−𝑚)𝜙

∗
𝐺−(𝑙−𝑚)𝐹+𝜙

∗
𝐺)|
𝑋

is nup because −𝐹 is 𝜙-ample. Let 𝐻 be the restriction of a
general member of |(𝑛 − 𝑚 + 2)𝐺| to 𝑌. We put 𝑓 := 𝜙|

𝑋
and

Δ := 𝑓
∗
𝐻.Then𝐸 := Exc(𝑓) = 𝐹|

𝑋
is a smooth prime divisor

and−𝐸 = −𝐹|
𝑋
is𝑓-ample.We note that𝐾

𝑋
+Δ+𝐸 is nup and

that (𝐾
𝑌
+𝑓
∗
Δ)|
𝑓(𝐸)

= (𝑙−(𝑛+1)+(𝑛−𝑚+2))𝐺|
𝑓(𝐸)

is ample.
When Δ ∩ 𝐸 = 0 (i.e., 𝑛 = 𝑚), the divisor (𝐾

𝑋
+ Δ + 𝐸)|

Δ
=

(𝑙− (𝑛+1)+2)𝜙∗𝐺|
Δ
is ample. LastlyTheorem 18 implies that

𝐾
𝑋
+ Δ + 𝐸 is ample.

Appendices

A. A Survey of the Demailly-Hacon-Psun
Extension Theorem [15]

In this appendix, we survey the celebrated extension theorem
due to Demailly-Hacon-Păun.

PropositionA.1 (see [15]). Let (𝑀, Δ+𝑆) be a projective purely
log terminal pair with a prime divisor 𝑆 such that ⌊Δ + 𝑆⌋ = 𝑆.
Assume that the log canonical divisor 𝐾

𝑀
+ Δ + 𝑆 is nef and

that there exists an effective Q-divisor 𝐷 which is Q-linearly
equivalent to 𝐾

𝑀
+ Δ + 𝑆 with 𝑆 ⊂ Supp(𝐷) ⊂ Supp(Δ + 𝑆).

Then the restriction map

𝐻
0
(𝑋,O
𝑋
(𝑚 (𝐾

𝑀
+Δ+ 𝑆)))

󳨀→ 𝐻
0
(𝑆,O
𝑆
(𝑚 (𝐾

𝑀
+Δ+ 𝑆)))

(A.1)

is surjective for all sufficiently large and divisible integers𝑚.

Let (𝑋, 𝐵) be a projective Kawamata log terminal pair
whose log canonical divisor𝐾

𝑋
+ 𝐵 is nef.

Conjecture A.2 (log abundance conjecture). The (nef) log
canonical divisor 𝐾

𝑋
+ 𝐵 is semiample.

Subconjecture 2. There exists an effective divisor 𝑆 on𝑋 such
that (𝑋, 𝐵+𝑆) is purely log terminal and 𝑆 is linearly equivalent
to some multiple of 𝐾

𝑋
+ 𝐵.

PropositionA.3. LogAbundanceConjecture A.2 implies Sub-
conjecture 2.
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Proof. If the logarithmic Kodaira dimension 𝜅(𝑋,𝐾
𝑋
+ 𝐵) =

0, then we are done (letting 𝑆 = 0). So we may assume that
𝜅(𝑋,𝐾

𝑋
+ 𝐵) ≥ 1.

For a sufficiently large and divisible integer 𝑙, the linear
system |𝑙(𝐾

𝑋
+ 𝐵)| is base-point-free and gives the algebraic

fiber space 𝑓 : 𝑋 → 𝑇. Then 𝑙(𝐾
𝑋
+ 𝐵) is linearly equivalent

to 𝑓∗𝐻 for some hyperplane section 𝐻 of 𝑇. Consider a log
resolution 𝜋 : 𝑌 → 𝑋 of (𝑋, 𝐵) such that the morphism 𝜋

is projective, that the exceptional locus Exc(𝜋) is divisorial,
and that the locus Exc(𝜋) ∪ Supp(𝜋∗𝐵) is with only simple
normal crossings. For a general member 𝑆

󸀠 of the linear
system |𝜋

∗
𝑓
∗
𝐻|, the divisor 𝑆󸀠 = ∑

𝑖≥1 𝑆
󸀠

𝑖
is a disjoint union of

a finite number of smooth prime divisors 𝑆󸀠
𝑖
. Thus the divisor

𝑆 := 𝜋(𝑆
󸀠
) satisfies the required condition.

We consider the converse statement for Proposition A.3.

Claim 1. Under Subconjecture 2, if 𝑆 ̸= 0 and 𝑆
𝑖
is an

irreducible component of 𝑆, then we have the following
properties:

(1) The prime divisor 𝑆
𝑖
is a connected component of 𝑆.

(2) The pair (𝑆
𝑖
, 𝐾
𝑆𝑖
+ Diff(𝐵 + 𝑆 − 𝑆

𝑖
)) is Kawamata log

terminal.
(3) The log canonical divisor𝐾

𝑆𝑖
+Diff(𝐵 + 𝑆 − 𝑆

𝑖
) is nef.

(4) The prime divisor 𝑆
𝑖
isQ-Cartier and nef.

(5) The restriction map

𝐻
0
(𝑋,O
𝑋
(𝑙 (𝐾
𝑋
+𝐵+ 𝑆)))

󳨀→ 𝐻
0
(𝑆
𝑖
, O
𝑆𝑖
(𝑙 (𝐾
𝑋
+𝐵+ 𝑆)))

(A.2)

is surjective for all sufficiently large and divisible integers 𝑙.

Proof. (1) and (2) are the elementary facts of purely log
terminal pairs. (3) is trivial.

Because 𝑆 isQ-Cartier and nef, we have (4) from the fact
that 𝑆 = ∑

𝑗
𝑆
𝑗
is a disjoint union of prime divisors 𝑆

𝑗
.

Thus 𝑆 − 𝑆
𝑖
= ∑
𝑗 ̸=𝑖

𝑆
𝑗
is a nef Q-Cartier divisor and

Supp(𝑆 − 𝑆
𝑖
) ∩ Supp(𝑆

𝑖
) = 0. For a sufficiently small rational

number 𝜖 > 0, the pair (𝑋, 𝐵 + 𝜖(𝑆 − 𝑆
𝑖
) + 𝑆
𝑖
) is purely log

terminal and ⌊𝐵 + 𝜖(𝑆 − 𝑆
𝑖
) + 𝑆
𝑖
⌋ = 𝑆

𝑖
. We note that there

exists an effectiveQ-divisor𝐷 which isQ-linearly equivalent
to𝐾
𝑋
+ 𝐵 + 𝜖(𝑆 − 𝑆

𝑖
) + 𝑆
𝑖
such that Supp𝐷 = Supp𝑆. Because

𝑆
𝑖
⊂ Supp𝑆 ⊂ Supp(𝐵 + 𝑆) = Supp(𝐵 + 𝜖(𝑆 − 𝑆

𝑖
) + 𝑆
𝑖
), we have

that 𝑆
𝑖
⊂ Supp𝐷 ⊂ Supp(𝐵 + 𝜖(𝑆 − 𝑆

𝑖
) + 𝑆
𝑖
). So we get the

following commutative diagram from Proposition A.1 [15]:

0

((

(((

((

+ Si)H0(X,𝒪(l(KX + B + 𝜖(S − Si) + Si) H0(Si, 𝒪(l(KX + B + 𝜖(S − Si)

H0(X,𝒪(l(KX + B + S H0(Si, 𝒪(l(KX + B + S

(((

Rest.
Surj.

Rest.

Identity
(A.3)

Theorem A.4. Subconjecture 2 in dimension ≤ dim𝑋 implies
Log Abundance Conjecture A.2.

Proof. If 𝑆 = 0, we are done. So we may assume that 𝑆 =

∑ 𝑆
𝑖

̸= 0, where 𝑆
𝑖
are distinct prime divisors. We follow

the notation in Claim 1. By induction on dimension, the log
canonical divisor𝐾

𝑆𝑖
+Diff(𝐵+𝑆−𝑆

𝑖
) is semiample.Therefore

Claim 1 (5) implies that the base locus Bs|𝑙(𝐾
𝑋
+ 𝐵 + 𝑆)| is

disjoint from 𝑆
𝑖
for a sufficiently large and divisible integer 𝑙.

Thus Bs|𝑙(𝐾
𝑋
+ 𝐵 + 𝑆)| is disjoint from ∑𝑆

𝑖
= 𝑆. From the

assumption that 𝑆 is Q-linearly equivalent to some multiple
of𝐾
𝑋
+𝐵, the log canonical divisor𝐾

𝑋
+𝐵 is semiample.

Conjecture A.5 (smooth abundance conjecture). Assume
that 𝑋 is smooth and 𝐵 = 0. The (nef) canonical divisor 𝐾

𝑋

is semiample.

Subconjecture 3. Assume that 𝑋 is smooth and 𝐵 = 0. There
exists an effective divisor 𝑆 such that (𝑋, 𝑆) is log smooth and
purely log terminal and that 𝑆 is linearly equivalent to some
multiple of 𝐾

𝑋
.

By the same argument as in the proofs of Proposition A.3
andTheorem A.4, we have the following two results.

Proposition A.6. Smooth Abundance Conjecture A.5 implies
Subconjecture 3.

Theorem A.7. Subconjecture 3 in dimension ≤ dim𝑋 implies
Smooth Abundance Conjecture A.5.

B. Strong Log Bigness

Let 𝑋 be a projective variety over the field C of complex
numbers and Δ an effective Q-divisor on 𝑋 where the pair
(𝑋, Δ) is dlt (i.e., divisorial log terminal).

Definition A.8. A Q-Cartier Q-divisor 𝐷 is strongly log big
on (𝑋, Δ) if, for some integer 𝑚 > 0, the following three
conditions are satisfied:

(i) TheQ-CartierQ-divisor𝑚𝐷 is a Cartier divisor.
(ii) The base locus Bs|𝑚𝐷| does not contain any generic

point of the log canonical centers of (𝑋, Δ).
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(iii) The rational map 𝜙 := Φ
|𝑚𝐷|

is birational to its image
and, furthermore, is isomorphic onto its image in
some neighborhood of every generic point of the log
canonical centers of (𝑋, Δ).

Remark A.9. Boucksom et al. [16] proved that, for a big
divisor 𝐷, the strong log bigness of 𝐷 is equivalent to the
condition that the augmented base locus B

+
(𝐷) does not

contain any generic point of the log canonical centers.

TheoremA.10 (see [16–18]). If the log canonical divisor𝐾
𝑋
+Δ

is strongly log big on the dlt pair (𝑋, Δ), then the log canonical
ring ⊕

𝑘≥0𝐻
0
(𝑋,O
𝑋
(⌊𝑘(𝐾

𝑋
+Δ)⌋)) is finitely generated over the

field C.

From Remark A.9, the theorem above is a reduction
of Birkar and Hu [17] or Cacciola [18]. But we give a
straightforward proof to the theorem.

Proof. We follow the notation in Definition A.8 for the Q-
CartierQ-divisor𝐾

𝑋
+Δ. From the assumption and the divi-

sorial log terminal theorem (Szabó [25]), there exists some
nonempty Zariski-open subset 𝑈 of 𝑋 with the following
properties:

(i) 𝑈 contains all the generic points of log canonical
centers of (𝑋, Δ).

(ii) Bs|𝑚(𝐾
𝑋
+ Δ)| ∩ 𝑈 = 0.

(iii) The rational map 𝜙|
𝑈
is isomorphic onto its image.

(iv) The pair (𝑈, Δ|
𝑈
) is a nonsingular variety 𝑈 with a

reduced simply normal crossing divisor Δ|
𝑈
on 𝑈.

We set 𝑌 := [the image of the rational map 𝜙].
From the resolution lemma [25] due to Szabó, there exists

a log resolution 𝜇: 𝑋1 → 𝑋 of the pair (𝑋, Δ) such that
𝜇|
𝜇
−1
(𝑈)

is isomorphic and that Exc(𝜇) is divisorial.
Here the exceptional locus Exc denotes the locus where

the morphism is not isomorphic.
From theHironaka resolution theorem, by the repetitions

of blowups along smooth subvarieties included in the singu-
lar locus of𝑌, we have a resolution ]:𝑌1 → 𝑌 of singularities
such that ]|]−1(𝜙(𝑈)) is isomorphic and that there exists some ]-
antiample effective divisor whose support coincides with the
exceptional locus Exc(]).

We consider the rational map 𝜙1 := ]−1𝜙𝜇. Then we
obtain the commutative diagram:

X1

X

Y1

Y
𝜙

𝜙1
rational map

rational map

𝜇 � (B.1)

We take the elimination of indeterminacy for the rational
map 𝜙1:

𝑋1
𝜇1
←󳨀 𝑋2

𝜙2
󳨀→ 𝑌1.

(B.2)

Note that the morphism 𝜇1|𝜇−11 (𝜇−1(𝑈)) is isomorphic.
Because the variety 𝑋1 (𝑌1, resp.) is Q-factorial, there

exists some 𝜇1-antiample (𝜙2-antiample, resp.) effective divi-
sor whose support coincides with Exc(𝜇1) (Exc(𝜙2), resp.).

We put 𝜇2 := 𝜇𝜇1. Then we have the commutative
diagram:

X2

X

Y1

Y
𝜙

𝜙2

rational map

𝜇2 � (B.3)

We have the relation
󵄨󵄨󵄨󵄨𝜇2
∗
(𝑚 (𝐾

𝑋
+Δ))

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝜙2
∗]∗𝐴0

󵄨󵄨󵄨󵄨 + 𝐵0 (B.4)

between complete linear systems where 𝐴0 is a hyperplane
section of 𝑌 and 𝐵0 is an effective divisor on 𝑋2 with the
property that Supp(𝐵0) ∩ 𝜇2

−1
(𝑈) = 0.

We consider theQ-divisor 𝐴 := (1/𝑚)𝐴0.
We set Γ := Supp(𝜇2

−1
∗
Δ)∪Exc(𝜇2)∪Exc(]𝜙2)∪Supp(𝐵0),

which is purely codimension 1 in𝑋2.
Consider the Zariski-open subset𝑉 := (𝑋2 \Γ)∪𝜇2

−1
(𝑈).

We note that 𝑉 ∩ Γ = Supp(𝜇2
−1
∗
Δ) ∩ 𝜇2

−1
(𝑈) and that

𝑋2 \ 𝑉 ⊂ Γ.
From the resolution lemma [25] due to Szabó, we have

a projective morphism 𝜇3: 𝑋 → 𝑋2 which satisfies the
following four conditions:

(a) 𝜇3 is a composition of blowups along smooth subva-
rieties.

(b) 𝜇3|𝜇3−1(𝑉) is isomorphic.

(c) 𝑋 is nonsingular.
(d) 𝜇3

−1
(Γ) is a divisor with only simple normal crossings.

Putting ]̃ := ]𝜙2𝜇3 and 𝜇 := 𝜇2𝜇3, we have the diagram

X

X̃ Y�̃

𝜇̃ (B.5)

and have the property that the loci Exc(𝜇) and Exc(]̃) are
divisorial. We define the Q-divisors 𝐸, 𝐹, and 𝐵 by the
following relations:

(i) 𝐾
𝑋̃
+ 𝜇
−1
∗
Δ + 𝐸 = 𝜇

∗
(𝐾
𝑋
+ Δ) + 𝐹.

(ii) 𝜇∗(𝐾
𝑋
+ Δ) = ]̃∗𝐴 + 𝐵 (i.e., 𝐵 = (1/𝑚)𝜇∗3𝐵0).

(iii) 𝐸, 𝐹, 𝐵 ≥ 0.
(iv) 𝐸 and 𝐹 have no common irreducible component.

Thenwe have the properties that Supp(𝜇−1
∗
Δ+𝐸+𝐹+𝐵)∪

Exc(𝜇) ∪ Exc(]̃) is a reduced divisor with only simple normal
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crossings, that Supp(𝐸 + 𝐹 + 𝐵) is disjoint from 𝜇
−1
(𝑈), and

that ⌊𝐸⌋ = 0.
There exists some ]-antiample (𝜙2-antiample, 𝜇3-

antiample, resp.) effective divisor whose support is Exc(])
(Exc(𝜙2), Exc(𝜇3), resp.). Thus theQ-divisors

]∗𝐴−𝑆1,

𝜙2
∗
(]∗𝐴−𝑆1) − 𝑆2,

𝐴 := 𝜇3
∗
(𝜙2
∗
(]∗𝐴−𝑆1) − 𝑆2) − 𝑆3

(B.6)

are ample for some effective Q-divisors 𝑆1, 𝑆2, and 𝑆3 with
the property that Supp(𝑆1) = Exc(]), Supp(𝑆2) = Exc(𝜙2),
and Supp(𝑆3) = Exc(𝜇3). We write ]̃∗𝐴 = 𝐴 + 𝑆 where 𝑆 :=

𝜇3
∗
𝜙2
∗
𝑆1 + 𝜇3

∗
𝑆2 + 𝑆3 ≧ 0 and note that Supp(𝑆) = Exc(]̃).

Then

𝐾
𝑋̃
+𝜇
−1
∗
Δ+𝐸 = ]̃∗𝐴+𝐵+𝐹

= 𝐴+ 𝑆+𝐵+𝐹

= 𝐴+𝐹,

(B.7)

where 𝐹 := 𝑆 + 𝐵 + 𝐹.
Here Supp(𝐹) ∩ 𝜇

−1
(𝑈) = 0. Thus Supp(𝐹) does not

include any log canonical center of the smooth pair (𝑋, 𝜇−1
∗
Δ+

𝐸). For a sufficiently small rational number 𝛿 > 0, the Q-
divisor 𝛿(𝜇−1

∗
Δ)+𝐴 is ample.Therefore, for a sufficiently large

and divisible integer 𝑙 > 0, the divisor 𝑙(𝛿(𝜇−1
∗
Δ) + 𝐴) is very

ample and linearly equivalent to some prime divisor 𝐻 such
that Supp(𝜇−1

∗
Δ + 𝐸 + 𝐹 + 𝐻) is with only simple normal

crossings and that 𝐻 does not include any log canonical
center of the smooth pair (𝑋, 𝜇−1

∗
Δ+𝐸).We have the following

relation and the klt (i.e., Kawamata log terminal) pair (𝑋, (1−
𝜖𝛿)𝜇
−1
∗
Δ + 𝐸 + 𝜖𝐹 + (𝜖/𝑙)𝐻) for a sufficiently small rational

number 𝜖 > 0:

(1+ 𝜖) (𝐾
𝑋̃
+𝜇
−1
∗
Δ+𝐸)

∼Q𝐾𝑋̃ +𝜇
−1
∗
Δ+𝐸+ 𝜖𝐴+ 𝜖𝐹

∼Q𝐾𝑋̃ +𝜇
−1
∗
Δ+𝐸+ 𝜖 (

1
𝑙
𝐻− 𝛿𝜇

−1
∗
Δ)+ 𝜖𝐹

∼Q𝐾𝑋̃ + (1− 𝜖𝛿) 𝜇
−1
∗
Δ+𝐸+ 𝜖𝐹+

𝜖

𝑙
𝐻.

(B.8)

From the Birkar-Cascini-Hacon-McKernan theorem [4],
the log canonical ring⊕

𝑚≥0𝐻
0
(𝑋,O
𝑋̃
(⌊𝑚(𝐾

𝑋̃
+(1−𝜖𝛿)𝜇−1

∗
Δ+

𝐸 + 𝜖𝐹 + (𝜖/𝑙)𝐻)⌋)) for a klt pair is finitely generated.
Consequently the equivalence between the finite genera-

tion of the log canonical ring and that of some truncation of
this ring implies the assertion.

Disclosure

The content of Remark 3 (History) (see [5]) was presented in
the short communications at ICM 2014 (Seoul) on August 16
in the year 2014. Remark 3 corrects a chronological typo and
a chronological mistake in Fukuda [5].
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