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We study the locally defined operator on the spaces of bounded Riesz 𝑝-variation functions and we prove that those operators are
the Nemytskii operator.

1. Introduction

We have an closed interval 𝐼 of the real line and let X =

X(𝐼),Y = Y(𝐼) be function spaces 𝑓 : 𝐼 → R. An operator
𝐾 : X → Y is called a locally defined operator, or (X,Y)-
local operator, briefly, a local operator [1], if for every open
interval 𝐽 ⊂ R and for all functions 𝑓, 𝑔 ∈ X, the implication

𝑓
󵄨󵄨󵄨󵄨𝐽∩𝐼 = 𝑔

󵄨󵄨󵄨󵄨𝐽∩𝐼 󳨐⇒ 𝐾(𝑓)
󵄨󵄨󵄨󵄨𝐽∩𝐼 = 𝐾 (𝑔)

󵄨󵄨󵄨󵄨𝐽∩𝐼 (1)

is true, where 𝑓|𝐽∩𝐼 denotes the restriction of 𝑓 to 𝐽 ∩ 𝐼.
There is a vast literature on the problem treated here,

mainly compiled of definitions of locally defined operators
involving a measure space (cf., e.g., [2–5]). Also we proved
that, in general, 𝐾 is a composition (or Nemytskii) operator
of the form 𝐾(𝑓)(𝑥) = ℎ(𝑥, 𝑓(𝑥)) for a two-variable
function ℎ. Assuming additionally that 𝐾 is continuous in
measure, the generating function ℎ can be replaced by a
function satisfying the Caratheodory conditions (cf. [6]).The
present paper concerns topological aspects of locally defined
operators (cf. [1, 7–10]). Formore knowledge on theory of the
composition operators, see Appell and Zabrejko [11]. In [7]
it was done is the case when X = 𝐶

𝑛
(𝐼) and Y = 𝐶(𝐼) or

Y = 𝐶
1
(𝐼). Subsequently, this result has been extended by

several authors: [8, 9, 12] (for spaces ofWhitney differentiable
functions), [10, 13] (for space of Hölder functions), [14] (for
continuous and monotone functions), and [1] (for functions

of bounded 𝜑-variation in the sense Wiener). In the present
paper we are interested in such operators in the context of
bounded Riesz-variation functions. In particular, we show
that if the operator 𝐾 maps the space 𝑅𝑉𝑝(𝐼,R) into itself
and is locally defined, then 𝐾 is a Nemytskii composition
operator.

2. Notation and Preliminaries

In this section we present some necessary notations and def-
initions and recall some knowledge concerning the bounded
Riesz-variation.

In the sequel, N, N0, and R denote, respectively, the set
of positive integers, nonnegative integers, and the set of real
numbers.

Let 𝐼 = [𝑎, 𝑏] ⊂ R; 𝜋 = {𝑡𝑖}
𝑚

𝑖=0 be partition of 𝐼, defined
by 𝜋 : 𝑎 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑚 = 𝑏. As usually, R𝐼 denote the
family of all functions 𝑓 : 𝐼 → R.

Given 1 ≤ 𝑝 < ∞,𝑓 ∈ R𝐼 and a partition𝜋 of 𝐼, we define

V𝑅
𝑝
(𝑓) = V𝑅

𝑝
(𝑓, 𝐼) := sup

𝜋

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑓 (𝑡𝑖) − 𝑓 (𝑡𝑖−1)
󵄨󵄨󵄨󵄨
𝑝

󵄨󵄨󵄨󵄨𝑡𝑖 − 𝑡𝑖−1
󵄨󵄨󵄨󵄨
𝑝−1 , (2)

where the supremum is taken over all partitions 𝜋 of 𝐼. V𝑅
𝑝
(𝑓)

is the classical 𝑝-variation of 𝑓 in the sense of Riesz [15]
in 𝐼. A function 𝑓 is said to be of bounded 𝑝-variation if
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V𝑅
𝑝
(𝑓, 𝐼) < ∞. By 𝑅𝑉𝑝(𝐼) we denote the Banach space of all

functions 𝑓 ∈ R𝐼 of bounded 𝑝-variation equipped with the
norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝 :=

󵄨󵄨󵄨󵄨𝑓 (𝑎)
󵄨󵄨󵄨󵄨 + (V𝑅
𝑝
(𝑓))

1/𝑝
, 𝑓 ∈ 𝑅𝑉𝑝 (𝐼) . (3)

Lemma 1. Let 𝐼 = [𝑎, 𝑏] ⊂ R be an interval and let (𝑥0, 𝑦0) ∈
𝐼 ×R, 𝑥0 < sup(𝐼) be fixed. Then for every sequence (𝑥𝑘, 𝑦𝑘) ∈
𝐼 ×R satisfying the condition

lim
𝑘→∞

(𝑥𝑘, 𝑦𝑘) = (𝑥0, 𝑦0) ,

𝑥𝑘+1 < 𝑥𝑘; 𝑦𝑘+1 < 𝑦𝑘, 𝑘 ∈ N

(4)

there exists a function 𝜓 ∈ 𝑅𝑉𝑝(𝐼) such that, for all 𝑘 ∈ N0,

𝜓 (𝑥𝑘) = 𝑦𝑘. (5)

Proof. Take an arbitrary sequence (𝑥𝑘, 𝑦𝑘) ∈ 𝐼 × R satisfying
(4) and define a sequence of functions 𝜓𝑘 : 𝐼 → R, 𝑘 ∈ N, by
𝜓𝑘 (𝑥)

:=

{{{{{{{{

{{{{{{{{

{

𝑦0, for 𝑥 ∈ [𝑎, 𝑥0] ;

𝑦𝑘 − 𝑦0
𝑥𝑘 − 𝑥0

(𝑥 − 𝑥0) + 𝑦0, for 𝑥 ∈ (𝑥0, 𝑥𝑘] ;

𝑦𝑖 − 𝑦𝑖−1
𝑥𝑖 − 𝑥𝑖−1

(𝑥 − 𝑥𝑖) + 𝑦𝑖, for 𝑥 ∈ (𝑥𝑖, 𝑥𝑖−1] , 𝑖 ∈ {2, . . . , 𝑘} ;

𝑦1, for 𝑥 ∈ (𝑥1, 𝑏] .

(6)

Let us observe that
𝜓𝑘 (𝑥0) = 𝑦0,

𝜓𝑘 (𝑥𝑘) = 𝜓𝑘+ℓ (𝑥𝑘) = 𝑦𝑘,

𝑘, ℓ ∈ N,

(7)

and for every 𝑥 ∈ 𝐼 \ {𝑥𝑘 : 𝑘 ∈ N0} there exist 𝑘0 ∈ N such
that

𝜓𝑘 (𝑥) = 𝜓𝑘0
(𝑥) , 𝑘 ≥ 𝑘0, 𝑘 ∈ N. (8)

Put
𝜓 (𝑥) = lim

𝑘→∞
𝜓𝑘 (𝑥) , 𝑥 ∈ 𝐼. (9)

From (7) and (8), the function 𝜓 is well defined. More-
over, 𝜓 is nondecreasing and

𝜓 (𝑥𝑘) = 𝑦𝑘, ∀𝑘 ∈ N0, (10)

and by (9), for each 𝜖 > 0, we obtain
󵄨󵄨󵄨󵄨𝜓𝑘 (𝑥) −𝜓 (𝑥)

󵄨󵄨󵄨󵄨 < 𝜖, ∀𝑥 ∈ 𝐼, (11)

so ‖𝜓𝑘−𝜓‖∞ ≤ 𝜖.Thus the sequence (𝜓𝑘)𝑘∈N tends uniformly
to 𝜓.

Now as 𝜓𝑘 ∈ 𝑅𝑉𝑝(𝐼) for all 𝑘 ∈ N and 𝜓𝑘 tends uniformly
to 𝜓, then

󵄨󵄨󵄨󵄨𝜓 (𝑥𝑖) − 𝜓 (𝑥𝑖−1)
󵄨󵄨󵄨󵄨
𝑝

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥𝑖−1
󵄨󵄨󵄨󵄨
𝑝−1 = lim

𝑘→∞

󵄨󵄨󵄨󵄨𝜓𝑘 (𝑥𝑖) − 𝜓𝑘 (𝑥𝑖−1)
󵄨󵄨󵄨󵄨
𝑝

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥𝑖−1
󵄨󵄨󵄨󵄨
𝑝−1

≤ lim
𝑘→∞

V𝑅
𝑝
(𝜓𝑘, 𝐼) < ∞;

(12)

thus V𝑅
𝑝
(𝜓, 𝐼) < ∞ and therefore 𝜓 ∈ 𝑅𝑉𝑝(𝐼).

Similarly, we can get the following.

Remark 2. If (𝑥0, 𝑦0) ∈ 𝐼×R, where𝑥0 > inf(𝐼) and (𝑥𝑘, 𝑦𝑘) ∈

𝐼 ×R is a sequence satisfying the condition

lim
𝑘→∞

(𝑥𝑘, 𝑦𝑘) = (𝑥0, 𝑦0) ,

𝑥𝑘 < 𝑥𝑘+1; 𝑦𝑘 ≤ 𝑦𝑘+1, 𝑘 ∈ N,

(13)

then there exists a function 𝜓 ∈ 𝑅𝑉𝑝(𝐼) such that, for all 𝑘 ∈

N0,

𝜓 (𝑥𝑘) = 𝑦𝑘. (14)

3. Locally Defined Operators

Now we can introduce the definition of the local defined
operators of type 𝐾 : 𝑅𝑉𝑝(𝐼) → 𝐶(𝐼).

Definition 3 (see [1]). An operator𝐾 : 𝑅𝑉𝑝(𝐼) → 𝐶(𝐼) is said
to be locally defined, if, for every two functions 𝑓, 𝑔 ∈ 𝑅𝑉𝑝(𝐼)

and for every open interval 𝐽 ⊂ R,

𝑓
󵄨󵄨󵄨󵄨𝐽∩𝐼 = 𝑔

󵄨󵄨󵄨󵄨𝐽∩𝐼 󳨐⇒ 𝐾(𝑓)
󵄨󵄨󵄨󵄨𝐽∩𝐼 = 𝐾 (𝑔)

󵄨󵄨󵄨󵄨𝐽∩𝐼 . (15)

Theorem 4. Let 1 < 𝑝 < ∞. If a locally defined operator 𝐾
maps 𝑅𝑉𝑝(𝐼) into 𝐶(𝐼), then there exists a unique function ℎ :

𝐼 ×R → R such that, for all 𝑓 ∈ 𝑅𝑉𝑝(𝐼),

𝐾(𝑓) (𝑡) = ℎ (𝑡, 𝑓 (𝑡)) , 𝑡 ∈ 𝐼. (16)

Proof. Webegin by showing that, for every𝑓, 𝑔 ∈ 𝑅𝑉𝑝(𝐼) and,
for every 𝑥0 ∈ int(𝐼), the condition

𝑓 (𝑥0) = 𝑔 (𝑥0) (17)

implies that

𝐾(𝑓) (𝑥0) = 𝐾 (𝑔) (𝑥0) . (18)

To this end choose arbitrary 𝑥0 ∈ int(𝐼) and take an arbitrary
pair of functions 𝑓, 𝑔 ∈ 𝑅𝑉𝑝(𝐼) which fulfil (17) (i.e., 𝑓(𝑥0) =
𝑔(𝑥0)). The function 𝜑 : 𝐼 → R, defined by

𝜑 (𝑥) =
{

{

{

𝑓 (𝑥) , for 𝑥 ∈ [𝑎, 𝑥0] ;

𝑔 (𝑥) , for 𝑥 ∈ (𝑥0, 𝑏] ,
(19)

belongs to 𝑅𝑉𝑝(𝐼). Indeed, define the functions 𝑓1, 𝑔1 : 𝐼 →

R by

𝑓1 (𝑥) =
{

{

{

𝑓 (𝑥) − 𝑓 (𝑥0) , for 𝑥 ∈ [𝑎, 𝑥0] ;

0, for 𝑥 ∈ (𝑥0, 𝑏] ,

𝑔1 (𝑥) =
{

{

{

0, for 𝑥 ∈ [𝑎, 𝑥0] ;

𝑔 (𝑥) − 𝑔 (𝑥0) , for 𝑥 ∈ (𝑥0, 𝑏] .

(20)

Since 𝑓, 𝑔 ∈ 𝑅𝑉𝑝(𝐼), V
𝑅

𝑝
(𝑓) < ∞ and V𝑅

𝑝
(𝑔) < ∞. Let

𝜋 = {𝑥𝑖}
𝑚

𝑖=0 be a partition of 𝐼 such that 𝑥ℓ−1 ≤ 𝑥0 < 𝑥ℓ for
some 1 ≤ ℓ ≤ 𝑚. Then

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑓1 (𝑥𝑖) − 𝑓1 (𝑥𝑖−1)
󵄨󵄨󵄨󵄨
𝑝

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥𝑖−1
󵄨󵄨󵄨󵄨
𝑝−1 ≤ V𝑅

𝑝
(𝑓) . (21)
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Hence V𝑅
𝑝
(𝑓1) < ∞. By a similar reasoning, we have V𝑅

𝑝
(𝑔1) <

∞. Finally 𝑓1 + 𝑔1 ∈ 𝑅𝑉𝑝(𝐼), as 𝑅𝑉𝑝(𝐼) is a linear space. Thus

V𝑅
𝑝
(𝑓1 +𝑔1) < ∞. (22)

Since, for all 𝑥, 𝑥󸀠 ∈ 𝐼

(𝑓1 +𝑔1) (𝑥) − (𝑓1 +𝑔1) (𝑥
󸀠
) = 𝜓 (𝑥) −𝜓 (𝑥

󸀠
) , (23)

the condition (22) implies that 𝜑 ∈ 𝑅𝑉𝑝(𝐼).
As

𝑓
󵄨󵄨󵄨󵄨(−∞,𝑥0)∩𝐼

= 𝜑
󵄨󵄨󵄨󵄨(−∞,𝑥0)∩𝐼

,

𝑔
󵄨󵄨󵄨󵄨(𝑥0 ,∞)∩𝐼

= 𝜓
󵄨󵄨󵄨󵄨(𝑥0 ,∞)∩𝐼

,

(24)

by definition of a local operator, we get

𝐾(𝑓)
󵄨󵄨󵄨󵄨(−∞,𝑥0)∩𝐼

= 𝐾 (𝜑)
󵄨󵄨󵄨󵄨(−∞,𝑥0)∩𝐼

,

𝐾 (𝑔)
(𝑥0 ,∞)∩𝐼

= 𝐾 (𝜑)
(𝑥0 ,∞)∩𝐼

.

(25)

Therefore, by the continuity of𝐾(𝑓),𝐾(𝑔) and𝐾(𝜑) at 𝑥0, we
obtain

𝐾(𝑓) (𝑥0) = 𝐾 (𝜑) (𝑥0) = 𝐾 (𝑔) (𝑥0) . (26)

Suppose now that 𝑥0 is the left endpoint of the interval 𝐼
(i.e.,𝑥0 = 𝑎).There exists a sequence (𝑥𝑘, 𝑦𝑘) ∈ 𝐼×R such that
𝑥0 < 𝑥𝑘+1 < 𝑥𝑘, 𝑦0 ≤ 𝑦𝑘+1 < 𝑦𝑘, 𝑘 ∈ N, and by the continuity
of 𝑓 and 𝑔 at 𝑥0

lim
𝑘→∞

(𝑥𝑘, 𝑦𝑘) = (𝑥0, 𝑦0) . (27)

By Lemma 1 there exists a function 𝜓 ∈ 𝑅𝑉𝑝(𝐼) such that
𝜓(𝑥𝑘) = 𝑦𝑘 for all 𝑘 ∈ N0.

There is no loss of generality in supposing that 𝑓(𝑥0) =

𝑔(𝑥0) = 𝑦0, 𝜓(𝑥2𝑘−1) = 𝑦2𝑘−1 = 𝑔(𝑥2𝑘−1) and 𝜓(𝑥2𝑘) = 𝑦2𝑘 =
𝑓(𝑥2𝑘), 𝑘 ∈ N.

According to the first part of the proof, we have

𝐾(𝜓) (𝑥2𝑘−1) = 𝐾 (𝑔) (𝑥2𝑘−1) ,

𝐾 (𝜓) (𝑥2𝑘) = 𝐾 (𝑓) (𝑥2𝑘) ,

𝑘 ∈ N.

(28)

Hence, by continuity of 𝐾(𝜓), 𝐾(𝑔), and 𝐾(𝑓) at 𝑥0, letting
𝑘 → ∞, we get

𝐾(𝑓) (𝑥0) = 𝐾 (𝜓) (𝑥0) = 𝐾 (𝑔) (𝑥0) . (29)

When 𝑥0 is the right endpoint of 𝐼, the argument is
similar.

To define the function ℎ : 𝐼 × R → R and fix arbitrarily
an 𝑦0 ∈ R, let us define a function 𝑃𝑦0

: 𝐼 → R by

𝑃𝑦0
(𝑥) := 𝑦0, 𝑥 ∈ 𝐼. (30)

Of course 𝑃𝑦0
, as a constant function, belongs to 𝑅𝑉𝑝(𝐼).

For 𝑥0 ∈ 𝐼, 𝑦0 ∈ R, put

ℎ (𝑥0, 𝑦0) := 𝐾 (𝑃𝑦0
) (𝑥0) . (31)

Since, by (30), for all functions 𝑓,

𝑓 (𝑥0) = 𝑃𝑓(𝑥0)
(𝑥0) , (32)

according to what has already been proved, we have

𝐾(𝑓) (𝑥0) = 𝐾 (𝑃𝑓(𝑥0)
) (𝑥0) = ℎ (𝑥0, 𝑓 (𝑥0)) . (33)

To prove the uniqueness of ℎ, assume that ℎ : 𝐼×R → R

is such that

𝐾(𝑓) (𝑥) = ℎ (𝑥, 𝑓 (𝑥)) (34)

for all 𝑓 ∈ 𝑅𝑉𝑝(𝐼) and 𝑥 ∈ 𝐼. To show that ℎ = ℎ let us fix
arbitrarily 𝑥 ∈ 𝐼, 𝑦 ∈ R and take 𝑓 ∈ 𝑅𝑉𝑝(𝐼) with 𝑓(𝑥) = 𝑦.
From (33), we have

ℎ (𝑥, 𝑦) = ℎ (𝑥, 𝑓 (𝑥)) = 𝐾 (𝑓) (𝑥) = ℎ (𝑥, 𝑓 (𝑥))

= ℎ (𝑥, 𝑦) ,

(35)

which proves the uniqueness of ℎ.

Definition 5. Let 𝑋 ⊂ R and a function ℎ : 𝑋 × R → R be
fixed. The mapping𝐻 : R𝑋 → R𝑋, given by

𝐻(𝑓) (𝑥) := ℎ (𝑥, 𝑓 (𝑥)) , 𝑓 ∈ R
𝑋
, 𝑥 ∈ 𝑋, (36)

is said to be composition (Nemytskii or superposition)
operator. The function ℎ is referred to as the generator of the
operator𝐻.

As an immediate consequence of Theorem 4 we get the
following.

Corollary 6. Let 1 ≤ 𝑝 < ∞. If a local operator 𝐾 maps
𝑅𝑉𝑝(𝐼) into 𝐶(𝐼), then it is a Nemytskii operator.

Note that if a local operator 𝐾 maps 𝑅𝑉𝑝(𝐼) into itself
then, obviously, 𝐾 maps 𝑅𝑉𝑝(𝐼) into 𝐶(𝐼). Therefore, by
Theorem 4, we get the following.

Theorem7. Let 1 ≤ 𝑝 < ∞. If a local operator𝐾maps𝑅𝑉𝑝(𝐼)
into itself, then there exists a unique function ℎ : 𝐼 × R → R

such that, for all 𝑓 ∈ 𝑅𝑉𝑝(𝐼),

𝐾(𝑓) (𝑥) = ℎ (𝑥, 𝑓 (𝑥)) , 𝑥 ∈ 𝐼. (37)

Corollary 8. Let 1 ≤ 𝑝 < ∞. If a local operator 𝐾 maps
𝑅𝑉𝑝(𝐼) into itself, then it is a Nemytskii operator.

Under the additional assumption that the locally defined
operator is uniformly continuous, we get a complete charac-
terization of its generating function ℎ. Namely, we have the
following.

Theorem 9. Let 1 ≤ 𝑝 < ∞. If a local operator 𝐾 :

𝑅𝑉𝑝(𝐼) → 𝑅𝑉𝑝(𝐼) is uniformly continuous, then there exists
𝑓1, 𝑓2 ∈ 𝑅𝑉𝑝(𝐼) such that

𝐾(𝑓) (𝑥) = 𝑓1 (𝑥) 𝑓 (𝑥) +𝑓2 (𝑥) , (38)

𝑓 ∈ 𝑅𝑉𝑝(𝐼), 𝑥 ∈ 𝐼.
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Proof. FromTheorem 7 there exists a unique function ℎ : 𝐼 ×

R → R such that 𝐾(𝑓)(𝑥) = ℎ(𝑥, 𝑓(𝑥)) for all 𝑓 ∈ 𝑅𝑉𝑝(𝐼),
𝑥 ∈ 𝐼. Fix (𝑥0, 𝑦0) ∈ 𝐼 × R, take an arbitrary sequence 𝑥𝑛 ∈ 𝐼

with 𝑥𝑛 → 𝑥0, and let 𝑃𝑦0 : 𝐼 → R be defined by 𝑃𝑦0
(𝑥) =

𝑦0, 𝑥 ∈ 𝐼. Since ℎ(𝑥0, 𝑦0) = 𝐾(𝑃𝑦0
)(𝑥0),

󵄨󵄨󵄨󵄨ℎ (𝑥𝑛, 𝑦0) − ℎ (𝑥0, 𝑦0)
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
ℎ (𝑥𝑛, 𝑃𝑦0

(𝑥𝑛)) − ℎ (𝑥0, 𝑃𝑦0 (𝑥0))
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑃𝑦0

) (𝑥𝑛) −𝐾 (𝑃𝑦0
) (𝑥0)

󵄨󵄨󵄨󵄨󵄨
;

(39)

applying the continuity of𝐾(𝑃𝑦0
) at 𝑥0, we get the continuity

of ℎ with respect to the first variable. Thus, by [16, Theorem
1] (with 𝜑(𝑥) = 𝜓(𝑥) = 𝑥

𝑝),

ℎ (𝑥, 𝑦) = 𝑓1 (𝑥) 𝑦 +𝑓2 (𝑥) , 𝑥 ∈ 𝐼, 𝑦 ∈ R, (40)

for some 𝑓1, 𝑓2 : 𝐼 → R. Since ℎ(⋅, 𝑦0) = 𝐾(𝑃𝑦0
)(⋅) ∈ 𝑅𝑉𝑝(𝐼)

and 𝑓2(𝑥) = ℎ(𝑥, 0), 𝑓1(𝑥) = ℎ(𝑥, 1) − 𝑓2(𝑥), the functions
𝑓1, 𝑓2 ∈ 𝑅𝑉𝑝(𝐼).
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[3] K. Karták, “On Carathéodory operators,” Czechoslovak Mathe-
matical Journal, vol. 17, no. 92, pp. 515–519, 1967.

[4] W. Kozlowski, “Nonlinear opeartors in funtion Banach spaces,”
Commentationes Mathematicae. Prace Matematyczne, vol. 22,
pp. 85–103, 1980.

[5] I. V. Shragin, “On representation of a locally defined operator
in the form of the Nemytskii operator,” Functional Differential
Equations, vol. 3, no. 3-4, pp. 447–452, 1996.

[6] J. Appell and P. P. Zabreiko, “Continuity properties of the
superposition operators,” Journal of the Australian Mathemat-
ical Society. Series A, vol. 47, no. 2, pp. 186–210, 1989.

[7] K. Lichawski, J. Matkowski, and J. Miś, “Locally defined opera-
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[8] J. Matkowski and M. Wróbel, “Locally defined operators in the
space of Whitney differentiable functions,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 68, no. 10, pp. 2933–2942,
2008.

[9] J. Matkowski and M. Wrobel, “Representation theorem for
locally defined operators in the space of Whitney differentiable
functions,” Manuscripta Mathematica, vol. 129, no. 4, pp. 437–
448, 2009.
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