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Genetic Algorithm (GA) is a metaheuristic used in solving combinatorial optimization problems. Inspired by evolutionary biology,
GA uses selection, crossover, and mutation operators to efficiently traverse the solution search space. This paper proposes nature
inspired fine-tuning to the crossover operator using the untapped idea of Mitochondrial DNA (mtDNA). mtDNA is a small subset
of the overall DNA. It differentiates itself by inheriting entirely from the female, while the rest of the DNA is inherited equally from
both parents. This unique characteristic of mtDNA can be an effective mechanism to identify members with similar genes and
restrict crossover between them. It can reduce the rate of dilution of diversity and result in delayed convergence. In addition, we scale
the well-known Island Model, where instances of GA are run independently and population members exchanged periodically, to a
Continental Model. In this model, multiple web services are executed with each web service running an island model. We applied
the concept of mtDNA in solving Traveling Salesman Problem and to train Neural Network for function approximation. Our
implementation tests show that leveraging these new concepts of mtDNA and Continental Model results in relative improvement
of the optimization quality of GA.

1. Introduction

Genetic Algorithm is a nature inspired metaheuristic used to
solve optimization and search problems which would other-
wise take a long time to solve using brute force methods. GA
provides us the means to traverse the solution search space
intelligently and to come up with a near optimal solution in
a substantially short amount of time. Genetic Algorithms are
used beyond computer science, engineering, and mathemat-
ics, in areas such as economics, bioinformatics, life sciences,
and manufacturing. GA is well suited for combinatorial opti-
mization problems. One such problem where we can deploy
GA is the Traveling Salesman Problem (TSP).

The goal of Genetic Algorithm is to come as close as
possible to the optimal solution. Since the solution search
space is so huge, the major difficulty in reaching this goal is
the convergence into localminima before exploring the entire
search space for globalminima.This iswherewe could exploit
the concept of mtDNA to help add some order in the random
search for near optimal solution.

2. Genetic Algorithm

The idea of GA was proposed by Holland in his 1975 book
[1]. Since then GA has been an active field of research and
there has been numerous publications on it. TSP is one of the
problems where GA has been successfully used.

As shown in Figure 1, GAhas twoprimary functions: pop-
ulation selection and crossover. Selection algorithmdescribes
the methodology to pick parents that will create children
for the next generation. There are four strategies shown in
the diagram: elite, roulette, rank, and tour. The elite strategy
gives preference to selecting the best members from the
current population itself [2]. In roulette selection, members
are mapped to a roulette wheel occupying space that is pro-
portional to their fitness and members are selected randomly
from it avoiding duplicates [3]. Rank selection method is
similar to roulette, but instead of proportional representation
of the pie based on fitness, members are ranked in ascending
order based on their fitness [2]. In tournament selection, 𝑛
population members are chosen to compete and the best one
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Figure 1: Genetic Algorithm.

is selected to be a parent from the pool of 𝑛members [2].This
process is continued until all members have been examined.

The crossover is the process of intermixing the genetic
representation of the parent population members with the
intension of creating a better fitness in the resulting offspring.
There are different types of crossover operators based on the
tour representation. Partially mapped crossover (PMX), pro-
posed by Goldberg and Lingle [4], is a popular operator. Here
a section of one parent’s genes is mapped to the other parent’s
and the rest are interchanged to produce the offspring [5].

Mutation adds addition value to GA by introducing ran-
dom change which could assist in overcoming local minima
in the search exploration. One way to implement mutation is
to randomly select a small percentage of populationmembers
and interchange a unit of genes with an adjacent one.

The solution can be enhanced by utilizing Island Model.
Here the population is broken into smaller groups or islands
andGA is run separately on each in separate threads allowing
us to exploit multiple processors or even multiple distributed
servers to solve a large problem. This not only speeds up the
processing time but also improves the quality of the solution
in most cases because it eliminates the sampling bias, if any
present in the initial population [3] when run in a single
thread. In addition, a small number of population members
from different islands can be exchanged to exploit diversity
and prevent premature convergence.

Another method to improve the quality of the solution
is to perform a more thorough local search. We can achieve
this by using𝐾-Opt algorithm, where𝐾 is a numerical value,
which is usually 2 or 3. In 2-Opt method, two edges are
removed from the tour and reconnected in the other way that
is possible to retain a valid tour [7]. The advantage of 2-Opt
is that it is fast and efficient. When used in combination with
standard GA operators, 2-Opt’s probability of getting stuck
in local minima is also mitigated. Every execution of 2-Opt
requires 𝑛×𝑚 operations, where 𝑛 is the number of cities and
𝑚 is the number of members.Therefore, 2-Opt should not be
run on every iteration but rather every𝑋 (e.g., 100) iterations
to limit the execution time.

2.1. Using GA to Solve TSP. In a symmetric TSP problem, a
salesman has to visit a number of cities and return back to the
original (first) city with the shortest route [5]. TSP is a classic
NP-hard problem and the worst case run time for solving
it exhaustively increases superpolynomially or exponentially
with the increase of number of cities.

When using GA to solve TSP, every city is denoted by a
unique number. Every solution is a random sequence (or a
population member in case of GA) of unique nonrepeating
numbers, representing a possible route or tour. Every pop-
ulation member with a unique genetic makeup represents a
solution to GA. Likewise every route represents a solution in
TSP. GA starts out with an initial set of randomly generated
population members that go through several iterations of
selection and crossover function in the hope of improving the
solution in the subsequent iteration or generation. For TSP,
we generate random sets of routes, each of which consists of
vector sequence of cities. The selection method picks pairs of
routes or population members which are allowed to become
inputs to the crossover function.The crossover function then
exchanges the unique numbers (cities) of each route pair to
generate two children (new population members) for each
pair of parent population.The children, who themselves rep-
resent solutions (routes) to the TSP, then replace the parents
as the new set of routes (population members). This iterative
process of selection and crossover can continue until we do
not get any better results in the next generation.

Additional enhancements are provided by mutations and
islandmodels. Tomimicmutations in GA, a small percentage
of route solutions are randomly picked to have their sequence
interchanged by switching two adjacent cities. Mutation con-
tributes to retaining diversity [9]. In Island Model, multiple
GAs are independently run and a small number of population
members (routes in case of TSP) are exchanged between
these islands after certain number of iterations (generations).
Islandmodel also allows us to exploit all available (abundant)
computing resources by runningmultiple GAs in parallel [3].
Both these mechanisms have proven to positively impact the
outcome of the solution.

2.2. Train Artificial Neural NetworkUsing GA. Artificial Neu-
ral Networks (ANNs) are learning systems that are inspired
by biological nervous system. ANNs mimic the anatomy and
function of the brain. ANNs consist of interconnected pro-
cessing units/nodes (similar to neurons) that are organized
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Figure 2: Artificial Neural Network.

in layers as shown in Figure 2. Each node’s incoming connec-
tions have weights assigned to them and the summation of
the incoming signal’s weights is processed through the node
and the result feed to the subsequent node[s] in the next layer.

In Figure 2, each node in the input layer is connected to
all the nodes in the hidden layer and subsequently all nodes
in the hidden layer are connected to the output layer nodes.
Each incoming connection of the node 𝑖 is represented by 𝑥𝑗
(i.e., 𝑗th input to the node) and each connection also has a
weight, 𝑤𝑖𝑗, associated with it [10].

The following equation shows themathematical represen-
tation of 𝑦𝑖, the output of the processing of the node, where
𝜃𝑖 is the bias and 𝑓𝑖 is a nonlinear function such as sigmoid
function [10].

ANN Node Function. Consider

𝑦𝑖 = 𝑓𝑖(

𝑛

∑

𝑗=1

𝑤𝑖𝑗𝑥𝑗 − 𝜃𝑖) (1)

(see [10]).
The ANN in Figure 2 is a Feedforward Neural Network,

where the connections between the nodes do not form a feed-
back loop.There are different ways to train a Neural Network.
During the training phase the value of the weights and biases
are optimized to solve a particular problem. Gradient descent

is typically used to adjust the weights based on the difference
between the desired output and the current one [11]. Genetic
Algorithm can also be used to train the Neural Network. The
selection and fitness criteria can be aptly applied in training
the Neural Network. Function approximation is one of the
areas where Neural Networks can be used effectively.

3. Related Work

There has been considerable amount of research to improve
the GA operators to solve TSP. The development of several
selection strategies mentioned earlier, that is, elite, roulette,
rank, and tournament, is a testimony of that effort. These
strategies have been implemented and run against TSPLIB
benchmarks [8] by different researchers. Each of these
selection operators has its own characteristics, benefits, and
shortcomings. Razali and Geraghty [6] concluded in the
paper that rank based selection strategy yielded better results
but took more computation time, while tour method is faster
for small sized problems [6]. Selection methods represent
only one side of the TSP problem. The other major side is
the crossover functions, which contributes significantly to the
success of the algorithm. There are about eleven crossover
operators reviewed by Larrañaga et al. [5] in their paper.
Majority of themare based on specific patterns of information
mixing and interchange between the parents, for example,
Order Crossover (OXI), introduces several uniform length
cut points in the path of the parents and produces offspring
with several subpaths from the parents intact and assimilated
in the children [12]. Another crossover operator, that is,
Genetic Edge Recombination crossover, addsmoremeaning-
ful logic in its workings by assuming the edges of the tour are
important and attempts to preserve them in the offspring [13].

There are published literatures on restrictive crossover.
Galán et al. [14] proposed a mating strategy that balances
between exploration (selection criteria) and exploitation (fit-
ness criteria) by developing a parameter calledmating index,
which controls the degree of exploration (or diversity) of
parents based on the hardness of the problem. Strategies like
incest prevention [15] preventmating between similar individ-
uals. Assortative mating is another strategy used to improve
GA results.Ochoa et al. [16] demonstrate the relation between
mutation rates and assortative mating choices; that is, higher
mutation rates work well with assortative mating whereas
lower mutation rates work well with dissortative mating to
confer better fitness.The idea behind these strategies is based
on the principle that offspring of similar individuals do not
result in higher fitness. Introducing controlled mating based
on similarity of genes does yield better results but they are
also computationally costly as the lengthy chromosomes have
to be compared.

This paper presents a further optimized idea of restrictive
mating to complement the standard crossover operators.The
idea is based on the premise that it would not be beneficial
to select the offspring of the same parents (or close lineage)
as new parents to cross over with each other. In fact, it could
be detrimental tomaintaining diversity and exploring greater
search space. As an alternate to exhaustive comparison of the
genes to determine genetic diversity between the parents, we
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present an algorithm that is computationally lean. We exploit
the concept of mtDNA to enhance the GA.

4. Proposed Idea and Its Implementation

4.1. Mitochondrial DNA (mtDNA). Humans have 23 pairs of
chromosomes with one copy of each pair inherited separately
from each parent [6]. The DNA in these chromosomes is
referred to as nuclear DNA [17]. In addition, humans also
have mtDNA [17], which consists of only 1% of the total DNA
[18], thus coding for far less genes. Though insignificant by
orders of magnitude when compared to the nuclear DNA
in their contribution to inheritable traits (genes), mtDNA’s
unique characteristic in inheritance can play an important
role in guiding the search for optimal solution. The DNA
sequence in the 23 pairs of chromosomes is inherited equally
into the offspring from both the parents during reproduction,
whereas the sequence in mtDNA is inherited only from the
maternal side [18]. This allows us to keep track of population
members with similar genetic traits and common inheritance
via maternal lineage. Diversity is the key to preventing
premature convergence and achieving near optimal solution.
Crossovers between similar population members with close
DNA proximity will not yield results better than the prior
generation in most cases. The idea in this paper is to create
a data structure to tag and track the mtDNA in every popula-
tion member and restrict the crossover between population
members with similar mtDNA. mtDNA is widely used in
evolutionary genetics and population study [19], and its con-
cept could potentially be beneficial to GA search exploration.

4.2. Using mtDNA GA and Scaled Architecture to Solve TSP.
Theprimary objectives ofGA are to help get us better solution
after every iteration and to prevent solution exploration from
prematurely converging into local minima. The primary way
to address the later goal is to introduce the right amount of
diversity in the parents.

Most of the crossover operators tend to be very refined
and granular at the city or node information level and seem to
overlook the bigger picture. As theGAundergoes several iter-
ations of crossover, the risk of convergence increases too and
in some cases, crossovers between the same populationmem-
bers’ offsprings would not yield results any better than the
previous generation because their parents would have similar
genetic information to begin with. With less genetic variance
in the parents, we cannot expect better or different results in
the offspring. It is self-evident that genetic variability sows the
seed for evolution and newer offspring [20]. One way to track
genetic similarity is by tracking the family lineage. And the
most effective way to track inheritance in the real world is
through mtDNA [21].

The concept of mtDNA (Mitochondrial DNA) is imple-
mented in this paper to control the crossover function to pre-
vent populationmembers with samemtDNA from reproduc-
ing for 𝑛 number of generations. To avoid the overreaching
consequences of this condition, this requirement is dictated
only on a percentage of crossovers. mtDNA is defined as
a separate attribute of the population member class. Since
mtDNA gets inherited solely from the female parent, it does

not alter as it is passed down to the offspring. This attribute
was exploited to guide and control crossovers. Here is a high
level overview of the mtDNA algorithm and pseudocode.

All of the four selectionmethods (tour, elite, roulette, and
rank) described earlier were utilized during the implemen-
tation. To transfer genes to children during crossover, 1/4 to
3/4 tour cut was made on parent one and transmitted to the
children. The rest was transferred in cyclic order from the
second parent, skipping any cities that were already derived
from the first parent, thus ensuring every city is represented in
the childwith no repetition. In addition to leveragingmtDNA
in the implementation, various selection methods, Island
Model, 2-Opt, and distributed processing using multiple
servers (Continental Model), were also utilized.

Figure 3 provides a high-level workflow of the GA
implementation in this paper. Custom version of GAwas run
on each of the four threads on each server.

IslandModelwas implementedwithmulticore processors
in server by runningmultiple threads in parallel. Each thread
ran its own version of GA. Periodically after every𝑋 number
of iterations/generations on each of the threads running the
GA, a handful of randomly selected population members
were exchanged between the threads. This process not only
added more computing resources and improved the execu-
tion time of GA but also increased diversity and reduced
initial sampling bias.

2-Opt was implemented by selecting the population
member with the best fitness so far in the particular thread
of GA execution every𝑋 iterations/generations.The selected
member then underwent local optimization. Two links/edges
of the best member were swapped exhaustively to check if it
improves the solution.

Island Model was further scaled with distributed pro-
cessing by executing the abovementioned implementation on
several servers using Web Services (Service Oriented Archi-
tecture (SOA)). We aptly named it Continental Model. Pop-
ulation members were randomly exchanged between these
independently run Island Model GA implementations in
different servers after a fixed number of iterations to achieve
diversity and to reduce the likelihood of premature conver-
gence.

The implementation was run against known TSP
instances (dantzig42, eil51, rd100, ch150, and kroB200)
from TSPLIB [8]. The numerical value in the name of the
benchmark denotes the number of cities in it; for example,
eil51 has 51 cities. The results from the mtDNA implemen-
tation of GA were compared against the results of implemen-
tation by Razali and Geraghty [6] and known best solutions.

4.3. mtDNA GA in Artificial Neural Network. We used GA
to train the Neural Network for function approximation. A
multilayer feedforward ANN, with 1 node in the input layer,
26 nodes in the first hidden layer, 26 nodes in the second hid-
den layer, and 1 node in the output layer, was chosen.The GA
implementation for Neural Network is similar to GA imple-
mentation for TSP. In place of the city number (in TSP), the
value of the weights is randomly initialized in a solution set
and crossed over with another set of weights in the case of
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Neural Network. But unlike in TSP, the values of the weights
do not need to be unique within a solution set.

mtDNA was introduced in GA here just like in TSP. The
resulting children from crossovers were tagged with the same
mtDNA attribute of the mother for 𝑋 iterations as defined
in Algorithm 1 and crossovers prevented between those with
same mtDNA. mtDNA value was reset after 𝑋 iterations
to ensure that crossovers were not too restrictive. We used
mtDNA implementation of GA to train the Neural Network
for function approximation.

Here are the details from the implementation:

(1) Population size = 200.
(2) Selection ratio = 20.

Table 1: mtDNA GA solution (fitness) versus others.

TSPLIB
benchmarks

Known best
solution [6]

Razali and
Geraghty

[6]

mtDNA + 2-Opt +
multinode

dantzig42 679 679 669
eil51 425 430 413
eil76 538 N/A 536
rd100 7910 N/A 7990
ch150 6528 N/A 6739
kroB200 29437 N/A 30706

(3) Mutation ratio = 4.
(4) mtDNA reset every𝑋 iterations, where𝑋 = 15.
(5) Nodes are as follows: 1 (input layer), 26 (hidden layer

1), 26 (hidden layer 2), and 1 (output layer).

GA was used to train ANN for the following functions with
and without the mtDNA logic (Figure 4):

Function A: 𝑓(𝑥) = 𝑥 sin(50𝑥)/𝑒2.
Function B: 𝑓(𝑥) = 250 sin(2𝑥) sin(𝑥).
Function C: 1D version of Schewefel function 𝑓(𝑥,
𝑦) = −𝑥 sin(√|𝑥|) − 𝑦 sin(√|𝑦|).
Function D: 1D version of 𝑓(𝑥, 𝑦) = (16𝑥(1 −
𝑥)𝑦(1 − 𝑦) sin(9𝜋𝑥) sin(9𝜋𝑦))2.

5. Results

5.1. GA in Traveling Salesman Problem. The TSPLIB column
in Table 1 indicates the benchmark names. The 2nd and
the 3rd columns represent the fitness from the known best
solution and Razali et al. [6] paper, respectively. The last col-
umn lists the fitness value from the GA implementation with
mtDNA together with 2-Opt and continental model in this
paper. In case of TSP, the fitness function is the distance trav-
eled by the salesman through all the cities and back to the first
one. Solutions are evaluated based on the fitness value; that is,
the lower the value the better.

Figure 5 shows the comparison between this paper’s
mtDNA GA implementation and the known solutions [8]
of the TSP benchmarks. mtDNA GA implementation scored
better on benchmarks with relatively less number of cities,
that is, dantzig42 (42 cities), eil51 (51 cities), and eil76 (76
cities).

Figures 6, 7, and 8 provide the results of mtDNA GA
implementation on TSPLIB benchmarks with higher (100,
150, and 200) number of cities. While the results of mtDNA
GA on these higher benchmarks are slightly behind than the
known best solution, they are significantly better than the
results when mtDNA logic and scaled (multinode) architec-
ture were not used. Thus, introducing these two concepts
adds value to solving TSP by consistently lowering fitness of
the solution, even in TSPLIB benchmarks with greater than
99 cities.

Table 2 provides the best route/tour results that were
received by running GA with mtDNA for the respective
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(1) Initialization
Assign mtDNA attribute to each population member
If population = initial
then mtDNA← random unique value

If population = offspring of crossover
then mtDNA← mtDNA of female (2nd parent)

(2) for 𝑖 ← 1 to Maximum Iterations
(a) Selection

Check mtDNA attributes of crossover pairs at (total iteration mod 100) < 𝑁 iterations, where𝑁 < 100
If parent 1 mtDNA = parent 2 mtDNA
then abort crossover & find another pair

If parent 1 mtDNA ̸= parent 2 mtDNA
then allow crossover

Reset mtDNA attribute of all members to unique values after 𝑋 iterations.
𝑋 < log2𝑃, where 𝑃 = total population

(b) Crossover & mtDNA transfer
Children’s mtDNA← mtDNA of the female parent

Algorithm 1: mtDNA pseudocode and algorithm.
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benchmarks. The result from Table 1 demonstrates that
mtDNA yields results that are better than Razali and Ger-
aghty [6] and the published solution posted on TSPLIB [8]
for dantzig42 and eil51 benchmarks. When mtDNA and

Continental Model were used with other known operators
and algorithms, it resulted in solution that was better than
the published solution for eil76 and very close to known best
solutions for rd100, ch150, and kroB200 benchmarks.
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Table 2: Best route/tour for mtDNA fitness values for various benchmarks.

TSPLIB mtDNA fitness mtDNA route/tour with city sequence

dantzig42 669 0>1>3>2>4>5>6>7>8>9>24>25>26>23>10>11>22>21>16>15>12>13>14>17>18>19>20>27>28>
29>30>31>32>33>34>35>36>37>38>39>40>41>0

eil51 413 0>31>10>37>4>36>16>3>17>46>11>45>50>26>5>47>22>6>42>23>13>24>12>40>39>
18>41>43>14>44>32>38>9>48>8>29>33>20>49>15>1>28>19>34>35>2>27>30>25>7>21>0

eil76 536
0>72>32>62>15>2>43>31>8>38>71>57>11>39>16>50>5>67>3>74>75>66>25>6>52>13>
58>65>10>64>37>9>30>54>24>49>17>23>48>22>55>40>42>41>63>21>27>60>20>46>
47>28>4>36>35>68>70>59>69>19>14>56>12>53>18>34>7>45>33>51>26>44>29>73>1>61>0

rd100 7990

0>59>68>7>70>67>82>50>89>90>63>35>56>46>98>52>78>5>93>97>65>15>44>51>10>
60>4>80>79>64>47>29>21>40>33>6>41>23>24>42>39>54>95>38>99>43>28>34>22>1>
88>83>30>87>57>75>58>94>76>92>27>36>18>53>37>69>71>16>72>49>45>55>91>26>
9>32>2>77>19>73>25>8>31>3>11>13>84>81>74>20>48>12>66>96>85>62>14>86>61>17>0

ch150 6739

0>97>102>81>94>106>4>99>142>96>123>34>92>125>32>51>110>104>91>53>133>137>
45>89>19>24>140>82>55>145>25>74>17>141>84>64>131>136>101>113>98>107>69>
134>49>54>57>80>109>28>85>18>1>36>5>27>8>41>119>46>138>39>52>11>23>117>
126>68>35>60>10>147>129>16>65>59>139>116>56>38>40>100>115>42>50>108>66>37>
22>31>130>76>121>13>79>132>15>120>93>87>78>58>14>77>20>149>114>70>43>63>111>
135>144>71>48>146>143>128>26>30>122>73>12>105>90>118>67>127>44>3>103>21>124>
148>61>2>112>9>95>88>7>6>83>29>62>47>72>75>33>86>0

kroB200 30706

0>94>173>11>106>97>31>166>174>58>135>28>7>98>75>96>90>128>27>157>2>10>92>
121>84>72>141>122>9>67>110>188>52>169>148>69>197>38>39>189>116>193>196>66>
4>131>61>25>99>55>100>149>68>74>29>79>19>180>133>48>85>137>165>107>151>37>
145>45>24>8>33>56>6>83>57>168>71>36>64>123>126>187>78>112>80>178>46>140>
183>114>172>138>190>153>53>162>115>51>185>195>42>184>117>158>49>163>176>
142>170>87>22>21>192>103>54>143>159>152>23>76>102>139>105>182>15>104>17>
161>134>18>150>136>95>118>91>101>199>129>43>147>40>191>16>35>44>77>154>12>
186>125>62>30>47>194>155>50>127>111>14>32>146>120>81>109>108>1>41>119>124>
13>63>5>3>82>181>88>59>73>164>86>113>167>132>65>144>198>177>130>156>171>34>
60>93>179>175>26>70>160>89>20>0
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Table 3: Best route/tour for mtDNA fitness values for various
benchmarks.

Function Training
algorithm

RMS error per iteration
100 200 300 500 1000 5000

A Standard GA 1.84 1.78 1.78 1.77 1.75 0.232
mtDNA GA 1.79 1.77 1.77 1.76 0.92 0.203

B Standard GA 2.94 2.92 2.90 2.87 2.82 2.666
mtDNA GA 2.93 2.91 2.90 2.87 2.80 2.610

C Standard GA 0.48 0.46 0.42 0.37 0.29 0.282
mtDNA GA 0.47 0.41 0.35 0.30 0.21 0.121

D Standard GA 0.64 0.59 0.59 0.59 0.58 0.371
mtDNA GA 0.61 0.58 0.58 0.58 0.53 0.314

5.2. GA in Artificial Neural Networks. The ANN was trained
separately using mtDNA implementation of GA and GA by
itself. After theweightswere set, theANNwas used to approx-
imate the four functions (Figure 4) and the square error was
computed. The results from the mtDNA implementation of
GA as listed in Table 3 were better than the results when GA
was used by itself across all four functions. Table 3 shows
the results from the several (100, 200, 300, 500, 1000, and
5000) iterations/executions using both the training methods.
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Figure 6: Graph shows various GA/mtDNA results along with the
published best solution for rd100.
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Figure 7: Graph shows various GA/mtDNA results along with the
published best (known) solution for ch150.

Figures 9–12 represent the data from Table 3 in graphical
form.

The results from mtDNA incorporated GA trained ANN
consistently outperforms the GA-only trained ANN for the
given four function approximations.

6. Conclusion

We have presented two important ideas of mtDNA and a
Continent Model in improving the optimization quality of
GA. The mtDNA logic introduced in the paper is novel idea
and is inspired by nature just like many of the optimization
algorithms, for example, Genetic Algorithm, Swarm Intelli-
gence, Ant Colony Optimization, and Neural Network. Like
these nature inspired algorithms and systems, the concept
of mtDNA is not very complex but can be instrumental in
improving the quality of metaheuristics. Maintaining diver-
sity is the key to preventing premature convergence into local
minima. The characteristics of mtDNA can be exploited to
track diversity and restrict crossover between parents of same
genetic traits, thus yielding better fitness value in the off-
spring. The mtDNA concept articulated and implemented
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published best (known) solution for kroB200.
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in this paper mimics the natural order where it is an estab-
lished fact that biodiversity favors evolution and produces
more adaptable offspring. Thanks to faster hardware, paral-
lel/distributed processing, and algorithms, TSP benchmarks
with smaller number of cities have been solved optimally
in short runtime. Larger benchmarks/problems still provide
opportunities to improve algorithms. The implementation of
mtDNA on small to medium sized TSP benchmarks in this
paper supports its contribution in relatively improving the
quality of solution. The goal of this implementation is not
only necessarily to beat the runtime record of algorithms
on benchmarks that have already been optimally solved, but
also to provide a proof of concept of a technique that can
be exploited to get better results. Likewise with Continental
Model, we improve our results with greater exploration of the
search space afforded by an additional layer of randomness
and exchanges between independent implementations of
Island GAs. Continental Model multiplies the benefits of
Island Model by injecting more diversity and reduces the
negative impact of any inherent initial biases in the individual
silos of GA implementations in different systems. In addition,

we were able to use the concept ofmtDNA inGA beyond TSP
to improve the outcome of Neural Network learning. Thus,
it can be concluded from the results of this paper that Con-
tinental Model and the incorporation of mtDNA to control
crossover are constructive modifications that contribute to
further optimize the GA by yielding relatively better results.

7. Future Work

To extend the validity of mtDNA in GA as a generally more
acceptable technique, it can be implemented and tested in
other combinatorial optimization problems withmuch larger
data (population) sets. Other novel methods of distributed
and parallel computation algorithms can also be leveraged to
get closer to optimal solution. The idea of mtDNA to guide
the crossover function can be further refined and ingrained
into the GA algorithm to achieve better results. The value
of mtDNA can be made relative to the variance between the
nuclear DNA sequences (city route sequences) of population
members and we can restrict crossovers between members
with close mtDNA proximity in addition to members with
same mtDNA. We can combine the concept of mtDNA with
other crossover operators and explore further optimization
strategies. In addition, instead of outright prevention of
crossovers between population members with same mtDNA,
we can employ special operators to such crossovers to
maximize diversity. To further validate the use of mtDNA
concepts, we can extend the scope of the tests with more
experiments and other optimization problems.
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