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A module𝑀 over an associative ring 𝑅 with unity is a 𝑄𝑇𝐴𝐺-module if every finitely generated submodule of any homomorphic
image of𝑀 is a direct sum of uniserial modules. The study of large submodules and its fascinating properties makes the theory of
QTAG-modules more interesting. A fully invariant submodule 𝐿 of𝑀 is large in𝑀 if 𝐿 + 𝐵 = 𝑀, for every basic submodule 𝐵 of𝑀.The impetus of these efforts lies in the fact that the rings are almost restriction-free. This motivates us to find the necessary and
sufficient conditions for a submodule of a QTAG-module to be large and characterize them. Also, we investigate some properties
of large submodules shared by Σ-modules, summable modules, 𝜎-summable modules, and so on.

1. Introduction and Preliminaries

All the rings 𝑅 considered here are associative with unity and
modules𝑀 are unital 𝑄𝑇𝐴𝐺-modules. An element 𝑥 ∈ 𝑀 is
uniform, if𝑥𝑅 is a nonzero uniform (hence uniserial)module
and, for any 𝑅-module𝑀 with a unique composition series,𝑑(𝑀) denotes its composition length. For a uniform element𝑥 ∈ 𝑀, 𝑒(𝑥) = 𝑑(𝑥𝑅) and 𝐻𝑀(𝑥) = sup{𝑑(𝑦𝑅/𝑥𝑅) | 𝑦 ∈𝑀, 𝑥 ∈ 𝑦𝑅 and 𝑦 uniform} are the exponent and height
of 𝑥 in𝑀, respectively.𝐻𝑘(𝑀) denotes the submodule of𝑀
generated by the elements of height at least 𝑘 and 𝐻𝑘(𝑀) is
the submodule of𝑀 generated by the elements of exponents
at most 𝑘. For any arbitrary 𝑥 ∈ 𝑀, 𝐻(𝑥) = 𝑘 if 𝑥 ∈ 𝐻𝑘(𝑀)
but 𝑥 ∉ 𝐻𝑘+1(𝑀).𝑀 is ℎ-divisible if𝑀 = 𝑀1 = ⋂∞𝑘=0𝐻𝑘(𝑀)
and it is ℎ-reduced if it does not contain any ℎ-divisible
submodule. In other words it is free from the elements of
infinite height.

A submodule 𝑁 of 𝑀 is ℎ-pure in 𝑀 if 𝑁 ∩ 𝐻𝑘(𝑀) =𝐻𝑘(𝑁), for every integer 𝑘 ≥ 0. For a limit ordinal 𝛼,𝐻𝛼(𝑀) = ⋂𝜌<𝛼𝐻𝜌(𝑀), for all ordinals 𝜌 < 𝛼, and it is 𝛼-
pure in 𝑀 if 𝐻𝜎(𝑁) = 𝐻𝜎(𝑀) ∩ 𝑁 for all ordinals 𝜎 <𝛼 and it is an isotype if it is 𝛼-pure for every ordinal 𝛼.
A submodule 𝐵 ⊆ 𝑀 is a basic submodule of 𝑀, if 𝐵 is

ℎ-pure in 𝑀, 𝐵 = ⨁𝐵𝑖, where each 𝐵𝑖 is the direct sum
of uniserial modules of length 𝑖 and𝑀/𝐵 is ℎ-divisible. For
a QTAG-module 𝑀, the 𝜎th−𝑈𝑙𝑚 invariant of 𝑀, 𝑓𝑀(𝜎)
is the cardinal number 𝑔(Soc(𝐻𝜎(𝑀))/Soc(𝐻𝜎+1(𝑀))) [1].
Several results which hold for 𝑇𝐴𝐺-modules also hold good
for 𝑄𝑇𝐴𝐺-modules [2].

Amodule𝑀 is summable if Soc(𝑀) = ⨁𝜏<𝛼𝑆𝛼, where 𝑆𝛼
is the set of all elements of𝐻𝛼(𝑀)which are not in𝐻𝛼+1(𝑀),
where 𝜏 is the length of 𝑀. A 𝑄𝑇𝐴𝐺-module 𝑀 is called𝜎-summable if Soc(𝑀) = ⋃𝑛<𝜔𝑀𝑛, 𝑀𝑛 ⊆ 𝑀𝑛+1 and, for
every positive integer 𝑛, there is an ordinal 𝛼𝑛 such that𝑀𝑛 ∩ 𝐻𝛼𝑛(𝑀) = 0, 𝛼𝑛 < length of𝑀.

For any uniform element 𝑥 ∈ 𝑀, there exist uniform
elements 𝑥1, 𝑥2, . . . such that 𝑥𝑅 ⊇ 𝑥1𝑅 ⊇ 𝑥2𝑅 ⊇ ⋅ ⋅ ⋅
and 𝑑(𝑥𝑖𝑅/𝑥𝑖+1𝑅) = 1. Now the 𝑈𝑙𝑚-sequence of 𝑥 is
defined as 𝑈(𝑥) = (𝐻(𝑥),𝐻(𝑥1),𝐻(𝑥2), . . .). 𝑈 sequences
are defined as 𝑈(𝑥). This is analogous to the 𝑈𝑙𝑚-sequences
defined in groups [3]. These sequences are partially ordered
because 𝑈(𝑥) ≤ 𝑈(𝑦) if 𝐻(𝑥𝑖) ≤ 𝐻(𝑦𝑖) for every 𝑖. For the
sequence 𝑛 = (𝑛0, 𝑛1, 𝑛2, . . .) of nonnegative, nondecreasing
integers we may consider 𝐿 as the submodule of𝑀 generated
by the elements 𝑥 of 𝑀 for which 𝑈(𝑥) ≥ 𝑛. If 𝑓 is an
endomorphism of𝑀, then 𝐻(𝑥) ≤ 𝐻(𝑓(𝑥)), and therefore
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𝐿 is fully invariant. Therefore with every large submodule 𝐿
of𝑀 we may associate a sequence 𝑛(𝐿).
2. Some Characterizations of

Large Submodules

In this section we study and characterize the properties of
fully invariant and large submodules of 𝑄𝑇𝐴𝐺-modules. We
also discuss the properties of large submodules inherited
from the containing module.

We start with the facts which are true for anymodule. For
a fully invariant submodule𝑁 of a 𝑄𝑇𝐴𝐺-module𝑀 and an
endomorphism 𝑓 of 𝑀, it induces an endomorphism 𝑓 of𝑀/𝑁 such that 𝑓(𝑥 +𝑁) = 𝑓(𝑥) +𝑁.On the other hand for
the endomorphism 𝑓 of𝑀/𝑁 induced by an endomorphism𝑓 of𝑀 and a fully invariant submodule𝐾/𝑁 ⊆ 𝑀/𝑁, 𝑓(𝑥 +𝑁) = 𝑓(𝑥) + 𝑁 ∈ 𝐾/𝑁.That is, 𝑓(𝑥) ∈ 𝐾 and 𝐾 is fully
invariant in 𝑀. For a fully invariant submodule 𝐴 ⊆ 𝑀 =⨁𝑀𝑖, 𝐴 = ⨁(𝐴 ∩𝑀𝑖) and each 𝐴 ∩𝑀𝑖 is fully invariant in𝑀𝑖.

For any sequence 𝑛 = (𝑛1, 𝑛2, . . .) we define 𝑀(𝑛) as
the submodule of𝑀, generated by the elements 𝑥 for which𝑈(𝑥) ≥ 𝑛. This submodule is a large submodule of𝑀. In fact
for every large submodule there is a sequence and, for every
sequence, there is a large submodule [4].

For a𝑄𝑇𝐴𝐺-module𝑀, consider the homomorphism𝑓 :𝑀 → 𝑀/𝑀1. As𝑀1 = ⋂∞𝑘=0𝐻𝑘(𝑀), 𝑓 is height preserving.
This implies that𝐻(𝑥) = 𝐻(𝑓(𝑥)) and 𝑈 (𝑥) = 𝑈(𝑓(𝑥)) for
all 𝑥 ∈ 𝑀.

We conclude that 𝐿/𝑀1 is large in𝑀/𝑀1 if and only if𝐿 is large in𝑀. In a module𝑀 without elements of infinite
height, consider a fully invariant submodule𝐾 of𝑀, and 𝑥 ∈
Soc(𝐾) such that 𝑛 = 𝐻(𝑥) ≤ 𝐻(𝑦) for every 𝑦 ∈ Soc(𝐾).
Let 𝑧 ∈ Soc(𝑀), such that 𝐻(𝑧) ≥ 𝑛. Then there exists an
endomorphism 𝑓 of𝑀 such that 𝑓(𝑥) = 𝑧; therefore 𝑧 ∈ 𝐾
and Soc(𝐾) = Soc(𝐻𝑛(𝑀)).
Remark 1. For any large submodule 𝐿 of 𝑀, Soc(𝐿) =
Soc(𝐻𝑛(𝑀)) for some positive integer 𝑛.
Lemma2. Let𝑁 be submodule of𝑀 such that Soc(𝐻𝑛𝑘(𝑀)) ⊆
Soc(𝐻𝑘(𝑁)) for 𝑘 = 0, 1, 2, . . ., where the sequence of positive
integers 𝑛0, 𝑛1, 𝑛2, . . . is monotonically increasing. Then 𝑀 =𝑁 + 𝐵 for any basic submodule 𝐵 of𝑀.
Proof. Let 𝐵 = ⨁𝐵𝑖 be a basic submodule of 𝑀 and 𝑀 =𝐵1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝐵𝑘 ⊕ (𝐵∗𝑘 , 𝐻𝑘(𝑀)) [5]. Then

Soc (𝑀) = Soc (𝐵1 + ⋅ ⋅ ⋅ + 𝐵𝑘) ⊕ Soc (𝐻𝑘 (𝑀))
= Soc (𝐵1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝐵𝑛𝑘) ⊕ Soc (𝐻𝑘 (𝑁)) .

(1)

Now suppose, for every 𝑥 ∈ 𝑀, 𝑒(𝑥) ≤ 𝑘 implies that𝑥 ∈ (𝐵 + 𝑁). Consider 𝑥 ∈ 𝑀 such that 𝑒(𝑥) = 𝑘 + 1; then
there exists 𝑦 ∈ 𝑀 such that 𝑑(𝑥𝑅/𝑦𝑅) = 𝑘.Now 𝑦 ∈ Soc(𝑀)
and 𝑦 = 𝑏+𝑧, where 𝑏 ∈ 𝐵 and 𝑧 ∈ Soc(𝐻𝑘(𝑁)), ensuring the
existence of 𝑧 such that 𝑑(𝑧𝑅/𝑧𝑅) = 𝑘. By the ℎ-purity of 𝐵,
there exists 𝑏 ∈ 𝐵, such that 𝑑(𝑏𝑅/𝑏𝑅) = 𝑘. Now 𝑒(𝑥 − 𝑏 −

𝑧) ≤ 𝑘, and thus 𝑥 − 𝑏 − 𝑧 ∈ 𝐵 + 𝑁 or 𝑥 ∈ 𝐵 + 𝑁 implying
that𝑀 = 𝐵 + 𝑁.

The following remarks are significant to be stated.

Remark 3. Let 𝐿 be a large submodule of an unbounded𝑄𝑇𝐴𝐺-module𝑀 without elements of infinite height𝑀 and𝐵 a proper basic submodule of𝑀. Then

𝑀𝐵 = (𝐵 + 𝐿)𝐵 ≅ 𝐿(𝐵 ∩ 𝐿) ; (2)

therefore 𝐿 is unbounded. Conversely for an unbounded fully
invariant submodule 𝐿 of𝑀, 𝐻𝑘(𝐿) is fully invariant for all𝑘 ∈ Z+. As an immediate consequence of Lemma 2, 𝐿 is a
large submodule of𝑀. We can say that the unbounded fully
invariant submodules of𝑀 are exactly the large submodules
of𝑀.
Remark 4. If 𝐵𝑖 is the direct sum of uniserial modules of
length 𝑖 and 𝑥( ̸= 0) ∈ 𝐵𝑖, then

𝑈 (𝑥) = ⟨𝑛0, 𝑛1, . . . , 𝑛𝑖−𝑛0−1, . . . ,∞⟩ , (3)

where 𝑛0 = 𝐻(𝑥) and 𝑛𝑘 = 𝑛0 + 𝑘, 0 ≤ 𝑘 ≤ 𝑖 − 𝑛0 − 1.
Remark 5. Let 𝐵𝑖 be the direct sum of uniserial modules of
length 𝑖 and 𝑥, 𝑦 ∈ 𝐵𝑖. Then there exists an endomorphism 𝑓
of 𝐵𝑖 with 𝑓(𝑥) = 𝑦, if and only if𝐻(𝑥) ≤ 𝐻(𝑦).
Remark 6. Let𝐴 be a fully invariant submodule of 𝐵𝑖, a direct
sum of uniserial modules of length 𝑖. Then 𝐴 = 𝐻𝑛𝑖(𝐵𝑖),
where 𝑛𝑖 ≤ 𝑖. If 𝐴 = 0, if 𝑛𝑖 = 𝑖, and if 𝐴 ̸= 0, then𝑛𝑖 = min{𝐻(𝑥), 𝑥 ∈ 𝐴}.
Remark 7. If 𝐵𝑖 and 𝐵𝑖+𝑗 are the direct sums of uniserial
modules of length 𝑖 and 𝑖+𝑗, respectively, and𝑥 ∈ 𝐵𝑖,𝑦 ∈ 𝐵𝑖+𝑗,
then

(i) there exists a homomorphism 𝑓 : 𝐵𝑖 → 𝐵𝑖+𝑗 such that𝑓(𝑥) = 𝑦 if and only if 𝑒(𝑥) ≥ 𝑒(𝑦),
(ii) there exists a homomorphism 𝑔 : 𝐵𝑖+𝑗 → 𝐵𝑖 such that𝑔(𝑦) = 𝑥 if and only if𝐻(𝑥) ≥ 𝐻(𝑦).

Theorem 8. Let 𝐵 = ⨁𝑖𝐵𝑖, where each 𝐵𝑖 is the direct sum
of uniserial modules of length 𝑖. Then 𝐿 is a fully invariant
submodule of 𝐵 if and only if 𝐿 = ⨁𝑖𝐻𝑛𝑖(𝐵𝑖), where 𝑛𝑖 ≤ 𝑖,
for every 𝑖 ∈ Z+ and 𝑛𝑖 ≤ 𝑛𝑖+𝑗 ≤ 𝑛𝑖 + 𝑗 for 𝑖, 𝑗 ∈ Z+.
A fully invariant submodule L is large in 𝐵 if and only if𝐿 = ⨁𝑖𝐻𝑛𝑖(𝐵𝑖); the above conditions hold and the sequence⟨1 − 𝑛1, 2 − 𝑛2, 3 − 𝑛3, . . .⟩ is unbounded if 𝐵 is unbounded.

Proof. Let 𝐿 be a fully invariant submodule of 𝐵. Then

𝐿 = 𝐿 ∩ 𝐵 =⨁(𝐵𝑖 ∩ 𝐿) =⨁𝐻𝑛𝑖 (𝐵𝑖) (4)

by the facts mentioned above and Remark 6. Now 𝑛𝑖 ≤ 𝑖
for 𝑖 ∈ Z+ and the first condition holds. If 𝐿 = 0, then𝐻𝑛𝑖(𝐵𝑖) = 0 for every 𝑖; therefore 𝑛𝑖 = 𝑖 for every 𝑖 and the
second condition holds. If 𝐿 ̸= 0, then there exists a least
positive integer 𝑘 such that𝐻𝑛𝑘(𝐵𝑘) ̸= 0.Then𝐻𝑛𝑖(𝐵𝑖) ̸= 0 for
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all 𝑖 ≥ 𝑘, where 𝐵𝑖 ̸= 0. Since Soc(𝐵𝑘) = Soc(𝐻𝑘−1(𝐵𝑘)) ⊆ 𝐿,
this implies that Soc(𝐻𝑘−1(𝐵)) ⊆ Soc(𝐿). Again Soc(𝐵𝑖) =
Soc(𝐻𝑘−1(𝐵𝑖)) for 𝑖 ≥ 𝑘; we have Soc(𝐵𝑖) ⊆ 𝐿 ∩ 𝐵𝑖 = 𝐻𝑛𝑖(𝐵𝑖).
Now suppose 𝐿 ̸= 0 and 𝐵𝑖 ̸= 0 ̸= 𝐵𝑖+𝑗. If 𝐻𝑛𝑖+𝑗(𝐵𝑖+𝑗) = 0,
then 𝐻𝑛𝑖(𝐵𝑖) = 0 and 𝑛𝑖 = 𝑖, 𝑛𝑖+𝑗 = 𝑖 + 𝑗 = 𝑛𝑖 + 𝑗 and
the second condition holds. We assume that 𝐻𝑛𝑖+𝑗(𝐵𝑖+𝑗) ̸= 0.
Consider 𝑥 ∈ 𝐵𝑖 such that 𝐻(𝑥) ≥ 𝑛𝑖+𝑗 and 𝑦 ∈ 𝐻𝑛𝑖+𝑗(𝐵𝑖+𝑗)
such that 𝐻(𝑦) = 𝑛𝑖+𝑗. Now, by Remark 7, there exists an
endomorphism 𝑔 of 𝐵 mapping 𝑦 onto 𝑥. Hence 𝑥 ∈ 𝐿 and𝐻𝑛𝑖+𝑗(𝐵𝑖) ⊆ 𝐿 ∩ 𝐵𝑖 = 𝐻𝑛𝑖(𝐵𝑖); thus 𝑛𝑖 ≤ 𝑛𝑖+𝑗.

Now suppose 𝐻𝑛𝑖(𝐵𝑖) = 0. Then 𝑛𝑖 = 𝑖 so 𝑛𝑖+𝑗 ≤ 𝑖 + 𝑗 =𝑛𝑖 + 𝑗. If𝐻𝑛𝑖(𝐵𝑖) ̸= 0 and 𝑦 ∈ 𝐵𝑖+𝑗 such that𝐻(𝑦) ≥ 𝑛𝑖 + 𝑗, we
may choose 𝑥 ∈ 𝐵𝑖 such that 𝐻(𝑥) = 𝑛𝑖. Then 𝑒(𝑥) = 𝑖 − 𝑛𝑖
and 𝑒(𝑦) ≤ 𝑖+𝑗−(𝑛𝑖+𝑗) = 𝑖−𝑛𝑖. By Remark 7, there exists an
endomorphism𝑓 of𝐵with𝑓(𝑥) = 𝑦.Thus𝑦 ∈ 𝐿 andwe have𝐻𝑛𝑖+𝑗(𝐵𝑖+𝑗) ⊆ 𝐿 ∩ 𝐵𝑖+𝑗 = 𝐻𝑛𝑖+𝑗(𝐵𝑖+𝑗); therefore 𝑛𝑖+𝑗 ≤ 𝑛𝑖 + 𝑗.

If 𝐵𝑖 ̸= 0 ̸= 𝐵𝑖+𝑗, then 𝑛𝑖 ≤ 𝑛𝑖+𝑗 ≤ 𝑛𝑖 + 𝑗 but if 𝐵𝑖 = 0,
we may define 𝑛𝑖 so that this inequality holds for all 𝑖.Thus all
fully invariant submodules of𝐵 are the direct sums of𝐻𝑛𝑖(𝐵𝑖).
If 𝐿 is a large submodule of 𝐵 and 𝐵 is unbounded, then, by
Lemma 2, 𝐿 is also unbounded. Therefore ⟨1 − 𝑛1, 2 − 𝑛2, 3 −𝑛3, . . .⟩must be unbounded.

For the converse, suppose 𝐿 = ⨁𝐻𝑛𝑖(𝐵𝑖), where 𝑛𝑖 ≤ 𝑖
for all 𝑖 ∈ Z+ and 𝑛𝑖 ≤ 𝑛𝑖+𝑗 ≤ 𝑛𝑖 + 𝑗 for all 𝑖, 𝑗 ∈ Z+. To
establish the full invariance of 𝐿, we consider any 𝑖 ∈ Z+ and𝑥 ∈ 𝐻𝑛𝑖(𝐵𝑖).We have to show that for any endomorphism 𝑓
of 𝐵, 𝑓(𝑥) ∈ 𝐿. Consider 𝑥 ̸= 0, such that 𝑓(𝑥) = 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑙,
where 𝑥𝑟 ∈ 𝐵𝑟 and 𝐻(𝑥) ≤ 𝐻(𝑓(𝑥)) = min(𝐻(𝑥𝑘)), 1 ≤𝑘 ≤ 𝑙, 𝑒(𝑥) ≥ 𝑒(𝑓(𝑥)) = max{𝑒(𝑥𝑘) | 1 ≤ 𝑘 ≤ 𝑙}. If 𝑘 ≤ 𝑖,
then𝐻(𝑥𝑘) ≥ 𝐻(𝑥) ≥ 𝑛𝑖 so 𝑥𝑘 ∈ 𝐻𝑛𝑖(𝐵𝑘) ⊆ 𝐻𝑛𝑘(𝐵𝑘), because𝑛𝑘 ≤ 𝑛𝑖; hence 𝑥𝑘 ∈ 𝐿. If 𝑘 = 𝑖 + 𝑗, then 𝑒(𝑥𝑘) ≤ 𝑒(𝑥) ≤ 𝑖 − 𝑛𝑖 =𝑖 + 𝑗 − (𝑛𝑖 + 𝑗) ≤ 𝑖 + 𝑗 − 𝑛𝑖+𝑗 because 𝑛𝑖+𝑘 ≤ 𝑛𝑖 + 𝑘.Thus𝑥𝑘 ∈ 𝐻𝑖+𝑗−𝑛𝑖+𝑗(𝐵𝑖+𝑗) = 𝐻𝑛𝑖+𝑗(𝐵𝑖+𝑗) ⊆ 𝐿.

This implies that 𝐿 is a fully invariant submodule of𝐵. If𝐵
is unbounded and ⟨1−𝑛1, 2−𝑛2, 3−𝑛3, . . .⟩ is also unbounded,
then 𝐿 is unbounded and is therefore a large submodule of 𝐵
by Remark 3.

Corollary 9. If 𝐿 is a large submodule of a𝑄𝑇𝐴𝐺-module𝑀,
then𝑀/𝐿 is a direct sum of uniserial modules.

Proof. For any basic submodule 𝐵 of𝑀,

𝑀𝐿 = (𝐵 + 𝐿)𝐿 ≅ 𝐵(𝐵 ∩ 𝐿) =
⨁𝑖𝐵𝑖⨁𝑖𝐻𝑛𝑖 (𝐵𝑖)

≅⨁
𝑖

( 𝐵𝑖𝐻𝑛𝑖 (𝐵𝑖))
(5)

and the result follows.

Corollary 10. For any large submodule 𝐿 of𝑀, 𝐿1 = 𝑀1.
Proof. Since 𝑀/𝐿 is a direct sum of uniserial modules,(𝑀/𝐿)1 = 0 or𝑀1 = 𝐿1.
Theorem 11. Let 𝑁 be ℎ-pure submodule of a 𝑄𝑇𝐴𝐺-module𝑀 and 𝐿 a large submodule of 𝑁. Then there exists a large

submodule 𝐿 of𝑀 such that 𝐿∩𝑁 = 𝐿. If𝑀/𝑁 is ℎ-divisible,
then 𝐿 is the closure of 𝐿 in 𝑀 and is therefore uniquely
determined by 𝐿 and𝑀/𝐿 ≅ 𝑁/𝐿.
Proof. Let 𝐿 = 𝑁(𝑛) and 𝐿 = 𝑀(𝑛). Since𝑁 is ℎ-pure in𝑀
and 𝑛 = ⟨𝑛1, 𝑛2, . . .⟩ is a 𝑈-sequence for𝑁, we have that 𝑛 is
a 𝑈-sequence for𝑀. Thus 𝐿 is a large submodule of𝑀.

If 𝑥 ∈ 𝐿, then 𝑈𝑀(𝑥) = 𝑈𝑁(𝑥) ≥ 𝑛; therefore 𝑥 ∈ 𝐿 ∩ 𝑁
and 𝐿 ⊆ L ∩ 𝑁. Conversely if 𝑦 ∈ 𝐿 ∩ 𝑁, then 𝑈𝑁(𝑦) =𝑈𝑀(𝑦) ≥ 𝑛 implies that 𝑦 ∈ 𝐿 or 𝐿 ∩𝑁 ⊆ 𝐿.Thus 𝐿 = 𝐿 ∩𝑁.

Let 𝑀/𝑁 be ℎ-divisible and 𝐿 a large submodule of 𝑀
with 𝐿 ∩ 𝑁 = 𝐿.Then

𝐿𝐿 = 𝐿(𝐿 ∩ 𝑁) ≅
(𝑁 + 𝐿)
𝑁 = 𝑀𝑁 . (6)

That is, 𝐿/𝐿 is ℎ-divisible. But𝑀/𝐿 ≅ (𝑀/𝐿)/(𝐿/𝐿), where𝐿/𝐿 is a direct summand of𝑀/𝐿; we have𝑀/𝐿 ≅ (𝐿/𝐿) ⊕(𝑀/𝐿) and 𝑀/𝐿 is a direct sum of uniserial modules [6].
Now𝑀/𝐿 ≅ 𝑁/𝐿, thus

𝑀𝐿 =
(𝑁 + 𝐿)
𝐿 ≅ 𝑁(𝑁 ∩ 𝐿) = 𝑁𝐿 . (7)

Now we characterize large submodules in terms of 𝑈𝑙𝑚
invariants.

Theorem 12. Let 𝐿 be a submodule of a 𝑄𝑇𝐴𝐺-module 𝑀.
Then 𝐿 is a large submodule of 𝑀 if and only if 𝐿 =∑∞𝑘=1𝐻𝑛𝑘(𝐻𝑘−𝑛𝑘(𝑀)), where

(i) 𝑛𝑘 ≤ 𝑘, 𝑘 ∈ Z+,
(ii) 𝑛𝑘 ≤ 𝑛𝑘+1 ≤ 𝑛𝑘 + 1,
(iii) the sequence ⟨1 − 𝑛1, 2 − 𝑛2, 3 − 𝑛3, . . .⟩ is unbounded if𝑀 is unbounded and the Ulm-invariants of 𝐿 are given

by 𝑓𝐿(𝑛) = ∑𝑘(𝑓𝑀(𝑘 − 1)), 𝑘 − 𝑛𝑘 − 1 = 𝑛, for all𝑛 ∈ Z+.
Proof. Suppose 𝐿 = ∑∞𝑘=1𝐻𝑛𝑘(𝐻𝑘−𝑛𝑘(𝑀)). Since
𝐻𝑛𝑘(𝐻𝑘−𝑛𝑘(𝑀))’s are fully invariant submodules, their
sum is again fully invariant submodule of 𝑀. If 𝑀 is
bounded, then 𝐿 is large. If 𝑀 is unbounded, then, by the
third condition, for each 𝑗 ∈ Z+, there exists a positive
integer 𝑖 such that 𝑖 − 𝑛𝑖 > 𝑗 or 𝑖 > 𝑛𝑖 + 𝑗.

Since, 𝑖 > 𝑛𝑖 + 𝑗 and Soc(𝐻𝑖(𝑀)) ⊆ Soc(𝐻𝑗+𝑛𝑖(𝑀)) ⊆𝐻𝑗(𝐿), If 𝑥 ∈ Soc(𝐻𝑗+𝑛𝑖(𝑀)), there exists 𝑦 ∈ 𝑀 such that
𝑑(𝑦𝑅/𝑥𝑅) = 𝑗 + 𝑛𝑖, where 𝑒(𝑥) = 1. Now 𝑦 ∈ 𝐻𝑗+𝑛𝑖+1(𝑀),
where 𝑖 − 𝑛𝑖 > 𝑗 or 𝑖 − 𝑛𝑖 ≥ 𝑗 + 1; thus 𝑖 ≥ 𝑛𝑖 + 𝑗 + 1 and𝑦 ∈ 𝐻𝑖(𝑀).

If 𝑑(𝑦𝑅/𝑧𝑅) = 𝑛𝑖, then 𝑧 ∈ 𝐻𝑛𝑖(𝐻𝑖−𝑛𝑖(𝑀)) ⊆ 𝐿 and 𝑥 ∈𝐻𝑗(𝐿) because 𝑑(𝑦𝑅/𝑥𝑅) = 𝑗 + 𝑛𝑖 and 𝑑(𝑧𝑅/𝑥𝑅) = 𝑗. Now,
by Lemma 2, 𝐿 + 𝐵 = 𝑀, for every basic submodule 𝐵 of𝑀,
and 𝐿 is a large submodule of𝑀.

Conversely suppose 𝐿 is a large submodule of𝑀.Then for
any basic submodule 𝐵 of𝑀,𝐿 ∩ 𝐵 is a large submodule of 𝐵
and, by Theorem 8, 𝐿 ∩ 𝐵 = ⨁𝑘𝐻𝑛𝑘(𝐵𝑘), where 𝑘 ∈ Z+ and𝑛𝑘’s satisfy the given conditions.
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Now,

𝐻𝑛𝑗 (𝐵𝑗) = 𝐻𝑛𝑗 (𝐻𝑗−𝑛𝑗 (𝐵𝑗)) ⊆ 𝐻𝑛𝑗 (𝐻𝑗−𝑛𝑗 (𝐵)) ,
for every 𝑗 ∈ Z+ (8)

and, for each 𝑗 ∈ Z+,
𝐻𝑛𝑗 (𝐻𝑗−𝑛𝑗 (𝐵)) ⊆ Σ𝐻𝑛𝑘 (𝐻𝑘−𝑛𝑘 (𝐵)) . (9)

This implies that⨁𝐻𝑛𝑘(𝐵𝑘) ⊆ Σ𝐻𝑛𝑘(𝐻𝑘−𝑛𝑘(𝐵)).
For the converse, consider 𝑥 ∈ 𝐻𝑛𝑗(𝐻𝑗−𝑛𝑗(𝐵)), where 𝑥 =𝑥1 + 𝑥2 + ⋅ ⋅ ⋅ + 𝑥𝑚, 𝑥𝑖 ∈ 𝐵𝑖.Then 𝐻(𝑥𝑖) ≥ 𝐻(𝑥) ≥ 𝑛𝑗 for𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑚 and 𝑒(𝑥𝑖) ≤ 𝑒(𝑥) ≤ 𝑗 − 𝑛𝑖 for all 𝑥𝑖 s. Now, for𝑖 ≤ 𝑗, we have𝐻(𝑥𝑖) ≥ 𝑛𝑗 ≥ 𝑛𝑖 and 𝑥𝑖 ∈ 𝐻𝑛𝑖(𝐵𝑖).
If 𝑖 = 𝑗+ 𝑙 for 𝑙 ∈ Z+, then 𝑒(𝑥𝑖) ≤ 𝑗−𝑛𝑗 = 𝑗+ 𝑙− (𝑛𝑗 + 𝑙) ≤𝑗 + 𝑙 − 𝑛𝑗+𝑙. (by the given condition). Therefore

𝑥𝑖 ∈ (𝐻𝑗+𝑙−(𝑛𝑗+𝑙) (𝐵𝑗+𝑙)) = 𝐻𝑛𝑗+𝑙 (𝐵𝑗+𝑙) = 𝐻𝑛𝑖 (𝐵𝑖) (10)

and 𝐻𝑛𝑗(𝐻𝑗−𝑛𝑗(𝐵)) ⊆ ⨁𝑘𝐻𝑛𝑘(𝐵𝑘). Let 𝐿 =
∑𝐻𝑛𝑘(𝐻𝑘−𝑛𝑘(𝑀)). Now 𝐿 ∩ 𝐵 = ∑𝐻𝑛𝑘(𝐻𝑘−𝑛𝑘(𝐵)) = 𝐿 ∩ 𝐵.
Since 𝐵 is ℎ-pure in 𝑀 and 𝑀/𝐵 is ℎ-divisible, 𝐿 = 𝐿, by
Theorem 11. Again 𝐿 ∩ 𝐵 is a basic submodule of 𝐿; thus𝑓𝐿(𝑛) = 𝑓𝐿∩𝐵(𝑛), for all 𝑛 ∈ Z+.

If 𝐿 ∩ 𝐵 = ⨁(𝐿 ∩ 𝐵𝑖)𝑖, where (𝐿 ∩ 𝐵)𝑖 is the direct sum of
uniserial modules of length 𝑖, then𝑓(𝐿∩𝐵)(𝑛) = 𝑔((𝐿∩𝐵)𝑛+1) =𝑔(⨁𝐻𝑛𝑘(𝐵𝑘)), where 𝐻𝑛𝑘(𝐵𝑘) is a direct sum of uniserial
modules of length 𝑛 + 1.
Again,

𝑓𝐿∩𝐵 (𝑛) = 𝑔(⨁
𝑘

𝐻𝑛𝑘 (𝐵𝑘)) = ∑
𝑘

(𝑔 (𝐻𝑛𝑘 (𝐵𝑘)))
= ∑
𝑘

(𝑔 (𝐵𝑘)) = ∑
𝑘

(𝑓𝐵 (𝑘 − 1))
= ∑
𝑘

(𝑓𝑀 (𝑘 − 1)) , where 𝑘 − 𝑛𝑘 − 1 = 𝑛.
(11)

And the proof is complete.

3. Properties of Large Submodules
of QTAG-Modules

In this section we compare the structures of 𝑄𝑇𝐴𝐺-modules
and their large submodules. We investigate the charac-
teristics of 𝑄𝑇𝐴𝐺-modules which are preserved by their
large submodules. We start with the Σ-modules, that is, the
modules whose high submodules are direct sums of uniserial
modules [7].Then we study summable, 𝜎-summable, (𝜔+1)-
projective, and ℎ-pure complete 𝑄𝑇𝐴𝐺-modules.

Singh [8] proved that a 𝑄𝑇𝐴𝐺-module𝑀 is a direct sum
of uniserial submodules if and only if 𝑀 is the union of an
ascending sequence of submodules𝑀𝑛, 𝑛 = 1, 2, 3, . . ., such
that, for every 𝑛, there exists 𝑘𝑛 > 0 and 𝐻𝑀(𝑥) ≤ 𝑘𝑛 for all𝑥 ∈ 𝑀𝑛.

This helps us to prove the following.

Theorem 13. A 𝑄𝑇𝐴𝐺-module is a Σ-module if and only if
Soc(𝑀) = ⋃∞𝑘=1𝑀𝑘, where 𝑀𝑘 ⊂ 𝑀𝑘+1 and for every 𝑘 ∈𝑁, 𝑀𝑘 ∩ 𝐻𝑘(𝑀) = Soc(𝑀1).
Proof. Since𝑀 is a Σ-module, it contains a high submodule𝑁 such that𝑁 is a direct sum of uniserial modules.

Again𝑁 is a high submodule [9] of𝑀 if and only if𝑁 isℎ-pure in𝑀 and Soc(𝑀) = Soc(𝑁) + Soc(𝑀1). Therefore by
the above result [8], Soc(𝑁) = ⋃∞𝑘=1𝑁𝑘,𝑁𝑘 ⊆ 𝑁𝑘+1, and𝑁𝑘∩𝐻𝑘(𝑁) = 0, and we deduce Soc(𝑀) = ⋃∞𝑘=1(𝑁𝑘+Soc(𝑀1)). If
we put𝑀𝑘 = Soc(𝑀1)+𝑁𝑘, then𝑀𝑘 ⊆ 𝑀𝑘+1 and (Soc(𝑀1)+𝑁𝑘) ∩ Soc(𝑀1) + Soc(𝐻𝑘(𝑁)) = Soc(𝑀1) + (𝑁𝑘 ∩ 𝐻𝑘(𝑁)) =
Soc(𝑀1), because𝐻𝑘(𝑁) is a high submodule of𝐻𝑘(𝑀).

For the converse if Soc(𝑁) = ⋃∞𝑘=1(𝑀𝑘 ∩ 𝑁) = ⋃∞𝑘=1𝑁𝑘,
where we put𝑁𝑘 = 𝑁 ∩𝑀𝑘, then𝑁𝑘 ⊆ 𝑁𝑘+1. Also
𝑁𝑘 ∩ 𝐻𝑘 (𝑁) = 𝑀𝑘 ∩ 𝐻𝑘 (𝑀) = 𝑀𝑘 ∩ (𝐻𝑘 (𝑀) ∩ 𝑁)

= 𝑀𝑘 ∩ 𝐻𝑘 (𝑀) ∩ 𝑁 = 𝑀1 ∩ 𝑁 = 0. (12)

Therefore 𝑁 is a direct sum of uniserial modules and𝑀 is aΣ-module.

Now we may prove the following.

Theorem 14. A 𝑄𝑇𝐴𝐺-module𝑀 is a Σ- module if and only
if its large submodule 𝐿 is a Σ-module.

Proof. Since 𝐿1 = 𝑀1 [6], there is a natural number𝑚 such that Soc(𝐿) = Soc(𝐻𝑚(𝑀)) and Soc(𝐻𝑛(𝐿)) =
Soc(𝐻𝑡𝑛(𝑀)) for every 𝑛 < 𝜔 and some 𝑡𝑛 such that 𝑚 ≤𝑡𝑛 < 𝜔. If 𝑀 is a Σ-module, then, by Theorem 13, Soc(𝑀)
is the union of ascending chain of submodules𝑀𝑘 such that𝑀𝑘 ⊆ 𝑀𝑘+1 and𝑀𝑘 ∩ 𝐻𝑘(𝑀) = Soc(𝑀1) for every 𝑘 ∈ 𝑁.

This implies that Soc(𝐿) = ⋃𝑘<𝜔(𝑀𝑘 ∩ 𝐿) and𝑀𝑘 ∩ 𝐿 ⊆𝑀𝑘+1 ∩ 𝐿.Therefore

𝑀𝑘 ∩ 𝐿 ∩ 𝐻𝑘 (𝐿) = 𝑀𝑘 ∩ 𝐻𝑘 (𝐿) ⊆ 𝑀𝑘 ∩ 𝐻𝑘 (𝑀)
= Soc (𝑀1) = Soc (𝐿1) . (13)

NowTheorem 13 indicates that 𝐿 is a Σ-module.
Conversely suppose 𝐿 is a Σ-module. Therefore

Soc (𝐿) = ⋃
𝑛<𝜔

𝐿𝑛,
𝐿𝑛 ⊆ 𝐿𝑛+1, 𝐿𝑛 ∩ 𝐻𝑛 (𝐿) = Soc (𝐿1) .

(14)

Again Soc(𝐻𝑚(𝑀)) = ⋃𝑛<𝜔 𝐿𝑛. Now
𝐿𝑛 ∩ Soc (𝐻𝑡𝑛 (𝑀)) = 𝐿𝑛 ∩ Soc (𝐻𝑛 (𝐿)) = Soc (𝐿1)

= Soc (𝑀1) . (15)

Thus, byTheorem 13,𝐻𝑚(𝑀) is aΣ-module, and so is𝑀.
To study the other relations between a module𝑀 and its

large submodule 𝐿 we need the following lemma.
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Lemma 15. Isotype submodules of countable length of
summable 𝑄𝑇𝐴𝐺-modules are again summable.

Proof. Let 𝑁 be an isotype submodule of countable length𝜌 in the summable module 𝑀. Now there is a 𝐻𝜌(𝑀)-high
submodule 𝐾 of 𝑀 such that 𝑁 ⊆ 𝐾. Since Soc(𝑀) =⨁𝜎<𝜌𝑆𝜎, there is 𝐻𝜌(𝑀)-high submodule 𝑃 of𝑀 such that
Soc(𝑃) = ⨁𝜎<𝜌𝑆𝜎.

Again, for every ordinal 𝜌, every𝐻𝜌(𝑀)-high submodule
is isotype; therefore 𝑃 is isotype and it is summable. The
socles of 𝐻𝜌(𝑀)-high submodules have the same images
under the canonical map 𝑀 → 𝑀/𝐻𝜌(𝑀) because this
maps 𝐻𝜌(𝑀)-high submodules isomorphically in a height
preserving manner onto submodules of𝑀/𝐻𝜌(𝑀).

Now𝑁 is isotype in a summable module 𝐾 of countable
length 𝜌.Therefore Soc(𝐾) is the union of an ascending chain
of submodules 𝐾𝑛, where for every 𝑛 the heights of elements
of𝐾𝑛 assume but a finite numbers of values.

Now Soc(𝑁) = ∪𝐾𝑛 ∩ 𝑁, 𝑛 = 1, 2, 3, . . ., and the heights
of the elements of𝐾𝑛∩𝑁 assume a finite numbers of different
values. Thus𝑁 is summable.

The following result shows that summability is shared by
large submodules.

Theorem 16. Let 𝐿 be a large submodule of a 𝑄𝑇𝐴𝐺-module𝑀. Then𝑀 is summable if and only if 𝐿 is summable.

Proof. Suppose𝑀 is summable; that is, Soc(𝑀) = ⨁𝛽<𝛼𝑀𝛽,
where the nonzero elements of𝑀𝛽’s are contained in𝐻𝛽(𝑀)
but they do not belong to𝐻𝛽+1(𝑀), for every 𝛽 < 𝛼.

Again 𝐿 is fully invariant submodule of𝑀 and𝐻𝜌(𝑀) =𝐻𝜌(𝐿) for all ordinals 𝜌 ≥ 𝜔, Soc(𝐿) = ⨁𝛽<𝛼(𝑀𝛽 ∩ 𝐿),
where the nonzero elements of𝑀𝛽∩𝐿 are contained in𝐻𝛽(𝐿)
and not contained in 𝐻𝛽+1(𝐿) for every 𝜔 ≤ 𝛽 < 𝛼. Since
Soc(𝐻𝑛(𝐿)) = Soc(𝐻𝑡𝑛(𝑀)), whenever 1 ≤ 𝑛 < 𝜔, 𝑛 ≤𝑡𝑛 < 𝜔, 𝑀𝛽 ∩ 𝐿 ⊆ 𝐿, but (𝑀𝛽 ∩ 𝐿) ∩ 𝐻1(𝐿) = 0, for
each 𝛽 < 𝑡1. By transfinite induction𝑀𝛽 ∩ 𝐿 ⊆ 𝐻1(𝐿) and(𝑀𝛽 ∩ 𝐿) ∩ 𝐻2(𝐿) = 0, for 𝑡1 ≤ 𝛽 < 𝑡2 and so on; that is,𝐻𝛽∩𝐿 ⊆ 𝐻𝑛(𝐿) and (𝐻𝛽∩𝐿)∩H𝑛+1(𝐿) = 0, for 𝑡𝑛 ≤ 𝛽 < 𝑡𝑛+1.

If we put 𝐿0 = ⨁0≤𝛽<𝑡1(𝑀𝛽 ∩ 𝐿), 𝐿1 = ⨁𝑡1≤𝛽<𝑡2(𝑀𝛽 ∩𝐿), . . . , and 𝐿𝑛 = ⨁𝑡𝑛≤𝛽<𝑡𝑛+1(𝑀𝛽 ∩ 𝐿), where 𝑛 < 𝜔, and𝑀𝛽 ∩ 𝐿 = 𝐿𝛽 if 𝛽 ≥ 𝜔, then Soc(𝐿) = ⨁𝛽<𝛼𝐿𝛽 if 𝐿𝛽 ⊆𝐻𝛽(𝐿) and 𝐿𝛽 ∩ 𝐻𝛽+1(𝐿) = 0.Therefore 𝐿 is summable.
Conversely suppose 𝐿 is summable. So, 𝐿1 = 𝑀1 is

summable as its fully invariant submodule. Moreover, by
Lemma 15, 𝐿 being summable implies that 𝐿 is a Σ-module.
Now by Theorem 14, 𝑀 is also a Σ-module. For a high
submodule𝑁 of𝑀, Soc(𝑁) ⊕ Soc(𝑀1) = Soc(𝑀).

Since 𝑁 is a direct sum of uniserial modules, Soc(𝑁) =⨁𝑘<𝜔𝑁𝑘, where 𝑁𝑘 ⊆ 𝐻𝑘(𝑀) and 𝑁𝑘 ∩ 𝐻𝑘+1(𝑀) = 0
because 𝑁 is ℎ-pure in 𝑀. Again the summability of 𝑀1
ensures that Soc(𝑀1) = ⨁𝛽<𝛼𝐾𝛽, where 𝐾𝛽 ⊆ 𝐻𝛽(𝑀1)
and 𝐾𝛽 ∩ 𝐻𝛽+1(𝑀1) = 0. Therefore, 𝐾𝛽 ⊆ 𝐻𝜔+𝛽(𝑀) and𝐾𝛽 ∩ 𝐻𝜔+𝛽+1(𝑀) = 0.This implies that

Soc (𝑀) =⨁
𝑘<𝜔

𝑁𝑘 ⨁
𝜔≤𝜔+𝛽<𝜔+𝛼

𝐾𝛽. (16)

We may infer now that𝑀 is summable.

Theorem 17. Let 𝐿 be the large submodule of 𝑀.Then 𝑀 is𝜎-summable if and only if 𝐿 is 𝜎-summable.

Proof. Suppose𝑀 is unbounded. Then length of𝑀 = length
of 𝐿 ≥ 𝜔. If 𝑀 is 𝜎-summable, then 𝐿 is also 𝜎-summable
being a submodule of equal length.

If𝑀 is bounded the result holds trivially.
Conversely suppose 𝐿 is 𝜎-summable.Therefore Soc(𝐿) =⋃𝑛<𝜔 𝐿𝑛, 𝐿𝑛 ⊆ 𝐿𝑛+1 and 𝐿𝑛 ∩ 𝐻𝛼𝑛(𝐿) = 0 for all 𝑛 ≥ 0 and

some 𝛼𝑛 < length of𝑀.
Now, Soc(𝐻𝑚(𝑀)) = ⋃𝑛<𝜔 𝐿𝑛. Since 𝐿1 = 𝑀1 [6],𝐻𝛼(𝑀) = 𝐻𝛼(𝐿) for each ordinal 𝛼 ≥ 𝜔 and Soc(𝐻𝛼𝑛(𝐿)) =

Soc(𝐻𝑘𝑛(𝑀)) for 𝛼𝑛 < 𝜔 and some 𝑘𝑛 ≥ max(𝛼𝑛, 𝑚) because𝐻𝛼𝑛(𝐿) is large in𝑀 and𝐻𝛼𝑛(𝑀) both. Thus 𝐿𝑛 ∩ 𝐻𝑠𝑛(𝑀) =𝐿𝑛 ∩ 𝐻𝛼𝑛(𝐿) = 0, whenever 𝑠𝑛 < length of 𝑀 = length of𝐻𝑚(𝑀) ≥ 𝜔, 𝑠𝑛 = 𝛼𝑛 ≥ 𝜔 or 𝜔 > 𝑠𝑛 = 𝑘𝑛.
We may define 𝑀𝑛 = {𝑥 | 𝑥 ∈ Soc(𝑀) ∩ 𝐿𝑛 and 𝑥 ∉𝐻𝑚(𝑀)}.Thus Soc(𝑀) = ⋃𝑛<𝜔𝑀𝑛, 𝑀𝑛 ⊆ 𝑀𝑛+1. By defining𝑀𝑛’s we observe that𝑀𝑛 ∩ 𝐻𝑠𝑛(𝑀) = 0. This implies that𝑀

is 𝜎-summable.

Theorem 18. If 𝑀 is a direct sum of 𝜎-summable 𝑄𝑇𝐴𝐺-
modules, then so is 𝐿.
Proof. Let𝑀 =⨁𝑖∈𝐼𝑀𝑖, where each𝑀𝑖 is 𝜎-summable. Now𝐿 = ⨁𝑖∈𝐼(𝐿 ∩𝑀𝑖) because 𝐿 is fully invariant in𝑀. Since all𝑀𝑖’s are isotype in𝑀, we infer that 𝐿 ∩𝑀𝑖 is large in𝑀𝑖, for
every 𝑖. ByTheorem 17, 𝐿∩𝑀𝑖 are 𝜎-summable.Thus 𝐿 is also
a direct sum of 𝜎-summable modules.

Let us recall the following.

Definition 19. A 𝑄𝑇𝐴𝐺-module 𝑀 is (𝜔 + 1)-projective if
there exists a submodule 𝑁 ⊆ Soc(𝑀) such that 𝑀/𝑁 is a
direct sum of uniserial modules.

Remark 20. The submodules of (𝜔 + 𝑛)-projective modules
are also (𝜔 + 𝑛)-projective.
Theorem 21. A 𝑄𝑇𝐴𝐺-module𝑀 is (𝜔 + 1)-projective if and
only if its large submodule 𝐿 is (𝜔 + 1)-projective.
Proof. Suppose 𝐿 is (𝜔+1)-projective.Therefore there exists a
submodule𝑁 ⊆ Soc(𝐿) such that Soc(𝐿/𝑁) = ⋃𝑛<𝜔(𝐿𝑘/𝑁),
where 𝐿𝑘 ⊆ 𝐿𝑘+1 ⊆ 𝐿 and 𝐿𝑘 ∩ 𝐻𝑘(𝐿) ⊆ 𝑁 for each 𝑘 < 𝜔.
Now 𝐿𝑘 ⊆ 𝐻2(𝑀), for every 𝑘 < 𝜔. Since

𝐻𝑘 (𝐻2 (𝐿)) = 𝐻𝑡𝑘 (𝐻2 (𝑀)) + Soc (𝐻𝑗𝑘 (𝑀)) , (17)

for some 𝑘 ≤ 𝑗𝑘 ≤ 𝑡𝑘 < 𝜔, we have
𝐻𝑡𝑘 (𝐻2 (𝑀)) ⊆ 𝐻𝑘 (𝐻2 (𝐿)) ⊆ 𝐻𝑗𝑘 (𝐻2 (𝑀)) ,
𝐿𝑘 ∩ 𝐻𝑡𝑘 (𝑀) = 𝐿𝑘 ∩ 𝐻𝑡𝑘 (𝐻2 (𝑀))

⊆ 𝐿𝑘 ∩ 𝐻𝑘 (𝐻2 (𝐿)) = 𝐿𝑘 ∩ 𝐻𝑘 (𝐿)
⊆ 𝑁.

(18)
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Therefore the heights of the elements of 𝐿𝑘/𝑁 are bounded
in𝑀/𝑁 for all 𝑘 < 𝜔. Now (𝑀/𝑁)/(𝐿/𝑁) ≅ 𝑀/𝐿 is a direct
sum of uniserial modules [6]. Therefore𝑀/𝑁 is a direct sum
of uniserialmodules and𝑀 is (𝜔+1)-projective.The converse
is trivial.

The property of being ℎ-pure complete is also shared by
the large submodules of 𝑄𝑇𝐴𝐺-modules.

First we recall the definition of ℎ-pure completeness.

Definition 22. A 𝑄𝑇𝐴𝐺-module𝑀 is ℎ-pure complete if, for
every subsocle 𝑆 ⊆ Soc(𝑀), there is a ℎ-pure submodule𝑁 of𝑀 so that 𝑆 = Soc(𝑁). In otherwords every subsocle supports
a ℎ-pure submodule of𝑀.

Theorem23. Let 𝐿 be the large submodule of a𝑄𝑇𝐴𝐺-module𝑀. If𝑀 is ℎ-pure complete, so is 𝐿.
Proof. Let 𝑆 be a subsocle of 𝐿. Since 𝑆 ⊆ Soc(𝑀), 𝑆 supports
a ℎ-pure submodule𝑁 of𝑀.Now𝑁∩𝐿 is also large in𝑀 and𝑁∩𝐿 is ℎ-pure in 𝐿. Again 𝑆 = Soc(𝑁)∩Soc(𝐿) = Soc(𝑁∩𝐿),
and therefore 𝐿 is ℎ-pure complete.

Corollary 24. A 𝑄𝑇𝐴𝐺-module𝑀 is ℎ-pure complete if and
only if 𝐻𝑘(𝑀) is ℎ-pure complete for some fixed but arbitrary
positive integer 𝑘.
Proof. Since 𝐻𝑘(𝑀) is large in 𝑀, it is ℎ-pure complete if𝑀 is ℎ-pure complete. Conversely suppose 𝐻𝑘(𝑀) is ℎ-pure
complete. We shall use transfinite induction to prove the
result.

Let 𝑆 be a subsocle of 𝑀 such that 𝑆 ∩ 𝐻1(𝑀) ⊆
Soc(𝐻1(𝑀)) and 𝑆 ∩ 𝐻1(𝑀) = Soc(𝑁) for some ℎ-pure
submodule 𝑁 of 𝐻1(𝑀). By [7] we can say that there is a ℎ-
pure submodule𝐾 of𝑀 such that𝐻1(𝐾) = 𝑁 and Soc(𝐾) =
Soc(𝑁) = Soc(𝐻1(𝐾)). Now 𝑆 ∩ 𝐻1(𝑀) = Soc(𝐻1(𝐾)).

Wehave to show that there exists a ℎ-pure submodule𝑇 ⊆𝑀 such that 𝑆 = Soc(𝑇).We define the submodule 𝑇 = 𝐾 +(𝑆 ∩ 𝐻2(𝑀)). Now
Soc (𝑇) = Soc (𝐾 + 𝑆 ∩ 𝐻2 (𝑀))

= Soc (𝐾) + (𝑆 ∩ 𝐻2 (𝑀)) (19)

because 𝑆 ∩ 𝐻2(𝑀) = Soc(𝑆 ∩ 𝐻2(𝑀)). Again Soc(𝑇) =
Soc(𝑁) + (𝑆 ∩ 𝐻2(𝑀)) ⊆ 𝑆.

Now

𝑆 = (𝑆 ∩ 𝐻1 (𝑀)) ∪ (𝑆 ∩ 𝐻2 (𝑀))
= Soc (𝐾) Soc (𝑆 ∩ 𝐻2 (𝑀))
= Soc [𝐾 ∪ (𝑆 ∩ 𝐻2 (𝑀))]
⊆ Soc [𝐾 + (𝑆 ∩ 𝐻2 (𝑀))] = Soc (𝑇) .

(20)

Therefore 𝑆 = Soc(𝑇). Now,
Soc (𝑇) ∩ 𝐻𝑡 (𝑀) = 𝑆 ∩ 𝐻𝑡 (𝑀)

= [Soc (𝐾) + (𝑆 ∩ 𝐻2 (𝑀))]
∩ 𝐻𝑡 (𝑀)

= [Soc (𝐻1 (𝐾)) + (𝑆 ∩ 𝐻2 (𝑀))]
∩ 𝐻𝑡 (𝑀) = Soc (𝐾) ∩ 𝐻𝑡 (𝑀)

= Soc (𝐻𝑡 (𝐾)) = Soc (𝐻𝑡 (𝑇)) .

(21)

This implies that 𝑇 is ℎ-pure in𝑀.
In the end we state the following unsolved problems.

Problem 25. Is it true that𝑀 is a𝐻𝐹-module if and only if its
large submodule 𝐿 is?
Problem 26. Is it true that𝑀 is a direct sumof closedmodules
if and only if its large submodule 𝐿 is?
Competing Interests

The authors declare that they have no competing interests.

References

[1] A. Mehdi, M. Y. Abbasi, and F. Mehdi, “On (𝜔+n)-projective
modules,” Ganita Sandesh, vol. 20, no. 1, pp. 27–32, 2006.

[2] S. Singh, “Some decomposition theorems in abelian groups and
their generalizations,” in Ring Theory: Proceedings of the Ohio
University Conference, vol. 25, pp. 183–189, Marcel Dekker, New
York, NY, USA, 1976.

[3] L. Fuchs, Infinite Abelian Groups. Vol. I, Pure and Applied
Mathematics, Vol. 36, Academic Press, New York, NY, USA,
1970.

[4] A. Mehdi, S. A. R. K. Naji, and A. Hasan, “Small homomor-
phisms and large submodules of QTAG- modules,” Scientia
Series A: Mathematical Sciences, vol. 23, pp. 19–24, 2012.

[5] M. Z. Khan, “On basic submodules,”Tamkang Journal ofMathe-
matics, vol. 10, no. 1, pp. 24–29, 1979.

[6] A. H. Ansari, M. Ahmad, and M. Z. Khan, “Some decom-
position theorems on S2-module III,” Tamkang Journal of
Mathematics, vol. 12, no. 2, pp. 147–154, 1981.

[7] M. Z. Khan, “Modules behaving like torsion abelian groups. II,”
Mathematica Japonica, vol. 23, no. 5, pp. 509–516, 1979.

[8] S. Singh, “Some decomposition theorems on abelian groups and
their generalisations. II,” Osaka Journal of Mathematics, vol. 16,
no. 1, pp. 45–55, 1979.

[9] A. Mehdi and F. Mehdi, “N-high submodules and h-topology,”
The South East Asian Journal of Mathematics and Mathematical
Sciences, vol. 1, no. 1, pp. 83–88, 2002.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


