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In this paper, we consider the dual wavelet frames in both continuum setting, i.e., onmanifolds, and discrete setting, i.e., on graphs.
Firstly, we give sufficient conditions for the existence of dual wavelet frames on manifolds by their corresponding masks. Then, we
present the formula of the decomposition and reconstruction for the dual wavelet frame transforms on graphs. Finally, we give a
numerical example to illustrate the validity of the dual wavelet frame transformation applied to the graph data.

1. Introduction

Interest in signal processing algorithms in various applica-
tions has increased in recent years. Examples of these signal
processing algorithms include sensor networks, transporta-
tion networks, the Internet, and social networks. In these
applications, data are defined on topologically complicated
domains, such as high-dimensional structures, irregularly
sampled spaces, and manifolds. Such datasets are commonly
referred to as big data. Several attempts have been made
to extend conventional signal processing techniques to big
data. As described in [1], the success of wavelet frames
for data defined on flat domains has encouraged research
on the generalization of wavelets and wavelet frames on
topologically complicated domains. For example, Coifman
and Maggioni constructed diffusion wavelets and diffusion
polynomial frames on manifolds in [2, 3]. Geller and Mayeli
studied the construction of wavelets on compact differen-
tiablemanifolds in [4]. Hou et al. constructed thewell-known
Mexican hat wavelet on a manifold geometry in [5]. Graphs
are effective ways to represent the geometric structures of
data on complicated domains. Hammond et al. first used
spectral graph theory to characterize spectral graph wavelets
on graphs in [6]. Leonardi and Van De Ville introduced
Meyer-like wavelets and scaling kernels that result in tight
spectral graph wavelet frames in [7, 8]. Shuman et al. first
characterized a family of systems of uniformly translated
kernels in the graph spectral domain that gave rise to tight

frames of atoms generated via generalized translation on
a graph in [9]. In addition, wavelet frames can be applied
to sparse representation of piecewise smooth functions.
Dong developed a system frame for sparse representation
on graphs using tight wavelet frames and applications in [1].
Wang and Zhuang provided a complete characterization for
the tightness of framelet systems in both continuous and
discrete framelets on a manifold in [10]. Analogous to the
standard Cohen-Daubechies-Feauveau (CDF) construction
of factorizing a maximally flat Daubechies half-band filter,
Narang and Ortega proposed the design of graph-QMF for
arbitrary undirected weighted graphs in [11]. Tanaka and
Sakiyama studied𝑀-channel oversampled filter banks satis-
fying the perfect reconstruction condition for graph signals
and showed oversampled graph filter banks for applications
to graph signal denoising in [12].

As a generalization of tight wavelet frames, pairs of dual
wavelet frames have proved particularly useful in signal
denoising and many other applications where translation
invariance or redundancy is important. Han first charac-
terized homogeneous dual wavelet frames for any general
dilation matrix in the space 𝐹𝐿2(𝑆) in [13]. In this case,𝐹𝐿2(𝑆) fl {𝑓 ∈ 𝐿2(R𝑛); 𝑠𝑢𝑝𝑝𝑓 ⊂ 𝑆}, where 𝑆 denotes a mea-
surable subset of R𝑛. Chui et al. were the first to completely
characterize tight dual frames with maximum vanishing
moments generated using two generators derived from the
same refinable function in [14]. Daubechies and Han con-
structed pairs of dual wavelet frames from two refinable
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functions in [15]. Ehler constructed compactly supported
multivariate pairs of dual wavelet frames called biframes,
based on the mixed oblique extension principle in [16].
Han and Shen generalized the mixed extension principle
in 𝐿2(R𝑛) to obtain and characterize dual Riesz bases in
Sobolev spaces in [17]. Jiang and Pounds studied sixfold
symmetric biframes with four framelets (frame generators)
for triangular-mesh-based surface multiresolution process-
ing in [18]. Readers can refer to [19–22] formore construction
methods and properties regarding dual wavelet frameworks
in 𝐿2(R𝑛).

Motivated by these and other applications, in this paper,
we introduce and study dual wavelet frames onmanifolds.We
consider the characteristics for the existence of dual wavelet
frames in both continuous and discrete settings. In partic-
ular, discrete dual wavelet frame transforms and numerical
examples on graphs are provided. The results may serve as
an analysis tool for the processing of graph data. The paper
is organized as follows. In Section 2, we briefly review some
basic notations and concepts related to our present work. In
Section 3, the conditions for the existence of dual wavelet
frames on manifolds are proved. In Section 4, we discuss
discrete dual wavelet frame transforms on graphs (DWFTG)
and provide a multiresolution analysis (MRA) on a graph.
For computation and applications in practice, in Section 5,
we show that discrete dual wavelet frame transforms on
graphs can be achieved by using low-degree Chebyshev
polynomials. In addition, we give numerical simulations of
fast dual wavelet frame transforms on graphs to demonstrate
the efficient implementation of the framelet transforms.

The following is the list of notations used in this paper.
Let R, N, and Z denote the set of real numbers and the set
of natural number and integers, respectively. Let 𝑧∗ denote
the conjugate of complex number 𝑧. Let ℓ2(Z) be the set
of 2 convergent sequences on Z. Let M be a manifold.
For a given compact, connected, and smooth Riemannian
manifold (M, 𝜇), let 𝐿2(M) be a space of complex-valued
square integrable functions on M. Let Δ be the Laplace-
Beltrami operator on M with respect to the metric 𝜇. 𝛿ℓ,ℓ󸀠 is
the Kronecker delta function with 𝛿ℓ,ℓ󸀠 = 1 if ℓ = ℓ󸀠 and 0
otherwise. Moreover, let 𝐺 fl {𝑉, 𝐸, 𝑤} denote a undirected,
connected, weighted graphs, where 𝑉 fl {V𝑛 ∈ M : 𝑛 =1, ⋅ ⋅ ⋅ , 𝐾} is a discretization of a givenmanifoldM,𝐸 ⊂ 𝑉×𝑉
is an edge set, and 𝑤 : 𝐸 󳨃󳨀→ R+ denotes a weight function.
We consider here only finite graphs with |𝑉| = 𝐾 < ∞.

2. Definitions and Concepts on Manifolds

Throughout this paper, we will use the following notations for
the inner product and norm for the space of 𝐿2(M).

⟨𝑓, 𝑔⟩ fl ∫
M

𝑓 (𝑥) 𝑔∗ (𝑥) d𝜇 (𝑥) ,
󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿2(M) fl (∫

M

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨2 d𝜇 (𝑥))1/2 ,
(1)

where 𝑓, 𝑔 ∈ 𝐿2(M), d𝜇(𝑥) (or simply d𝑥) denotes the
measure from the area element of a Riemannian metric 𝜇 on

M, a probability measure 𝜇 satisfies 𝜇(M) = 1, and endowed
with the 𝐿2 norm.

Definition 1. Let Δ be the Laplace-Beltrami operator on M,{𝑢ℓ}∞ℓ=0 ⊂ 𝐿2(M) and {𝜆ℓ}∞ℓ=0 ⊂ R; if the eigenvalue problem

Δ𝑢ℓ + 𝜆2ℓ𝑢ℓ = 0 (2)

holds, then the sequence {(𝑢ℓ, 𝜆ℓ)}∞ℓ=0 of pairs is called a well-
defined eigensystem for 𝐿2(M).
Definition 2. The two sequences pairs {(𝑢ℓ, 𝜆ℓ)} and {(𝑢̃ℓ, 𝜆̃ℓ)}
are said to be a biorthonormal eigenpair for 𝐿2(M), if they
satisfy the following properties:

(1) A pair of sequences 𝑢ℓ, 𝑢̃ℓ ⊂ 𝐿2(M) form an bior-
thonormal basis of 𝐿2(M); i.e., ⟨𝑢ℓ, 𝑢̃ℓ󸀠⟩ = 𝛿ℓ,ℓ󸀠 .

(2) Each of the two sequences {𝜆ℓ}∞ℓ=0, {𝜆̃ℓ}∞ℓ=0 ⊂ R is
a nondecreasing sequence of nonnegative numbers and
satisfies limℓ󳨀→∞𝜆ℓ = ∞ and limℓ󳨀→∞𝜆̃ℓ = ∞, respectively.

Since {(𝑢ℓ, 𝜆ℓ)} and {(𝑢̃ℓ, 𝜆̃ℓ)} are an biorthonormal
eigenpair for 𝐿2(M), the following can be given.

Definition 3. The generalized Fourier transform of a function𝑓 ∈ 𝐿2(M) is defined by

𝑓ℓ = ⟨𝑓, 𝑢ℓ⟩𝐿2(M) . (3)

with 𝑓ℓ ∈ ℓ2(Z+), Z+ = {0, 1, 2, ⋅ ⋅ ⋅ }.
So, we can get the following result [6].

Theorem 4. Any 𝑓 ∈ 𝐿2(M) has the Fourier expansion 𝑓 =∑∞ℓ=0 𝑓ℓ𝑢ℓ in 𝐿2(M) and the Parseval relation
⟨𝑓, 𝑔⟩ = ∞∑

ℓ=0

𝑓ℓ𝑔∗ℓ . (4)

holds. In particular, when 𝑓 = 𝑔, Parseval’s identity
󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝐿2(M) =

∞∑
ℓ=0

󵄨󵄨󵄨󵄨󵄨𝑓ℓ󵄨󵄨󵄨󵄨󵄨2 . (5)

holds.

Let refinable function 𝜑 = 𝜓0 ∈ 𝐿2(𝑅) and its dual
function 𝜑 = 𝜓̃0 ∈ 𝐿2(𝑅) which satisfy the following scaling
equation:

𝜓̂0 (2𝜉) = 𝑎0 (𝜉) 𝜓̂0 (𝜉)
̂̃𝜓0 (2𝜉) = ̂̃𝑎0 (𝜉) ̂̃𝜓0 (𝜉)

𝜉 ∈ R

(6)

where 𝑎0(𝜉) = ∑𝑘∈Z 𝑎0,𝑘𝑒−𝑖𝑘𝜉, ̂̃𝑎0(𝜉) = ∑𝑘∈Z 𝑎0,𝑘𝑒−𝑖𝑘𝜉 are all
finitely supported and called a refinement mask or the low
filter, respectively.

Given such a pair refinable function 𝜑 = 𝜓0 and 𝜓̃0
with mask 𝑎0 and ̂̃𝑎0, we define a pair functions set Ψ fl
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{𝜓1, ⋅ ⋅ ⋅ , 𝜓𝑟} ⊂ 𝐿2(R) and Ψ̃ fl {𝜓̃1, ⋅ ⋅ ⋅ , 𝜓̃𝑟} ⊂ 𝐿2(R) as
follows:

𝜓̂𝑗 (2𝜉) = 𝑎𝑗 (𝜉) 𝜓̂0 (𝜉) ,
̂̃𝜓𝑗 (2𝜉) = ̂̃𝑎𝑗 (𝜉) ̂̃𝜓0 (𝜉)

𝜉 ∈ R

(7)

where 𝑎𝑗(𝜉) = ∑𝑘∈Z 𝑎𝑗,𝑘𝑒−𝑖𝑘𝜉 and ̂̃𝑎𝑗(𝜉) = ∑𝑘∈Z 𝑎𝑗,𝑘𝑒−𝑖𝑘𝜉, 𝑗 =1, 2, ⋅ ⋅ ⋅ , 𝑟 are called wavelet frame masks or the high pass
filters of the system, respectively.

For 𝜓𝑗 and 𝜓̃𝑗 defined by (7), denote Ψ fl {𝜓1, ⋅ ⋅ ⋅ , 𝜓𝑟} ⊂𝐿2(R) and Ψ̃ = {𝜓̃1, ⋅ ⋅ ⋅ , 𝜓̃𝑟} ⊂ 𝐿2(R). So, there is the
following definition of a quasi-affine system on manifold M
[1].

Definition 5. Let Ψ fl {𝜓1, ⋅ ⋅ ⋅ , 𝜓𝑟} ⊂ 𝐿2(R) be a set of
functions. A quasi-affine system 𝑋(Ψ) ⊂ 𝐿2(M) is defined
as

𝑋 (Ψ) fl {𝜓M
𝑗,𝑛,𝑦 ∈ 𝐿2 (M) : 1 ≤ 𝑗 ≤ 𝑟, 𝑛 ∈ Z, 𝑦 ∈M} , (8)

where

𝜓M
𝑗,𝑛,𝑦 (𝑥) = ∞∑

ℓ=0

𝜓̂𝑗 (2−𝑛𝜆ℓ) 𝑢∗ℓ (𝑦) 𝑢ℓ (𝑥) ,
𝑛 ∈ Z, 𝑥 ∈M, 𝑦 ∈M.

(9)

In fact, 𝜓M
𝑗,𝑛,𝑦(𝑥) can be explained as the dilation and

translation of 𝜓𝑗 at scale 𝑛 and a point 𝑦 ∈ M. And again, a
similar definition for𝑋(𝜓̃) ⊂ 𝐿2(M) can be given as follows:

𝑋(Ψ̃)
fl {𝜓̃M
𝑗,𝑛,𝑦 ∈ 𝐿2 (M) : 1 ≤ 𝑗 ≤ 𝑟, 𝑛 ∈ Z, 𝑦 ∈M} , (10)

where

𝜓̃M
𝑗,𝑛,𝑦 (𝑥) = ∞∑

ℓ=0

̂̃𝜓𝑗 (2−𝑛𝜆̃ℓ) 𝑢̃∗ℓ (𝑦) 𝑢̃ℓ (𝑥) ,
𝑛 ∈ Z, 𝑥 ∈M, 𝑦 ∈M.

(11)

Definition 6. Given a Hilbert space H and a set of vectorsΓ𝑘 ∈ H, if there exist two positive constants 𝐴 and 𝐵 such
that the inequality

𝐴󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2 ≤ ∑
𝑘

󵄨󵄨󵄨󵄨⟨𝑓, Γ𝑘⟩󵄨󵄨󵄨󵄨2 ≤ 𝐵 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2 (12)

holds for all 𝑓 ∈ H, then a set of vectors Γ𝑘 ∈ H is called a
frame inH.

Now, we begin to give the definition of a pair of dual
wavelet frame on manifolds.

Definition 7. For given Ψ fl {𝜓1, ⋅ ⋅ ⋅ , 𝜓𝑟} ⊂ 𝐿2(R) and Ψ̃ ={𝜓̃1, ⋅ ⋅ ⋅ , 𝜓̃𝑟} ⊂ 𝐿2(R), if

(1) 𝑋(Ψ) and 𝑋(Ψ̃) defined by (8) and (10) are in𝐿2(M)(2) each of 𝑋(Ψ) and 𝑋(Ψ̃) is a wavelet frame in𝐿2(M)(3) in 𝐿2-sense, the following perfect reconstruction
formula holds for any 𝑓, 𝑔 ∈ 𝐿2(M)

𝑓 = 𝑟∑
𝑗=1

∑
𝑛∈Z

∫
M

⟨𝑓, 𝜓M
𝑗,𝑛,𝑦⟩ 𝜓̃M

𝑗,𝑛,𝑦d𝑦 (13)

or, equivalently,

⟨𝑓, 𝑔⟩𝐿2(M) =
𝑟∑
𝑗=1

∑
𝑛∈Z

∫
M

⟨𝑓, 𝜓M
𝑗,𝑛,𝑦⟩ ⟨𝜓̃M

𝑗,𝑛,𝑦, 𝑔⟩ d𝑦. (14)

Then the pair of systems (𝑋(Ψ),𝑋(Ψ̃)) is called a dual wavelet
frame for 𝐿2(M). In particular, whenΨ = Ψ̃, the frame is said
to be a tight frame for 𝐿2(M).
3. Existences of Dual Wavelet
Frames on Manifolds

In this section, we give sufficient conditions for the existence
of dual wavelet frames for 𝐿2(M) by their corresponding
masks. First, we give Weyl’s asymptotic formula [23, 24] and
Griesers uniform bound of the eigenfunctions [25] as below
similar to the way of literature [1, 10].

Lemma 8. Let {(𝑢ℓ, 𝜆ℓ)}∞ℓ=0 and {(𝑢̃ℓ, 𝜆̃ℓ)}∞ℓ=0 be well-defined
eigensystem of the Laplace-Beltrami operator Δ onM; then

𝜆ℓ ≍ ℓ1/𝑑,
𝜆̃ℓ ≍ ℓ1/𝑑; (15)

and

󵄩󵄩󵄩󵄩𝑢ℓ󵄩󵄩󵄩󵄩𝐿∞(M) ≤ 𝑐 󵄨󵄨󵄨󵄨𝜆ℓ󵄨󵄨󵄨󵄨(𝑑−1)/2 ,
󵄩󵄩󵄩󵄩𝑢̃ℓ󵄩󵄩󵄩󵄩𝐿∞(M) ≤ 𝑐 󵄨󵄨󵄨󵄨󵄨𝜆̃ℓ󵄨󵄨󵄨󵄨󵄨(𝑑−1)/2 .

(16)

where the constant 𝑐 depends only on the dimension 𝑑 ≥ 2
of the manifold. Here, the symbol 𝑎𝑛 ≍ 𝑏𝑛 means that there
exist positive constants 𝑐, 𝑐󸀠 independent of 𝑛 such that 0 < 𝑐 =
lim inf𝑛|𝑎𝑛/𝑏𝑛| ≤ lim sup𝑛|𝑎𝑛/𝑏𝑛| = 𝑐󸀠 < ∞.

Lemma 9. Suppose a pair of functions {𝜓𝑗 : 0 ≤ 𝑗 ≤𝑟}, {𝜓̃𝑗, 0 ≤ 𝑗 ≤ 𝑟} in 𝐿2(R) and the corresponding pair of
masks {𝑎𝑗 : 0 ≤ 𝑗 ≤ 𝑟}, {̂̃𝑎𝑗, 0 ≤ 𝑗 ≤ 𝑟} satisfying equations (6)
and (7). Let𝜓M

𝑗,𝑛,𝑦 and 𝜓̃M
𝑗,𝑛,𝑦, 𝑗 = 0, 1, ⋅ ⋅ ⋅ , 𝑟 be defined as in (9)

and (11), respectively. If

󵄨󵄨󵄨󵄨𝜓̂0󵄨󵄨󵄨󵄨 ≤ 𝐶0 (1 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨)−𝑠
𝑎𝑛𝑑 󵄨󵄨󵄨󵄨󵄨 ̂̃𝜓0󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶0 (1 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨)−𝑠

∀𝜉 ∈ R 𝑤𝑖𝑡ℎ 𝑠 > 𝑑 − 12 ,
(17)
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then, for any 𝑛 ∈ Z,

sup
𝑦∈M

󵄩󵄩󵄩󵄩󵄩𝜓M
𝑗,𝑛,𝑦

󵄩󵄩󵄩󵄩󵄩𝐿2(M) < ∞
𝑎𝑛𝑑 sup
𝑦∈M

󵄩󵄩󵄩󵄩󵄩𝜓̃M
𝑗,𝑛,𝑦

󵄩󵄩󵄩󵄩󵄩𝐿2(M) < ∞. (18)

Similar to the literature [1], we can obtain the following
results.

Theorem 10. Let {𝜓𝑗 : 0 ≤ 𝑗 ≤ 𝑟}, {𝜓̃𝑗 : 0 ≤ 𝑗 ≤ 𝑟} in 𝐿2(R)
be a pair functions with masks pair {𝑎𝑗 : 0 ≤ 𝑗 ≤ 𝑟}, {̂̃𝑎𝑗 :0 ≤ 𝑗 ≤ 𝑟} satisfying (6) and (7). Assume that the refinable
function pair 𝜓0, 𝜓̃0 satisfy conditions (17) and corresponding
masks satisfy

󵄨󵄨󵄨󵄨𝑎0 (𝜉) − 1󵄨󵄨󵄨󵄨 ≤ 𝐶 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨
𝑎𝑛𝑑 󵄨󵄨󵄨󵄨󵄨̂̃𝑎0 (𝜉) − 1󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 (19)

for 𝜉 near the origin. Then, the pair of systems (𝑋(Ψ),𝑋(Ψ̃))
given by (8) and (10) forms a dual wavelet frame in 𝐿2(M)
provided the equality

𝑟∑
𝑗=0

𝑎∗𝑗 (𝜉) ̂̃𝑎𝑗 (𝜉) = 1 (20)

holds for 𝜉 ∈ [−𝜋, 𝜋].
Proof. For simplicity’s sake, we define the operation P𝑛,𝑗 in𝐿2(M) as

P𝑛,𝑗𝑓 fl ∫
M

⟨𝑓, 𝜓M
𝑗,𝑛,𝑦⟩ 𝜓̃M

𝑗,𝑛,𝑦d𝑦, where 0 ≤ 𝑗 ≤ 𝑟. (21)

In particular,

P𝑛𝑓 fl P𝑛,0𝑓 fl ∫
M

⟨𝑓, 𝜑M𝑛,𝑦⟩𝜑M𝑛,𝑦d𝑦. (22)

By formulas (9) and (11), we obtain

𝜓M
𝑗,𝑛,𝑦 [ℓ] = 𝜓̂𝑗 (2−𝑛𝜆ℓ) 𝑢∗ℓ (𝑦) ,

and ̂̃𝜓M*
𝑗,𝑛,⋅ [ℓ] = ̂̃𝜓∗𝑗 (2−𝑛𝜆̃ℓ) 𝑢̃∗ℓ (𝑥) ,

(23)

By Parseval’s relation, we have

⟨𝑓, 𝜓M
𝑗,𝑛,𝑦⟩ = ⟨𝑓, 𝜓M

𝑗,𝑛,𝑦⟩
= ∞∑
ℓ=0

𝑓 [ℓ] 𝜓̂∗𝑗 (2−𝑛𝜆ℓ) 𝑢ℓ (𝑦) . (24)

Further,

̂⟨𝑓,𝜓M
𝑗,𝑛,⋅⟩ [ℓ] = 𝑓 [ℓ] 𝜓̂∗𝑗 (2−𝑛𝜆ℓ) . (25)

Therefore, we have

(P𝑛,𝑗𝑓) (𝑥) = ⟨⟨𝑓, 𝜓M
𝑗,𝑛,⋅⟩ , 𝜓̃M*

𝑗,𝑛,⋅⟩
= ⟨ ̂⟨𝑓,𝜓M

𝑗,𝑛,⋅⟩, ̂̃𝜓M*
𝑗,𝑛,⋅⟩

= ∞∑
ℓ=0

𝑓 [ℓ] 𝜓̂∗𝑗 (2−𝑛𝜆ℓ) ̂̃𝜓𝑗 (2−𝑛𝜆̃ℓ) 𝑢̃ℓ (𝑥) .
(26)

Thus,

P̂𝑛,𝑗𝑓 [ℓ] = 𝑓 [ℓ] 𝜓̂∗𝑗 (2−𝑛𝜆ℓ) ̂̃𝜓𝑗 (2−𝑛𝜆̃ℓ)
for 0 ≤ 𝑗 ≤ 𝑟. (27)

By ∑𝑟𝑗=0 𝑎∗𝑗 (𝜉)̂̃𝑎𝑗(𝜉) = 1, we get
P̂𝑛,0𝑓 [ℓ] = 𝑓 [ℓ] 𝜓̂∗0 (2−𝑛𝜆ℓ) ̂̃𝜓0 (2−𝑛𝜆̃ℓ) = 𝑓 [ℓ]
⋅ 𝜓̂∗0 (2−𝑛𝜆ℓ) ̂̃𝜓0 (2−𝑛𝜆ℓ) 𝑟∑

𝑗=0

𝑎∗𝑗 (2−𝑛𝜆ℓ) ̂̃𝑎𝑗 (2−𝑛𝜆̃ℓ)
= 𝑟∑
𝑗=0

𝑓 [ℓ] 𝑎∗𝑗 (2−𝑛𝜆ℓ) 𝜓̂∗0 (2−𝑛𝜆ℓ) ̂̃𝑎𝑗 (2−𝑛𝜆̃ℓ)
⋅ ̂̃𝜓0 (2−𝑛𝜆̃ℓ) = 𝑟∑

𝑗=0

𝑓 [ℓ] 𝜓̂∗𝑗 (2−𝑛+1𝜆ℓ) ̂̃𝜓𝑗 (2−𝑛+1𝜆̃ℓ)
= 𝑟∑
𝑗=0

P̂𝑛−1,𝑗𝑓 [ℓ] .

(28)

Therefore,

P𝑛𝑓 = 𝑟∑
𝑗=0

P𝑛−1,𝑗𝑓 = P𝑛−1𝑓 + 𝑟∑
𝑗=1

P𝑛−1,𝑗𝑓, (29)

and hence

P𝑛1𝑓 = P𝑛2𝑓 + 𝑟∑
𝑗=1

𝑛1∑
𝑛=𝑛2

P𝑛,𝑗𝑓 (30)

To obtain (13), we first need to prove that

lim
𝑛1󳨀→+∞

P𝑛1𝑓 = 𝑓, 𝑓 ∈ 𝐿2 (M) . (31)

Due to

󵄩󵄩󵄩󵄩󵄩P𝑛1𝑓 − 𝑓󵄩󵄩󵄩󵄩󵄩2𝐿2(M)
= ∞∑
ℓ=0

󵄨󵄨󵄨󵄨󵄨𝑓 [ℓ] 𝜑∗ (2−𝑛1𝜆ℓ) ̂̃𝜑 (2−𝑛1 𝜆̃ℓ) − 𝑓 [ℓ]󵄨󵄨󵄨󵄨󵄨2

= ∞∑
ℓ=0

󵄨󵄨󵄨󵄨󵄨𝑓 [ℓ]󵄨󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨󵄨𝜑∗ (2−𝑛1𝜆ℓ) ̂̃𝜑 (2−𝑛1 𝜆̃ℓ) − 1󵄨󵄨󵄨󵄨󵄨2 .
(32)
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By assumption (19), we have lim𝜉󳨀→0𝜑(𝜉) = 1, lim𝜉󳨀→0 ̂̃𝜑(𝜉) =1; thus, for each ℓ ≥ 0,
lim
𝑛1󳨀→+∞

𝜑∗ (2−𝑛1𝜆ℓ) = 1
and lim
𝑛1󳨀→+∞

̂̃𝜑 (2−𝑛1 𝜆̃ℓ) = 1, (33)

and hence 𝜑 and ̂̃𝜑 are bounded. Therefore,
lim𝑛1󳨀→+∞P𝑛1‖P𝑛1𝑓 − 𝑓‖2𝐿2(M) = 0, and then

lim
𝑛1󳨀→+∞

P𝑛1𝑓 = 𝑓. (34)

Second, we show that

lim
𝑛2󳨀→−∞

P𝑛2𝑓 = 0. (35)

Since lim𝜉󳨀→∞𝜑(𝜉) = 0 and lim𝜉󳨀→∞ ̂̃𝜑(𝜉) = 0, for ℓ ≥ 0, we
have

lim
𝑛2󳨀→−∞

P̂𝑛2𝑓 [ℓ]
= lim
𝑛2󳨀→−∞

𝑓 [ℓ] 𝜑∗ (2−𝑛2𝜆ℓ) ̂̃𝜑 (2−𝑛2 𝜆̃ℓ) = 0. (36)

Therefore, by the boundedness of 𝜑 and ̂̃𝜑, we have
lim𝑛2󳨀→−∞P𝑛2𝑓 = 0.

This completes the proof of the theorem.

4. Discrete Dual Wavelet Frame
Transforms on Graphs

Discrete dual wavelet frames on M are more desirable
in practice. Graphs are usually understood as a certain
discretization or a random sample from some smooth Rie-
mannian manifold. In this section, we discuss discrete dual
wavelet frame transforms on graphs.

For a given undirected, connected, weighted graphs 𝐺 fl{𝑉, 𝐸, 𝑤}; let 𝐴 be a 𝐾 × 𝐾 adjacency matrix for a weighted
graph 𝐺 with entries (𝑎𝑚,𝑛), where
𝑎𝑚,𝑛
= {{{

𝑤(V𝑚, V𝑛) , if V𝑚 and V𝑛 are connected by an edge in 𝐸,
0, otherwise.

(37)

Let𝐷 represent the degree matrix defined as follows:

𝐷 = diag {𝑑 (1) , 𝑑 (2) , ⋅ ⋅ ⋅ , 𝑑 (𝐾)} , (38)

where 𝑑(𝑚) = ∑𝑛 𝑎𝑚,𝑛 is called the degree 𝑑(𝑚) of a vertex
V𝑚.

The graph Laplacian plays an important role in the
analysis and processing of graph data. The consistency of the
graph Laplacian to the Laplace-Beltrami operator was studied
in [26–28].

Definition 11. A nonnormalized graph Laplacian is defined as
follows:

L = 𝐷 − 𝐴. (39)

Let {(𝑢𝑘, 𝜆𝑘)}𝐾𝑘=0 be the set of pairs of eigenvalues and
eigenfunctions ofL; then,(1)without losing generality, we have 0 = 𝜆0 ≤ 𝜆1 ≤ 𝜆2 ≤⋅ ⋅ ⋅ 𝜆𝐾−1 fl 𝜆𝑚𝑎𝑥;(2) the eigenfunctions form an orthonormal basis for all
functions on the graph; that is, ⟨𝑢𝑘, 𝑢𝑘󸀠⟩ = 𝛿𝑘,𝑘󸀠 .
Definition 12. Let 𝑓𝐺 : 𝑉 󳨃󳨀→ R be a function on the graph𝐺.
Then its Fourier transform is defined by

𝑓𝐺 [𝑘] fl ⟨𝑓𝐺, 𝑢𝑘⟩ fl 𝐾∑
𝑛=1

𝑓𝐺 [𝑛] 𝑢𝑘 [𝑛] . (40)

Suppose 𝑓𝐺 is sampled from the underlying function 𝑓 :
M 󳨃󳨀→ R by 𝑓𝐺(V𝑘) fl ⟨𝑓, 𝜑𝑁,V𝑘⟩, V𝑘 ∈ 𝑉, where the dilation
scale𝑁 is the smallest integer such that 𝜆𝑚𝑎𝑥 fl 𝜆𝐾−1 ≤ 2𝑁𝜋.
Therefore, its Fourier transform is given by

𝑓𝐺 [𝑘] = 𝑓𝑘𝜑∗ (2−𝑁𝜆𝑘) . (41)

Note that the scale𝑁 is selected such that 2−𝑁𝜆𝑘 ∈ [0, 𝜋] for0 ≤ 𝑘 ≤ 𝐾 − 1.
Given a graph function 𝑓𝐺, we define the discrete 𝐿−level

dual wavelet frame decomposition operator as

𝑊𝑓𝐺 fl {𝑊𝑗,𝑙𝑓𝐺; (𝑗, 𝑙) ∈ B} ,
B fl {(1, 1) , (2, 1) , ⋅ ⋅ ⋅ , (𝑟, 1) , (1, 2) , ⋅ ⋅ ⋅ , (𝑟, 𝐿)}

∪ {(0, 𝐿)} ,
(42)

where𝑊𝑗,𝑙𝑓𝐺 is its dual wavelet frame coefficient. Let

𝛼 =𝑊𝑓𝐺 = {𝛼𝑗,𝑙 : (𝑗, 𝑙) ∈ 𝐵} , with 𝛼𝑗,𝑙 = 𝑊𝑗,𝑙𝑓𝐺 (43)

and

𝑊
𝑇
𝛼 = 𝛼0,0,

𝑊𝑇𝑗,𝑙𝛼 = 𝛼0,𝑙−1, (44)

where𝑊𝑇 is the reconstruction operator.
Now,we can define the discrete𝐿-level dual wavelet frame

decomposition and reconstruction algorithm for graph data
as shown below.

Algorithm 13. Given a signal 𝑓𝐺 : 𝑉 󳨃󳨀→ R, 𝑓𝐺(V𝑘) fl⟨𝑓, 𝜑𝑁,V𝑘⟩, V𝑘 ∈ 𝑉 and the associated trigonometric polyno-
mials {𝑎𝑗(𝜉) : 0 ≤ 𝑗 ≤ 𝑟} and {̂̃𝑎𝑗(𝜉) : 0 ≤ 𝑗 ≤ 𝑟}, we assign𝛼̂0,0[𝑘] = 𝑓𝐺[𝑘]. Then, the discrete 𝐿-level fast dual wavelet
frame decomposition and reconstruction for 𝐿2(M) is given
as follows (in the Fourier domain).

(1) Decomposition: for each 𝑙 = 1, 2, ⋅ ⋅ ⋅ , 𝐿.
(a) Obtain the low-frequency approximation of𝛼̂0,0[𝑘] at level 𝑙:

𝛼̂0,𝑙 [𝑘] = 𝑎∗0 (2−𝑁+𝑙−1𝜆𝑘) 𝛼̂0,𝑙−1 [𝑘] ; (45)
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(b) Obtain the dual framelet coefficients of 𝛼̂0,0[𝑘]
at level 𝑙:

𝛼̂𝑗,𝑙 [𝑘] = 𝑎∗𝑗 (2−𝑁+𝑙−1𝜆𝑘) 𝛼̂0,𝑙−1 [𝑘] , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑟. (46)

(2) Reconstruction: for each 𝑗 = 𝐿, 𝐿 − 1, ⋅ ⋅ ⋅ , 1,
𝛼̂0,𝑙−1 [𝑘] = 𝑟∑

𝑗=0

̂̃𝑎𝑗 (2−𝑁+𝑙−1𝜆𝑘) 𝛼̂𝑗,𝑙 [𝑘] . (47)

Then we have the following perfect reconstruction for-
mula from 𝛼 to 𝑓𝐺 through𝑊𝑇.
Theorem 14. If a given set of masks {𝑎𝑗 : 0 ≤ 𝑗 ≤ 𝑟} and{𝑎𝑗 : 0 ≤ 𝑗 ≤ 𝑟} in ℓ1(Z) satisfy (20), then, the discrete dual
wavelet frame transforms𝑊 and𝑊𝑇 defined on 𝐺 = {𝑉, 𝐸, 𝑤}
satisfy

𝑊
𝑇
𝑊𝑓𝐺 = 𝑓𝐺 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓𝐺 : 𝑉 󳨃󳨀→ 𝐺. (48)

Proof. For simplicity, we only give proof in the case of L=2𝐿 = 2. For a general 𝐿, it can be obtained in a similar way. For𝐿 = 2, we have 𝛼 fl {𝛼𝑗,𝑙 : (𝑗, 𝑙) ∈ B} with 𝛼𝑗,𝑙 fl 𝑊𝑗,𝑙𝑓𝐺 and
B = {(𝑗, 𝑙) : 1 ≤ 𝑗 ≤ 𝑟, 𝑙 = 1, 2} ∪ {(0, 2)}. In accordance with
(45) and (46), we have

𝛼̂𝑗,2 [𝑘] = 𝑎∗𝑗 (2−𝑁+1𝜆𝑘) 𝑎∗0 (2−𝑁𝜆𝑘) 𝑓𝐺 [𝑘] . (49)

Therefore, by assuming 𝑙 = 2 in (47), we obtain

𝛼̂0,2−1 [𝑘] = 𝛼̂0,1 [𝑘] = 𝑟∑
𝑗=0

̂̃𝑎𝑗 (2−𝑁+1𝜆𝑘) 𝛼̂𝑗,2 [𝑘]
= 𝑟∑
𝑗=0

̂̃𝑎𝑗 (2−𝑁+1𝜆𝑘) 𝑎∗𝑗 (2−𝑁+1𝜆𝑘) 𝑎∗0 (2−𝑁𝜆𝑘) 𝑓𝐺 [𝑘]

= ( 𝑟∑
𝑗=0

̂̃𝑎𝑗 (2−𝑁+1𝜆𝑘) 𝑎∗𝑗 (2−𝑁+1𝜆𝑘))𝑎∗0 (2−𝑁𝜆𝑘)
⋅ 𝑓𝐺 [𝑘] = 𝑎∗0 (2−𝑁𝜆𝑘) 𝑓𝐺 [𝑘] .

(50)

By assuming 𝑙 = 1 in (47), we obtain

𝛼̂0,0 [𝑘] = 𝑟∑
𝑗=0

̂̃𝑎𝑗 (2−𝑁𝜆𝑘) 𝛼̂𝑗,1 [𝑘]
= 𝑟∑
𝑗=0

̂̃𝑎𝑗 (2−𝑁𝜆𝑘) 𝑎∗𝑗 (2−𝑁𝜆𝑘) 𝑓𝐺 [𝑘]

= ( 𝑟∑
𝑗=0

̂̃𝑎𝑗 (2−𝑁𝜆𝑘) 𝑎∗𝑗 (2−𝑁𝜆𝑘))𝑓𝐺 [𝑘]
= 𝑓𝐺 [𝑘] .

(51)

This shows that𝑊𝑇𝑊𝑓𝐺 = 𝑓𝐺.

5. Polynomial Approximation and
Numerical Simulations

5.1. Polynomial Approximation and Fast DWFTG. Chebyshev
polynomials have an important application in the approxi-
mation theory. In this section, we describe the details of the
dual wavelet frame transform on graphs based on polynomial
approximation by using the method proposed in literature
[1, 6]. One of the advantages of using lower Chebyshev
polynomials to approach trigonometric polynomials is the
efficiency of computing if the Laplacian is sparse.

We recall the relevant definitions and properties of the
Chebyshev polynomials.

Definition 15. The Chebyshev polynomial 𝑇𝑘(𝑥) is defined as
follows: 𝑇𝑘(𝑥) = cos(karccos(𝑥)), 𝑥 ∈ [−1, 1].
Proposition 16. The Chebyshev polynomials have the follow-
ing properties.(1) 𝑇𝑘(𝑥) and 𝑇𝑗(𝑥) are orthogonal with respect to the
weight function 1/√1 − 𝑥2 in the interval [−1, 1]; that is,

⟨𝑇𝑘, 𝑇𝑗⟩ = ∫1
−1

1√1 − 𝑥2𝑇𝑘 (𝑥) 𝑇𝑗 (𝑥) d𝑥
= ∫𝜋
0
cos 𝑘𝜃 cos 𝑗𝜃 d𝜃

= {{{{{
𝜋2 𝛿𝑘,𝑗, 𝑘, 𝑗 > 0;
𝜋, 𝑘 = 𝑗 = 0,

(52)

where 𝑥 = cos 𝜃.(2) 𝑇𝑘(𝑥) satisfies recursive relations
𝑇0 (𝜉) = 1,
𝑇1 (𝜉) = 𝜉 − 𝜋/2𝜋/2 ,
𝑇𝑘 (𝜉) = 4𝜋 (𝜉 − 𝜋2 )𝑇𝑘−1 (𝜉) − 𝑇𝑘−2 (𝜉) .

(53)

(3) For a given 𝑔(𝜉) with 𝜉 ∈ [0, 𝜋], it has a convergent
Chebyshev series

𝑔 = 12𝑐0 +
∞∑
𝑘=1

𝑐𝑘𝑇𝑘, (54)

where the Chebyshev coefficients is 𝑐𝑘 = (2/𝜋) ∫𝜋0 cos(𝑘𝜃)𝑔((𝜋/2)(cos(𝜃) + 1)d𝜃.
Thus, a smooth function 𝑔(𝜉) has the following accurate

approximate:

𝑔 (𝜉) ≈ T
𝑛 (𝜉) = 12𝑐0 +

𝑛−1∑
𝑘=1

𝑐𝑘𝑇𝑘. (55)
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and we denote the Chebyshev polynomial approximation of𝑎𝑗(𝜉) and ̂̃𝑎𝑗(𝜉) as
𝑎𝑗 (𝜉) ≈ T

𝑛
𝑗 (𝜉) = 12𝑐𝑗,0 +

𝑛−1∑
𝑘=1

𝑐𝑗,𝑘𝑇𝑘,
𝑐𝑗,𝑘 = 2𝜋 ∫

𝜋

0
cos (𝑘𝜃) 𝑎𝑗 (𝜋2 (cos (𝜃) + 1)) d𝜃;

(56)

̂̃𝑎𝑗 (𝜉) ≈ T̃
𝑛
𝑗 (𝜉) = 12𝑐𝑗,0 +

𝑛−1∑
𝑘=1

𝑐𝑗,𝑘𝑇𝑘,
𝑐𝑗,𝑘 = 2𝜋 ∫

𝜋

0
cos (𝑘𝜃) ̂̃𝑎𝑗 (𝜋2 (cos (𝜃) + 1)) d𝜃.

(57)

The Laplacian L is a symmetric matrix so that the
eigenvalue decomposition L = 𝑈Λ𝑈 exists, where Λ =
diag{𝜆0, 𝜆1, ⋅ ⋅ ⋅ , 𝜆𝐾−1} and columns of𝑈 are the eigenvectors.
Now, we can use the above approximation to speed up the
decomposition transform. First, we can rewrite the decom-
position transform in the following matrix form:

𝑊𝑗,𝑙𝑓𝐺
= {{{{{

𝑎∗𝑗 (2−𝑁Λ)𝑓𝐺, 𝑙 = 1,
𝑎∗𝑗 (2−𝑁+𝑙−1Λ) 𝑎∗0 (2−𝑁+𝑙−2Λ) ⋅ ⋅ ⋅ 𝑎∗0 (2−𝑁Λ)𝑓𝐺, 2 ≤ 𝑙 ≤ 𝐿.

(58)

where 𝑎∗𝑗 (𝛾Λ) = diag{𝑎∗𝑗 (𝛾𝜆0), 𝑎∗𝑗 (𝛾𝜆1), ⋅ ⋅ ⋅ , 𝑎∗𝑗 (𝛾𝜆𝐾−1)}.
Due to 𝑈𝑇𝑈 = 𝐼, we have

𝑈𝑊𝑗,𝑙𝑓𝐺 = {{{{{
𝑈𝑎∗𝑗 (2−𝑁Λ)𝑈𝑇𝑈𝑓𝐺, 𝑙 = 1,
𝑈𝑎∗𝑗 (2−𝑁+𝑙−1Λ) 𝑎∗0 (2−𝑁+𝑙−2Λ) ⋅ ⋅ ⋅ 𝑎∗0 (2−𝑁Λ)𝑈𝑇𝑈𝑓𝐺, 2 ≤ 𝑙 ≤ 𝐿. (59)

However,

[[[[[[
[

𝑢0 [0] 𝑢1 [0] ⋅ ⋅ ⋅ 𝑢𝐾−1 [0]𝑢0 [1] 𝑢1 [1] ⋅ ⋅ ⋅ 𝑢𝐾−1 [1]... ... d
...

𝑢0 [𝐾 − 1] 𝑢1 [𝐾 − 1] ⋅ ⋅ ⋅ 𝑢𝐾−1 [𝐾 − 1]

]]]]]]
]

[[[[[[[[
[

𝑊𝑗,𝑙𝑓𝐺 [0]
𝑊𝑗,𝑙𝑓𝐺 [1]...

𝑊𝑗,𝑙𝑓𝐺 [𝐾 − 1]

]]]]]]]]
]

=
[[[[[[[
[

𝑊𝑗,𝑙𝑓𝐺 [0]𝑊𝑗,𝑙𝑓𝐺 [1]...
𝑊𝑗,𝑙𝑓𝐺 [𝐾 − 1]

]]]]]]]
]

(60)

where 𝑊𝑗,𝑙𝑓𝐺[𝑝] = ∑𝐾−1𝑘=0 𝑊𝑗,𝑙𝑓𝐺[𝑘]𝑢𝑘[𝑝]; i.e., 𝑈𝑊𝑗,𝑙𝑓𝐺 =𝑊𝑗,𝑙𝑓𝐺, and

[[[[[[
[

𝑢0 [0] 𝑢1 [0] ⋅ ⋅ ⋅ 𝑢𝐾−1 [0]𝑢0 [1] 𝑢1 [1] ⋅ ⋅ ⋅ 𝑢𝐾−1 [1]... ... d
...

𝑢0 [𝐾 − 1] 𝑢1 [𝐾 − 1] ⋅ ⋅ ⋅ 𝑢𝐾−1 [𝐾 − 1]

]]]]]]
]

[[[[[[[
[

𝑓𝐺 [0]
𝑓𝐺 [1]...

𝑓𝐺 [𝐾 − 1]

]]]]]]]
]

=
[[[[[[
[

𝑓𝐺 [0]𝑓𝐺 [1]...
𝑓𝐺 [𝐾 − 1]

]]]]]]
]

(61)

where𝑊𝑗,𝑙𝑓𝐺[𝑝] = ∑𝐾−1𝑘=0 𝑓𝐺[𝑘]𝑢𝑘[𝑝]; i.e., 𝑈𝑓𝐺 = 𝑓𝐺.
Therefore, (58) can be equivalently written in physical

domain:

𝑊𝑗,𝑙𝑓𝐺 = {{{{{
𝑈𝑎∗𝑗 (2−𝑁Λ)𝑈𝑇𝑓𝐺, 𝑙 = 1,
𝑈𝑎∗𝑗 (2−𝑁+𝑙−1Λ) 𝑎∗0 (2−𝑁+𝑙−2Λ) ⋅ ⋅ ⋅ 𝑎∗0 (2−𝑁Λ)𝑈𝑇𝑓𝐺, 2 ≤ 𝑙 ≤ 𝐿. (62)

Substitute (56) into (62) and notice that T𝑛𝑗 are
polynomials; we obtain the fast DWFTG as follows:

𝑊𝑗,𝑙𝑓𝐺 = {{{{{
T𝑛∗𝑗 (2−𝑁L) 𝑓𝐺, 𝑙 = 1,
T𝑛∗𝑗 (2−𝑁+𝑙−1L)T𝑛∗0 (2−𝑁+𝑙−2L) ⋅ ⋅ ⋅T𝑛∗0 (2−𝑁L) 𝑓𝐺, 2 ≤ 𝑙 ≤ 𝐿. (63)
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Next, reconstruction transform 𝑊𝑇 can be obtained
similarly; i.e., (47) can be rewritten as the following matrix
form:

[[[[[[[
[

𝑊0,𝑙−1𝑓𝐺 [0]
𝑊0,𝑙−1𝑓𝐺 [1]...

𝑊0,𝑙−1𝑓𝐺 [𝐾 − 1]

]]]]]]]
]
=

[[[[[[[[[[[[[[
[

𝑟∑
𝑗=0

̂̃𝑎𝑗 (2−𝑁+𝑙−1𝜆0) 0 ⋅ ⋅ ⋅ 0
0 𝑟∑

𝑗=0

̂̃𝑎𝑗 (2−𝑁+𝑙−1𝜆1) ⋅ ⋅ ⋅ 0
... ... d

...
0 0 ⋅ ⋅ ⋅ 𝑟∑

𝑗=0

̂̃𝑎𝑗 (2−𝑁+𝑙−1𝜆𝐾−1)

]]]]]]]]]]]]]]
]

[[[[[[[
[

𝑊𝑗,𝑙𝑓𝐺 [0]
𝑊𝑗,𝑙𝑓𝐺 [1]...

𝑊0,𝑙𝑓𝐺 [𝐾 − 1]

]]]]]]]
]

(64)

Therefore, the above formula can be equivalently written in
physical domain:

𝑊0,𝑙−1𝑓𝐺 = 𝑟∑
𝑗=0

𝑈̂̃𝑎𝑗 (2−𝑁+𝑙−1Λ)𝑈𝑇𝑊𝑗,𝑙𝑓𝐺. (65)

We can obtain the fast dual wavelet frame reconstruction
transform on graphs as follows:

𝑊𝑇0,𝑙−1𝛼 = 𝑟∑
𝑗=0

T̃
𝑛
𝑗 (2−𝑁+𝑙−1L)𝑊𝑗,𝑙𝑓𝐺. (66)

And we have𝑊𝑇𝑊 ≈ 𝐼.
5.2. Numerical Simulations of DWFTG. In this section, we
give a numerical example to illustrate the validity of the dual
wavelet frame transformation applied to the graph data.

Example 17 (linear). Let 𝑎0(𝜉) = ̂̃𝑎(𝜉) = (1/4)𝑒𝑖𝜉(1 + 𝑒−𝑖𝜉)2
be the refinement masks of the continuous linear B-splines 𝜑
and 𝜑 supported on [−1, 1]. Define

𝑎1 (𝜉) = −12𝑒𝑖𝜉 (1 − 𝑒−𝑖𝜉)2 ,
̂̃𝑎1 (𝜉) = 18𝑒𝑖𝜉 (1 + 𝑒−𝑖𝜉)2 ,
𝑎2 (𝜉) = −12 (1 − 𝑒−𝑖𝜉)2 ,
̂̃𝑎2 (𝜉) = 12𝑒−𝑖𝜉.

(67)

Then, this group of masks satisfy (20). Hence, the system pair(𝑋(Ψ),𝑋(Ψ̃)) defined in (8) and (10) associatedwith themask{𝑎0, 𝑎1, 𝑎2}, {̂̃𝑎0, ̂̃𝑎1, ̂̃𝑎2} is a dual wavelet frame for 𝐿2(M).
Example 18 (cubic). Let 𝑎0(𝜉) = (1/4)𝑒𝑖𝜉(1 + 𝑒−𝑖𝜉)2 be
the refinement masks of the continuous linear B-splines 𝜑
supported on [−1, 1] and ̂̃𝑎0(𝜉) = (1/16)𝑒𝑖2𝜉(1 + 𝑒−𝑖𝜉)4 be the

refinement masks of the 𝐶2 cubic B-splines 𝜑 supported on[−2, 2]. Define
𝑎1 (𝜉) = −12𝑒𝑖𝜉 (1 − 𝑒−𝑖𝜉)2 ,
̂̃𝑎1 (𝜉) = 38 ,
𝑎2 (𝜉) = −18 (4 + 𝑒𝑖𝜉 + 𝑒−𝑖𝜉 (1 − 𝑒−𝑖𝜉)2 ,
̂̃𝑎2 (𝜉) = 18 (1 + 4𝑒−𝑖𝜉 + 𝑒−𝑖2𝜉) .

(68)

Then, this group of masks satisfy (20). Hence, the system
pair (𝑋(Ψ),𝑋(Ψ̃)) defined in (8) and (10) associated with
the masks {𝑎0, 𝑎1, 𝑎2}, {̂̃𝑎0, ̂̃𝑎1, ̂̃𝑎2} is a dual wavelet frame for𝐿2(M).
Example 19 (pseudo). Let 𝑎0(𝜉) = cos4(𝜉/2) and ̂̃𝑎0(𝜉) =
cos4(𝜉/2)(1 + 4sin2(𝜉/2) be the mask of the m order pseudo-
spline. Define

𝑎1 (𝜉) = 𝑒−𝑖𝜉sin4 (𝜉2)(1 + 4sin2 (𝜉2)) ,
̂̃𝑎1 (𝜉) = 𝑒𝑖𝜉sin4 (𝜉2) ,
𝑎2 (𝜉) = √54 sin2 (𝜉) ,
̂̃𝑎2 (𝜉) = √54 sin2 (𝜉) ,
𝑎3 (𝜉) = 𝑒−𝑖𝜉√54 sin2 (𝜉) ,
̂̃𝑎3 (𝜉) = 𝑒𝑖𝜉√54 sin2 (𝜉) .

(69)

Then, this group of masks satisfy (20). Hence, the system
pair (𝑋(Ψ),𝑋(Ψ̃)) defined in (8) and (10) associated with the
masks {𝑎0, 𝑎1, 𝑎2, 𝑎3}, {̂̃𝑎0, ̂̃𝑎1, ̂̃𝑎2, ̂̃𝑎3} is a dual wavelet frame for𝐿2(M).



Journal of Mathematics 9

Table 1: Approximation errors ‖T𝑛∗𝑗 − 𝑎∗𝑗 ‖∞ and ‖T̃𝑛𝑗 − ̂̃𝑎𝑗‖∞ with 𝑎𝑗 and ̂̃𝑎𝑗 in Example 17.

Errors 𝑎∗0 𝑎∗1 𝑎∗2 ̂̃𝑎0 ̂̃𝑎1 ̂̃𝑎2 Average error
n=7 3.40E-05 6.78E-05 3.471E-03 3.40E-05 1.53E-05 3.40E-05 6.09E-04
n=8 3.73E-07 7.27E-07 7.12E-04 3.73E-07 3.13E-06 3.40E-06 1.20E-04
n=9 3.51E-06 5.44E-07 1.27E-04 3.51E-06 4.13E-06 3.07E-07 2.31E-05
n=10 3.75E-06 3.91E-07 2.03E-05 3.75E-06 4.06E-06 6.08E-08 5.38E-06
n=11 3.89E-06 3.44E-07 2.98E-06 3.89E-06 4.12E-06 4.41E-08 2.54E-06
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Figure 1: The figure shows that the graph data on Slope is decomposed to the dual wavelet frame coefficients𝑊𝑗,𝑙𝑓𝐺 for 0 ≤ 𝑗 ≤ 2 (row 1-3)
and 1 ≤ 𝑙 ≤ 4 (column 1-4).

In our simulations, we choose the dual wavelet frame
system given in Example 17. We accurately approximate the
trigonometric polynomial masks 𝑎∗𝑗 and ̂̃𝑎𝑗 in Example 17 by
low-degree Chebyshev polynomials; see Table 1.

In numerical experiment, we take 16728 points sampled
on the manifold and we build a weighted graph by setting
edge weights 𝑤(V𝑚, V𝑛) = 𝑒−‖V𝑚−V𝑛‖22/𝜎 for V𝑚, V𝑛 ∈ 𝑉. For
larger datasets, this graph could be sparsified by thresholding
the edge weights. We use 𝜎 = 10 and threshold the adjacency
matrix 𝐴 to limit the number of nearest neighbors of each
vertex to 10 for computing the underlying weighted graph.
The functions 𝑓𝐺 : 𝑉 󳨀→ R are generated by mapping two
images, Slope and Eric, onto the graph 𝐺; see Figure 2 of the

literature [1]. We perform 4 levels of DWFTG and use 𝑛 = 11
for the Chebyshev polynomial approximation of the masks.

As described in Algorithm 13, we can decompose graph
data on Slope and Eric to obtain the dual wavelet frame
coefficients 𝑊𝑗,𝑙𝑓𝐺 for 0 ≤ 𝑗 ≤ 2 and 1 ≤ 𝑙 ≤ 4 by the
decomposition of (63) (see Figures 1 and 2) and reconstruct
graph data on Slope and Eric from these framelet coefficient
sequences by the reconstruction of (66); see Figure 3.

The graphs in Figures 1 and 2 show that the dual wavelet
frame systems provide both good data approximation and
detail separation based on multiresolution analysis; thus
we demonstrate the ability of the fast dual wavelet frame
transform for graph data analysis.
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Figure 2: The figure shows that graph data on Eric is decomposed to the dual wavelet frame coefficients𝑊𝑗,𝑙𝑓𝐺 for 0 ≤ 𝑗 ≤ 2 (row 1-3) and1 ≤ 𝑙 ≤ 4 (column 1-4).
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Figure 3:The graph data on Slope and Eric, respectively, reconstructed from corresponding framelet coefficient sequences are shown on the
right of each image.

The computation time and reconstruction errors of a4-level decomposition and reconstruction of the DWFTG
are summarized in Table 2. For a similar computation time,
the reconstruction error of DWFTG using linear masks is

smaller than DWFTG using cubic masks and DWFTG using
pseudo masks. However, the DWFTG using linear masks is
a more redundant transformation than the DWFTG using
cubic masks and DWFTG using pseudo masks.
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Table 2: The reconstruction time is in seconds and errors are measured by the ℓ∞-norm.

Image name Linear Cubic Pseudo
Errors Time(s) Errors Time(s) Errors Time(s)

Slope 2.570E-05 5.960 9.526E-05 5.912 6.686E-04 5.788
Eric 2.971E-05 6.039 1.034E-04 5.536 4.700E-04 5.768

Remark 20. Note that, the sparsity of the high frequency
coefficients 𝑊𝑗,𝑙𝑓𝐺 is related to the support set of the scale
function and the symmetry of the filter in image processing.
When the support set of the scale function is smaller and the
filter banks pair generating the dual wavelet frame system
are symmetrical, the high frequency coefficients 𝑊𝑗,𝑙𝑓𝐺 are
good sparse. On the contrary, the sparsity of the image is not
guaranteed. At the same time, the reconstruction error will
be slightly larger with the number of filters increasing. But
the result is also ideal.

6. Conclusion

Wavelet frames on manifolds are a new research topic in the
area of wavelet analysis. This paper is primarily concerned
with the construction of the dual wavelet frames onmanifolds
and graphs using the machinery of extension principles.
We have obtained the characterizations for the existence of
dual wavelet frames in both the continuous and the discrete
setting. In addition, we have also obtained the decomposition
and reconstruction for the dual wavelet frame transforms
on graphs. A complete section has been devoted to studying
discrete dual wavelet frames on graphs using low-degree
Chebyshev polynomials. Finally, some numerical simulations
of fast dual wavelet frame transform on graphs have also been
carried out to demonstrate the efficiency and accuracy of the
framelet transforms.
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