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We obtain sufficient conditions for the approximate controllability of a fractional nonlinear hybrid differential system. The results
are obtained by using resolvent and sectorial operators technique via Dhage fixed point theorem.

1. Introduction

Fractional differential systems have described many practical
dynamical phenomena more efficiently than the correspond-
ing integer-order systems; hence they have attracted the
attention of many researchers in such fields (see [1–10] and
references cited therein).

One of these systems is the fractional control system
with all its branches such as stability, controllability, and
observability. In the recent years, many investigations on
the controllability problems of fractional behaviour have
extensively appeared with various applications on linear and
nonlinear systems. Particularly, the researches have focused
on exact (complete) and approximate controllability (see the
articles [11–17] and the references therein).

The fractional control systems involving a linear closed
(unbounded) operator which generates resolvent operators
were considered recently by many authors [15, 18–20]. The
lack of the semigroup property of the generated resolvent
operator was the most popular difficulty that has been faced
by the interested researchers.However, some authors used the
idea of analytic sectorial operators to overcome this problem.
Formore details, we refer the reader to the papers [20–23] and
references therein. To the best of our knowledge, there is not
any investigation in the controllability problem via resolvent
operators applied on hybrid systems such as the system that
has been discussed in the article [24].

In this article, we study the approximate controllability for
a fractional hybrid differential system of the form

(𝑐𝐷𝛼0 + 𝐴) 𝑥 (𝑡)
= 𝑔 (𝑡, 𝑥 (𝑡)) 𝐼1−𝛼0 (𝐵𝑢 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡))) , 0 < 𝑡 ≤ 𝑏,

𝑥 (0) = 𝑥0,
(1)

where 𝑐𝐷𝛼0 is the Caputo fractional derivative of order 𝛼 such
that 0 < 𝛼 < 1, 𝑋 and 𝑈 are two real Hilbert spaces, 𝐴 :𝐷(𝐴) ⊆ 𝑋 󳨀→ 𝑋 is the infinitesimal generator of a resolvent
operator 𝑆𝛼(𝑡), 𝑡 ∈ 𝐽 = [0, 𝑏], 𝐵 : 𝑈 󳨀→ 𝑋 is a bounded
linear operator, 𝑢 ∈ 𝐿2(𝐽, 𝑈), 𝐼1−𝛼0 denotes the (1 − 𝛼)-order
fractional integral, and 𝑓, 𝑔 : 𝐽×𝑋 󳨀→ 𝑋 are given functions
such that 𝑔 does not vanish on 𝐽 × 𝑋.
2. Preliminaries

Let𝐶(𝐽,𝑋) be the space of all𝑋-valued continuous functions
defined on 𝐽 with the norm ‖𝑥‖ = sup{‖𝑥(𝑡)‖, 𝑡 ∈ 𝐽}, and let𝐿𝑝(𝐽, 𝑋) be the space of 𝑋-valued Bochner integrable func-
tions defined on 𝐽 with the norm ‖𝑓‖𝐿𝑝 = (∫𝑏0 ‖𝑓(𝑡)‖𝑝𝑑𝑡)1/𝑝,
where 1 ≤ 𝑝 ≤ ∞.

Now, let us recall some basic preliminaries on fractional
calculus [25] and operator theory [26].
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Definition 1. The fractional-order integral of a function 𝑓 ∈𝐶(𝐽, 𝑋)(or 𝐿1(𝐽, 𝑋)) of order 𝛼 > 0 is defined by

𝐼𝛼0𝑓 (𝑡) = 1
Γ (𝛼) ∫

𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑓 (𝑠) 𝑑𝑠. (2)

Definition 2. The Caputo fractional derivative of order 𝛼 ∈(0, 1) of a function 𝑓 ∈ 𝐶1(𝐽, 𝑋) (or 𝐿𝑝(𝐽, 𝑋)) is defined by

𝑐𝐷𝛼0𝑓 (𝑡) = 𝐼1−𝛼0 𝑓󸀠 (𝑡)
= 1
Γ (1 − 𝛼) ∫

𝑡

0
(𝑡 − 𝑠)−𝛼 𝑓󸀠 (𝑠) 𝑑𝑠. (3)

Definition 3. The Laplace transform of a function 𝑓 is given
by

L (𝑓) (𝜆) = ∫∞
0
𝑒−𝜆𝑡𝑓 (𝑡) 𝑑𝑡, 𝜆 ∈ C. (4)

The Laplace transform of the Caputo fractional derivative
is given by

L {𝑐𝐷𝛼0𝑓 (𝑡)} (𝜆) = 𝜆𝛼L {𝑓 (𝑡)} − 𝜆𝛼−1𝑓 (0) ,
0 < 𝛼 < 1. (5)

The Laplace transform of the fractional integral 𝐼1−𝛼0 is given
by

L {𝐼1−𝛼0 𝑓 (𝑡)} = 𝜆𝛼−1L {𝑓 (𝑡)} , 𝛼 > 0. (6)

The inverse Laplace transform of a function 𝐹 = L{𝑓} is
given by

L
−1𝐹 (𝜆) = 12𝜋𝑖 ∫𝑐 𝑒

𝜆𝑡𝐹 (𝜆) 𝑑𝜆, (7)

for some suitable path 𝑐 to ensure the existence of the integral.
The resolvent operator of an operator 𝐴 is defined as

𝑅 (𝜆, 𝐴) = (𝜆𝛼𝐼 + 𝐴)−1 , 𝜆 ∈ C. (8)

The resolvent set 𝜌(𝐴) is the set of all regular values of𝜆 ∈ C such that 𝑅(𝜆, 𝐴) is injective, bounded linear operator.
The following fixed point theorem, which is due to Dhage

[27], is essential tool for the proof of the main result.

Theorem 4. Let Ω be a nonempty bounded closed convex
subset of a Banach algebra𝑋. Let Φ : Ω 󳨀→ 𝑋 and Θ : 𝑋 󳨀→𝑋 be continuous operators satisfying the following:

(a) Φ is completely continuous,
(b) Θ is Lipschitzian with a Lipschitz constant 𝑘Θ,
(c) 𝑥 = Φ𝑦Θ𝑥 implies 𝑥 ∈ Ω for all 𝑦 ∈ Ω, and
(d) 𝑀𝑘Θ < 1, where𝑀 = sup{‖Φ𝑥‖ : 𝑥 ∈ Ω}.
�en the operator equation 𝑥 = Φ𝑥Θ𝑥 has a solution inΩ.

3. Fractional Control Systems via
Resolvent Operators

Let 𝐴 : 𝐷(𝐴) 󳨀→ 𝑋 be a linear operator defined on the
subspace 𝐷(𝐴) ⊆ 𝑋, the domain of 𝐴 to the space 𝑋. An
operator 𝐴 is said to be closed if and only if its domain𝐷(𝐴) is a complete space with respect to the norm ‖𝑥‖𝐷(𝐴) =‖𝑥‖ + ‖𝐴𝑥‖. An operator 𝐴 is said to be densely defined
if its domain is dense in 𝑋. The denseness of the domain
is necessary and sufficient for the existence of the adjoint.
The adjoint operator of unbounded operators can be defined
as bounded operators. For more details on these topics, the
reader may refer to [26, 28].

Next, we introduce some information about solution
operators [29].

Consider system

𝑐𝐷𝛼0𝑥 (𝑡) = −𝐴𝑥 (𝑡) ,
𝑥 (0) = 𝑥 ∈ 𝐷 (𝐴) , (9)

which has an integral solution given by

𝑥 (𝑡) = 𝑥 − ∫𝑡
0

(𝑡 − 𝑠)𝛼−1
Γ (𝑎) 𝐴𝑥 (𝑠) 𝑑𝑠 ∈ 𝐷 (𝐴) , 𝑡 ∈ 𝐽. (10)

Definition 5. Let 𝐴 be a closed and densely defined operator
on𝑋. A family {𝑆𝛼(𝑡)}𝑡≥0 of bounded linear operators in𝑋 is
called a solution operator (or 𝛼-resolvent) generated by 𝐴 if
the following conditions are satisfied:

(S1) 𝑆𝛼(𝑡) is strong continuous onR+ and 𝑆𝛼(0) = 𝐼, where𝐼 is the identity operator.
(S2) 𝑆𝛼(𝑡)𝐷(𝐴) ⊆ 𝐷(𝐴) and 𝐴𝑆𝛼(𝑡)𝑥 = 𝑆𝛼(𝑡)𝐴𝑥 for all 𝑥 ∈𝐷(𝐴) and 𝑡 ≥ 0.
(S3) 𝑆𝛼(𝑡)𝑥 is a solution of the integral equation (10).

Moreover, a solution operator 𝑆𝛼(𝑡) is called compact if
for every 𝑡 > 0, 𝑆𝛼(𝑡) is a compact operator. If 𝑆𝛼(𝑡) is a
solution operator of system (9), then by (S3), we deduce that

𝐴𝑥 = Γ (𝛼 + 1) lim
𝑡󳨀→0+

𝑥 − 𝑆𝛼 (𝑡) 𝑥𝑡𝛼 , (11)

where𝐷(𝐴) consists of all 𝑥 for which the limit exists. We
call 𝐴 as the infinitesimal generator of 𝑆𝛼(𝑡) or simply we say
that 𝐴 generates the solution operator 𝑆𝛼(𝑡).
Definition 6. Let 𝐴 : 𝐷(𝐴) ⊆ 𝑋 󳨀→ 𝑋 be a closed
linear operator. 𝐴 is said to be a sectorial operator of type(𝑀, 𝜃, 𝛼, 𝜇) if there exist 𝜇 ≤ 0, 0 < 𝜃 < 𝜋/2, and 𝑀 > 0
such that the solution operator 𝑆𝛼 of 𝐴 exists throughout the
sector

𝛾 = {𝜆 ∈ C : Re (𝜆) > (−𝜇)1/𝛼 ; 󵄨󵄨󵄨󵄨arg (𝜆)󵄨󵄨󵄨󵄨 < 𝜃}
⊆ 𝜌 (𝐴) ,

(12)

and ‖𝑅(𝜆𝛼, 𝐴)‖ ≤ 𝑀/|𝜆𝛼 + 𝜇|, 𝜆 ∈ 𝛾.
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Hereafter, we assume that𝐴 is a sectorial operator of type(𝑀, 𝜃, 𝛼, 𝜇) that generates the solution operator 𝑆𝛼(𝑡). In this
case, we can write the solution operator 𝑆𝛼(𝑡) of system (9) as

𝑆𝛼 (𝑡) =L−1 (𝜆𝛼−1𝑅 (𝜆𝛼, 𝐴))
= 12𝜋𝑖 ∫𝑐 𝑒

𝜆𝑡𝜆𝛼−1𝑅 (𝜆𝛼, 𝐴) 𝑑𝜆, (13)

with 𝑐 being a suitable path in a sector 𝛾.
Lemma 7. �e linear fractional system

(𝑐𝐷𝛼0 + 𝐴) 𝑥 (𝑡) = 𝑔 (𝑡) 𝐼1−𝛼0 [𝐵𝑢 (𝑡) + 𝑓 (𝑡)] ,
𝑥 (0) = 𝑥0,

(14)

has an integral solution given by

𝑥 (𝑡) = 𝑔 (𝑡) (𝑆𝛼 (𝑡) 𝑥0 (𝑔 (0))−1

+ ∫𝑡
0
𝑆𝛼 (𝑡 − 𝑠) (𝐵𝑢 (𝑠) + 𝑓 (𝑠)) 𝑑𝑠) .

(15)

Proof. Letting 𝑔(𝑡) ̸= 0, for any 𝑡 ∈ 𝐽, then system (14) is
equivalent to system

𝑐𝐷𝛼0 (𝑥 (𝑡)𝑔 (𝑡)) + 𝐴(
𝑥 (𝑡)
𝑔 (𝑡)) = 𝐼1−𝛼0 [𝐵𝑢 (𝑡) + 𝑓 (𝑡)] ,
𝑥 (0) = 𝑥0,

(16)

Applying the Laplace transform to system (16), we have

L{𝑐𝐷𝛼0 𝑥 (𝑡)𝑔 (𝑡)} + 𝐴L{
𝑥 (𝑡)
𝑔 (𝑡)}

=L {𝐼1−𝛼0 (𝐵𝑢 (𝑡) + 𝑓 (𝑡))} ,
(17)

and that implies

𝜆𝛼L{𝑥 (𝑡)𝑔 (𝑡)} − 𝜆𝛼−1
𝑥 (0)
𝑔 (0) + 𝐴L{

𝑥 (𝑡)
𝑔 (𝑡)}

= 𝜆𝛼−1L {𝐵𝑢 (𝑡) + 𝑓 (𝑡)} .
(18)

Therefore,

L{𝑥 (𝑡)𝑔 (𝑡)} = 𝜆𝛼−1 (𝜆𝛼𝐼 + 𝐴)
−1 𝑥0 (𝑔 (0))−1

+ 𝜆𝛼−1 (𝜆𝛼𝐼 + 𝐴)−1L {𝐵𝑢 (𝑡) + 𝑓 (𝑡)} .
(19)

Now, taking the inverse Laplace transform, we get the
solution (15). This finishes the proof.

We define a mild solution for system (1).

Definition 8. A function 𝑥(𝑡) ∈ 𝐶(𝐽, 𝑋) is called a mild
solution of system (1) if it satisfies

𝑥 (𝑡) = 𝑔 (𝑡, 𝑥 (𝑡)) (𝑆𝛼 (𝑡) 𝑥0 (𝑔 (0, 𝑥0))−1

+ ∫𝑡
0
𝑆𝛼 (𝑡 − 𝑠) (𝐵𝑢 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠))) 𝑑𝑠) ,

(20)

for any 𝑡 ∈ 𝐽.

We introduce some preliminaries about controllability
(see [3, 11–13, 18–20, 27]). We assume that 𝑥 is a mild solution
(we call it now as state function) of the fractional differential
system (1) corresponding to a control 𝑢.
Definition 9. System (1) is said to be approximately control-
lable on 𝐽 if for every desired final state 𝑥𝑏 ∈ 𝑋 and 𝜀 >0, there exists a control 𝑢 ∈ 𝐿2(𝐽, 𝑈) such that 𝑥 satisfies‖𝑥(𝑏; 𝑢) − 𝑥𝑏‖ < 𝜀.

The set

𝑅 = {𝑥 (𝑏; 𝑢) ∈ 𝑋 : 𝑢 ∈ 𝐿2 (𝐽, 𝑈) ,
𝑥 is the mild solution of (1) with control 𝑢} , (21)

is called the reachability set of system (1). Therefore, the
fractional system (1) is said to be approximately controllable
on 𝐽 if 𝑅 = 𝑋, where 𝑅 denotes the closure of 𝑅. If the used
control function is fixed, the symbol 𝑥(𝑏) is used instead of𝑥(𝑏; 𝑢).

Wedefine the controllability operator 𝐿 𝑡 : 𝐿2(𝐽, 𝑈) 󳨀→ 𝑋
as

𝐿 𝑡𝑢 = ∫
𝑡

0
𝑆𝛼 (𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ 𝐽. (22)

Then 𝐿 𝑡 is a bounded linear operator defined on 𝐿2(𝐽, 𝑈).
The adjoint operator

𝐿∗𝑏 : 𝑋 󳨀→ 𝐿2 (𝐽, 𝑈) (23)

of 𝐿𝑏 is given by

𝐿∗𝑏 = 𝐵∗𝑆∗𝛼 (𝑏 − ⋅) . (24)

The controllability Gramnian𝑊: 𝑋 󳨀→ 𝑋 is defined by

𝑊 = 𝐿𝑏𝐿∗𝑏 = ∫
𝑏

0
𝑆𝛼 (𝑏 − 𝑠) 𝐵𝐵∗𝑆∗𝛼 (𝑏 − 𝑠) 𝑑𝑠. (25)

Following the idea, as in [20], the suggested control
function 𝑢 for system (1) can be written in the form.

𝑢 (𝑡) = 𝐵∗𝑆∗𝛼 (𝑏 − 𝑡) (𝜆𝐼 +𝑊)−1 Λ𝑥, 𝑡 ∈ 𝐽, (26)

where

Λ𝑥 = 𝑥𝑏 (𝑔 (𝑏, 𝑥 (𝑏)))−1 − 𝑆𝛼 (𝑏) 𝑥0 (𝑔 (0, 𝑥0))−1

− ∫𝑏
0
𝑆𝛼 (𝑏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(27)

4. Approximate Controllability

We prove the approximate controllability of the fractional
control system (1) by using the mild solution (20) and the
control defined by (26).More precisely, we prove the existence
of at least one state 𝑥 ∈ 𝐶(𝐽, 𝑋) satisfying (20) and (26)
following the same arguments presented in [20], but using
Dhage fixed point theorem. For this lets

Θ𝑥 (𝑡) = 𝑔 (𝑡, 𝑥 (𝑡)) , (28)
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and

Φ𝑥 (𝑡) = 𝑆𝛼 (𝑡) 𝑥0 (𝑔 (0, 𝑥0))−1

+ ∫𝑡
0
𝑆𝛼 (𝑡 − 𝑠) (𝐵𝑢 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠))) 𝑑𝑠,

(29)

where 𝑢 is given by (26).
If 𝑆𝛼 is compact 𝐶0-semigroup, then the Cauchy operatorΨ : 𝐶(𝐽, 𝑋) 󳨀→ 𝐶(𝐽,𝑋) defined as

Ψℎ (𝑡) = ∫𝑡
0
𝑆𝛼 (𝑡 − 𝑠) ℎ (𝑠) 𝑑𝑠, 𝑡 ∈ 𝐽, (30)

is also compact. Unfortunately, the resolvent operator does
not have the property of semigroups which leads to the
impossibility of obtaining the compactness of the Cauchy
operator Ψ. However, we can prove the continuity of the
solution operator in the case of analytic operators by which
we can prove the compactness of the Cauchy operator Ψ.

Let 𝑟 be a fixed positive real number such that 𝐵𝑟 = {𝑥 ∈𝐶(𝐽, 𝑋) : ‖𝑥‖ ≤ 𝑟}.Clearly,𝐵𝑟 is a bounded closed and convex
set. We need the following assumptions:

(H1) 𝑆𝛼(𝑡) is compact analytic operator such that 𝑀𝑆 =
sup{‖𝑆𝛼(𝑡)‖ : 𝑡 ∈ 𝐽} < ∞.

(H2) 𝑓 : 𝐽 × 𝑋 󳨀→ 𝑋 is continuous and there exists a
positive constant 𝐾𝑓 such that ‖𝑓(𝑡, 𝑥)‖ < 𝐾𝑓, for all(𝑡, 𝑥) ∈ 𝐽 × 𝑋.

(H3) 𝑔 : 𝐽 × 𝑋 󳨀→ 𝑋 is continuous and there exists a
function 𝜌 ∈ 𝐿1(𝐽,R+) such that ‖𝑔(𝑡, 𝑥) − 𝑔(𝑡, 𝑦)‖ <‖𝜌‖𝐿1‖𝑥 − 𝑦‖, for all (𝑡, 𝑥) ∈ 𝐽 × 𝑋.

(H4) 𝐵 : 𝑈 󳨀→ 𝑋 is a linear bounded operator and there
exists𝑁 > 0 such that ‖𝐵‖ = 𝑁.

(H5) Let 𝑀 fl (𝑁2𝑀2𝑠 /𝜆)(‖𝑥𝑏(𝑔(𝑏, 𝑥(𝑏)))−1‖ +𝑀𝑠‖𝑥0(𝑔(0, 𝑥0))−1‖ +𝑀𝑠𝐾𝑓𝑏) +𝑀𝑠‖𝑥0(𝑔(0, 𝑥0))−1‖ +𝑀2𝑠𝐾𝑓𝑏, such that𝑀‖𝜌‖𝐿1 < 1.
(H6) ‖(𝜆𝐼 +𝑊)−1‖ ≤ 1/𝜆, 𝜆 > 0.

Theorem 10. Assume that conditions (H1)-(H6) are satisfied.
�en system (1) has a mild solution on 𝐽.
Proof. We show the operators Θ and Φ satisfying the
hypotheses of Dhage fixed point theorem. For the sake of
clarity, we split the proof into two main steps.

Step 1. Firstly, we prove the continuity of Θ and Φ. Let(𝑥𝑛)𝑛≥1 be a sequence in 𝐶(𝐽,𝑋) with lim𝑛󳨀→∞𝑥𝑛 = 𝑥 in𝐶(𝐽,𝑋). By the hypotheses (H2) and (H3), we obtain the
convergence of 𝑓(𝑡, 𝑥𝑛(𝑡)) and 𝑔(𝑡, 𝑥𝑛(𝑡)) to 𝑓(𝑡, 𝑥(𝑡)) and𝑔(𝑡, 𝑥(𝑡)), respectively, for any 𝑡 ∈ 𝐽. Hence

󵄩󵄩󵄩󵄩Λ𝑥𝑛 − Λ𝑥󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩𝑥𝑏󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩(𝑔 (𝑏, 𝑥𝑛 (𝑏)))−1 − (𝑔 (𝑏, 𝑥 (𝑏)))−1󵄩󵄩󵄩󵄩󵄩
+𝑀𝑆 ∫

𝑏

0

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥𝑛 (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠))󵄩󵄩󵄩󵄩 𝑑𝑠.
(31)

Thus, by LebsegueDominatedConvergenceTheorem and the
fact that ‖(𝑔(𝑏, 𝑥𝑛(𝑏)))−1‖ ≥ 𝛿, for some 𝛿 > 0 and for any𝑛 ∈ N, we have lim𝑛󳨀→∞‖Λ𝑥𝑛 − Λ𝑥‖ = 0.Then

󵄩󵄩󵄩󵄩Φ𝑥𝑛 (𝑡) − Φ𝑥 (𝑡)󵄩󵄩󵄩󵄩
≤ 𝑀2𝑆𝑁2𝜆 ∫𝑏

0

󵄩󵄩󵄩󵄩Λ𝑥𝑛 (𝑠) − Λ𝑥 (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠

+𝑀𝑆 ∫
𝑏

0

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥𝑛 (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠))󵄩󵄩󵄩󵄩 𝑑𝑠.
(32)

As 𝑛 󳨀→ ∞ andusing again dominated convergence theorem
we have ‖Φ𝑥𝑛(𝑡)−Φ𝑥(𝑡)‖ 󳨀→ 0.ThusΘ andΦ are continuous
on 𝐶(𝐽,𝑋). Next, we show that Φ is bounded on 𝐶(𝐽,𝑋). In
fact, for all 𝑥 ∈ 𝐶(𝐽, 𝑋), we have
‖Φ𝑥‖ ≤ 𝑀𝑠 󵄩󵄩󵄩󵄩󵄩𝑥0 (𝑔 (0, 𝑥0))−1󵄩󵄩󵄩󵄩󵄩
+ 𝑁2𝑀2𝑠𝜆 (󵄩󵄩󵄩󵄩󵄩𝑥𝑏 (𝑔 (𝑏, 𝑥 (𝑏)))−1󵄩󵄩󵄩󵄩󵄩
+𝑀𝑠 󵄩󵄩󵄩󵄩󵄩𝑥0 (𝑔 (0, 𝑥0))−1󵄩󵄩󵄩󵄩󵄩 +𝑀𝑠𝐾𝑓𝑏) +𝑀2𝑠𝐾𝑓𝑏.

(33)

Then, the inequality ‖Φ𝑥‖ ≤ 𝑀 holds for all 𝑥 ∈ 𝐵𝑟.
The last thing in this step, we show that Φ : 𝐶(𝐽, 𝑋) 󳨀→𝐶(𝐽,𝑋) is a compact operator. It is sufficient to prove that

∫𝑡
0
𝑆𝛼 (𝑡 − 𝑠) (𝐵𝑢 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠))) 𝑑𝑠 (34)

is compact. But this has been proved in many articles see,
for example, ([20]: Theorem 3.3) by using the Ascoli-Arzela
theorem. Hence we conclude thatΦ is compact.Therefore,Φ
is completely continuous. By following the same arguments
presented in [13], we can prove.....

Step 2. The hypothesis (H3) shows that the operator Θ is
Lipschitz with Lipschitzian constant 𝑘Θ = ‖𝜌‖𝐿1 . Next, we
show that 𝑥 ∈ 𝐵𝑟 whenever 𝑥 = Φ𝑦Θ𝑥 for all 𝑦 ∈ 𝐵𝑟. For
this, letting 𝑦 ∈ 𝐵𝑟 and 𝑘0 = sup𝑡∈𝐽‖𝑔(𝑡, 0)‖, we have

‖𝑥‖ ≤ (󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑥) − 𝑔 (𝑡, 0)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑔 (𝑡, 0)󵄩󵄩󵄩󵄩)𝑀
≤ (󵄩󵄩󵄩󵄩𝜌󵄩󵄩󵄩󵄩𝐿1 ‖𝑥‖ + 𝑘0)𝑀.

(35)

In consequence, this implies that

‖𝑥‖ ≤ 𝑘0𝑀1 −𝑀󵄩󵄩󵄩󵄩𝜌󵄩󵄩󵄩󵄩𝐿1 . (36)

If 𝑟 is chosen large enough such that 𝑟 > 𝑀max{1, 𝑘0/(1−𝑀‖𝜌‖𝐿1)}, then we ensure that 𝑥 ∈ 𝐵𝑟. Therefore, all
hypotheses of Dhage Theorem are satisfied; then there exists
a fixed point 𝑥 ∈ 𝐵𝑟 satisfying the operator equation 𝑥 =Θ𝑥Φ𝑥, which is a solution of system (1).

Next result, we investigate the approximate controllability
of the fractional control system (1). We introduce the follow-
ing extra conditions:
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(H7) 𝜆(𝜆𝐼 +𝑊)−1 󳨀→ 0 as 𝜆 󳨀→ 0+ in the strong operator
topology.

(H8) The sequence {𝑔(⋅, 𝑥𝜆(⋅)) : 𝜆 > 0} is bounded in𝐿2(𝐽, 𝑋).
Theorem 11. Assume that conditions (H1)-(H8) are satisfied.
�en, the fractional system (1) is approximately controllable on𝐽.
Proof. In virtue of Theorem 10, there exists a mild solution𝑥𝜆 ∈ 𝐶(𝐽, 𝑋) such that

𝑥𝜆 (𝑡) = 𝑔 (𝑡, 𝑥𝜆 (𝑡)) (𝑆𝛼 (𝑡) 𝑥0 (𝑔 (0, 𝑥0))−1

+ ∫𝑡
0
𝑆𝛼 (𝑡 − 𝑠) (𝐵𝑢 (𝑠) + 𝑓 (𝑠, 𝑥𝜆 (𝑠))) 𝑑𝑠) ,

(37)

where

𝑢 (𝑡) = 𝐵∗𝑆∗𝛼 (𝑏 − 𝑡) (𝜆𝐼 +𝑊)−1 (𝑥𝑏 (𝑔 (𝑏, 𝑥𝜆 (𝑏)))−1

− 𝑆𝛼 (𝑏) 𝑥0 (𝑔 (0, 𝑥0))−1

− ∫𝑏
0
𝑆𝛼 (𝑏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠) .

(38)

Therefore,

𝑥𝜆 (𝑏) = 𝑔 (𝑏, 𝑥𝜆 (𝑏)) (𝑆𝛼 (𝑏) 𝑥0 (𝑔 (0, 𝑥0))−1

+ ∫𝑏
0
𝑆𝛼 (𝑡 − 𝑠) (𝐵𝑢 (𝑠) + 𝑓 (𝑠, 𝑥𝜆 (𝑠))) 𝑑𝑠) = 𝑔 (𝑏,

𝑥𝜆 (𝑏)) [𝑆𝛼 (𝑏) 𝑥0 (𝑔 (0, 𝑥0))−1 + (𝜆𝐼 +𝑊 − 𝜆𝐼) (𝜆𝐼

+𝑊)−1 × (𝑥𝑏 (𝑔 (𝑏, 𝑥𝜆 (𝑏)))−1

− 𝑆𝛼 (𝑏) 𝑥0 (𝑔 (0, 𝑥0))−1

− ∫𝑏
0
𝑆𝛼 (𝑏 − 𝑠) 𝑓 (𝑠, 𝑥𝜆 (𝑠)) 𝑑𝑠)

+ ∫𝑏
0
𝑆𝛼 (𝑏 − 𝑠) 𝑓 (𝑠, 𝑥𝜆 (𝑠)) 𝑑𝑠] .

(39)

Hence,

𝑥𝜆 (𝑏) − 𝑥𝑏 = −𝑔 (𝑏, 𝑥𝜆 (𝑏)) 𝜆 (𝜆𝐼 +𝑊)−1

⋅ (𝑥𝑏 (𝑔 (𝑏, 𝑥𝜆 (𝑏)))−1 − 𝑆𝛼 (𝑏) 𝑥0 (𝑔 (0, 𝑥0))−1

− ∫𝑏
0
𝑆𝛼 (𝑏 − 𝑠) 𝑓 (𝑠, 𝑥𝜆 (𝑠)) 𝑑𝑠) .

(40)

Now, by condition (H2), we have

∫𝑏
0

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥𝜆 (𝑠))󵄩󵄩󵄩󵄩2 𝑑𝑠 ≤ 𝐾2𝑓𝑏, (41)

which implies that the sequence {𝑓(⋅, 𝑥𝜆(⋅)) : 𝜆 > 0} is
bounded in the Hilbert space 𝐿2(𝐽, 𝑋). Together with (H8),
there exist subsequences of {𝑓(⋅, 𝑥𝜆(⋅)) : 𝜆 > 0} and{𝑔(⋅, 𝑥𝜆(⋅)) : 𝜆 > 0} in 𝐿2(𝐽, 𝑋) converging weakly to some
points 𝜔, ] ∈ 𝐿2(𝐽, 𝑋), respectively. Let

𝜂 = 𝑥𝑏 (] (𝑏))−1 − 𝑆𝛼 (𝑏) 𝑥0 (𝑔 (0, 𝑥0))−1

− ∫𝑏
0
𝑆𝛼 (𝑏 − 𝑠) 𝜔 (𝑠) 𝑑𝑠.

(42)

Thus,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑥𝑏 (𝑔 (𝑏, 𝑥𝜆 (𝑏)))
−1 − 𝑆𝛼 (𝑏) 𝑥0 (𝑔 (0, 𝑥0))−1

− ∫𝑏
0
𝑆𝛼 (𝑏 − 𝑠) 𝑓 (𝑠, 𝑥𝜆 (𝑠)) 𝑑𝑠 − 𝜂

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩󵄩(𝑔 (𝑏, 𝑥𝜆 (𝑏)))−1 − (] (𝑏))−1󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑥𝑏󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑏

0
𝑆𝛼 (𝑏 − 𝑠) [𝑓 (𝑠, 𝑥𝜆 (𝑠)) − 𝜔 (𝑠)] 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 .

(43)

Using the compactness of 𝑆𝛼(𝑡), we can deduce that the
mapping

𝑥 (𝑡) 󳨀→ ∫𝑡
0
𝑆𝛼 (𝑡 − 𝑠) 𝑥 (𝑠) 𝑑𝑠, (44)

from 𝐿2(𝐽, 𝑋) to 𝐶(𝐽,𝑋) is compact. So, we obtain that

󵄩󵄩󵄩󵄩󵄩(𝑔 (𝑏, 𝑥𝜆 (𝑏)))−1 − (] (𝑏))−1󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑥𝑏󵄩󵄩󵄩󵄩
+ ∫𝑏
0
𝑆𝛼 (𝑏 − 𝑠) [𝑓 (𝑠, 𝑥𝜆 (𝑠)) − 𝜔 (𝑠)] 𝑑𝑠 󳨀→ 0,

(45)

as 𝜆 󳨀→ 0+.This implies that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑥𝑏 (𝑔 (𝑏, 𝑥𝜆 (𝑏)))
−1 − 𝑆𝛼 (𝑏) 𝑥0 (𝑔 (0, 𝑥0))−1

− ∫𝑏
0
𝑆𝛼 (𝑏 − 𝑠) 𝑓 (𝑠, 𝑥𝜆 (𝑠)) 𝑑𝑠 − 𝜂

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 󳨀→ 0,
(46)
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as 𝜆 󳨀→ 0+. In view of (40) and condition (H5), we obtain
that󵄩󵄩󵄩󵄩𝑥𝜆 (𝑏) − 𝑥𝑏󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑔 (𝑏, 𝑥𝜆 (𝑏)) 𝜆𝑅 (𝜆,𝑊)󵄩󵄩󵄩󵄩

⋅ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑥𝑏 (𝑔 (𝑏, 𝑥𝜆 (𝑏)))
−1 − 𝑆𝛼 (𝑏) 𝑥0 (𝑔 (0, 𝑥0))−1

− ∫𝑏
0
𝑆𝛼 (𝑏 − 𝑠) 𝑓 (𝑠, 𝑥𝜆 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑔 (𝑏, 𝑥𝜆 (𝑏))󵄩󵄩󵄩󵄩

⋅ ‖𝜆𝑅 (𝜆,𝑊)‖ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑥𝑏 (𝑔 (𝑏, 𝑥𝜆 (𝑏)))
−1

− 𝑆𝛼 (𝑏) 𝑥0 (𝑔 (0, 𝑥0))−1

− ∫𝑏
0
𝑆𝛼 (𝑏 − 𝑠) 𝑓 (𝑠, 𝑥𝜆 (𝑠)) 𝑑𝑠 − 𝜂

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩𝑔 (𝑏, 𝑥𝜆 (𝑏))󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝜆𝑅 (𝜆,𝑊) 𝜂󵄩󵄩󵄩󵄩 .

(47)

Hence ‖𝑥𝜆(𝑏) − 𝑥𝑏‖ 󳨀→ 0 as 𝜆 󳨀→ 0+, which implies that
the fractional system (1) is approximately controllable on 𝐽.
This finishes the proof.

Example 12. Consider the fractional control system

𝑐𝐷0.80 𝑥 (𝑡, 𝑦)
1 + 𝐿𝑡2 sin𝑥 (𝑡, 𝑦)
= − 𝜕2𝜕𝑦2 (

𝑥 (𝑡, 𝑦)
1 + 𝐿𝑡2 sin𝑥 (𝑡, 𝑦))

+ 𝐼1−𝛼0 (𝑢 (𝑡, 𝑥 (𝑡, 𝑦)) +
󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝑦)󵄨󵄨󵄨󵄨1 + 󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝑦)󵄨󵄨󵄨󵄨) ,
𝑦 ∈ (0, 𝜋) , 𝑡 ∈ (0, 1] ,

𝑥 (𝑡, 0) = 𝑥 (𝑡, 𝜋) = 0, 𝑡 ∈ [0, 1] ,
𝑥 (0, 𝑦) = 𝑥0 (𝑦) , 𝑦 ∈ (0, 𝜋) .

(48)

Let 𝑋 = 𝑈 = 𝐿2[0, 𝜋] and 𝐴 = 𝜕2/𝜕𝑦2, where 𝐷(𝐴) ={𝜑 ∈ 𝑋 : 𝜑 and 𝜑󸀠 are absolutely continuous, 𝜑󸀠󸀠 ∈ 𝑋, 𝜑(0) =𝜑(𝜋) = 0}.Then 𝐴 is an infinitesimal generator of an analytic
semigroup (𝑡), 𝑡 > 0, which can be written in the form

𝑆 (𝑡) 𝜑 = ∞∑
𝑛=1

𝑒−𝑛2𝜋2𝑡 ⟨𝜑, 𝑒𝑛⟩ 𝑒𝑛, 𝑡 > 0, 𝑥 ∈ 𝑋, (49)

where 𝑒𝑛(𝑦) = √2/𝜋 sin 𝑛𝑦, 𝑛 = 1, 2, ... is the orthonormal
basis for 𝑋. It can be shown that 𝐴 is also a generator of a
compact analytic operator 𝑆𝛼(𝑡), 𝑡 > 0, given by

𝑆𝛼 (𝑡) = ∫
∞

0
𝑆 (𝑠𝑡𝛼) 𝜓𝛼 (𝑠) 𝑑𝑠, 𝑡 > 0, (50)

where

𝜓𝛼 (𝑠) =
∞∑
𝑛=0

(−𝑠)𝑛
𝑛!Γ (1 − 𝛼 − 𝑛𝛼) , 0 < 𝛼 < 1 (51)

is the Wright function (see [19, 21]). Setting 𝑥(𝑡)𝑦 = 𝑥(𝑡, 𝑦),(𝐵𝑢)(𝑡)(𝑦) = 𝑢(𝑡, 𝑦), 𝑔(𝑡, 𝑥(𝑡))(𝑦) = 1 + 𝐿𝑡2 sin 𝑥(𝑡, 𝑦), and𝑓(𝑡, 𝑥(𝑡))(𝑦) = |𝑥(𝑡, 𝑦)|/(1 + |𝑥(𝑡, 𝑦)|), then system (48) is
equivalent to system (1) for any 𝑡 ∈ [0, 1]. The operator𝑆𝛼(𝑡) satisfies the hypothesis (H1) such that𝑀𝑆 = 1. Simple
calculations lead to 𝐾𝑓 = 1, ‖𝜌‖𝐿1 = 𝐿/3, and 𝑁 = 1.
Therefore, if we choose 𝐿 such that 𝑀𝐿 < 3 and that (H6)
and (H7) are both satisfied, then, using Theorems 10, and 11,
we ensure that system (48) is approximately controllable on[0, 1].
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