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In this paper, we will introduce the definition of operator (p, η)-convex functions, we will derive some basic properties for
operator (p, η)-convex function, and also check the conditions under which operations’ function preserves the operator
(p, η)-convexity. Furthermore, we develop famous Hermite–Hadamard, Jensen type, Schur type, and Fejér’s type inequalities for
this generalized function.

1. Introduction and Preliminary

Convexity plays an essential part in optimization theory and
nonlinear programming. Although, different results have
been derived under convexity, most of the real-world
problems are nonconvex in nature. So, it is always appre-
ciable to study nonconvex functions, which are near to
convex function approximately [1, 2].

In the twentieth century, many famous mathematicians
give recognition of the subject of convex functions such as
Jensen, Hermite, Holder, and Stolz [3–10]. -roughout the
twentieth century, an exceptional research activity was
carried out and important results were obtained in convex
analysis, geometric functional analysis, and nonlinear pro-
gramming [11–14]. Among the most important of all the
inequalities related to convex function is doubtlessly the
Hermite–Hadamard inequality:

u
a + b

2
􏼠 􏼡≤

1
b − a

􏽚
b

a
u(l)dl ≤

u(a) + u(b)

2
. (1)

-e above inequality is very useful in many mathe-
matical contexts and also put up as a tool for demonstrating
some interesting estimations, and the literature above

inequality is famously known as Hermite–Hadamard in-
equality [15]. If u is concave, then the couple inequalities in
(1) hold in reversed direction. For more studies of Her-
mite–Hadamard-type inequalities, we refer [8, 9, 16]. -e
weighted version of Hermite–Hadamard inequality is
known as Fejér Inequality, and for the famous work on Fejér
Inequality, we refer [17–25].

In [6], Dragomir obtained some Hermite–Hadamard
inequalities, which hold for convex function of self-adjoint
operators in Hilbert spaces and slaked applications for
special cases of interest. For interesting works on operator
convex functions, we refer [3, 5, 7].

For simplicity, now onward, we will utilize the given
notations:

H is Hilbert space
< ., .> is an inner product
B(H) � C/C : H⟶ H be bounded{ linear operator
linear operator}

B(H)+ is all positive operators in B(H)

K is a convex subset of B(H)+

ρ(D) � λ ∈ C: (D − λE)−1 ∈ L(X)􏽮 􏽯
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Sp(D) � C/ρ(D)

For C, D ∈ K, [C, D]: � (1 − s)C + sD: s ∈ [0, 1]{ }.
Also, let η: C × C⟶ D be a bifunction for appropriate

C, D⊆R. Considering self-adjoint C, D ∈ B(H), we write,
for every l ∈ H, C≤Dif <Cl, l> ≤ <Dl, l> .

If u is a function on Sp(C) which is a real-valued
continuous function and S is a bounded self-adjoint oper-
ator, for any s ∈ Sp(C), then u(s)≥ 0 implies that u(C)≥ 0.
Furthermore, if u and v are both real-valued function on
Sp(S) such that u(s)≤ v(s) for any s ∈ Sp(C), then
u(C)≤ v(C).

Definition 1 (see [6]). Assume u: I⊆R⟶ R be a function,
and we call it the operator convex function, if

u(sC +(1 − s)D)≤ su(C) +(1 − s)u(D), (2)

for all s ∈ [0, 1] and for every C and D, which are bounded
self-adjoint operators in B(H), and I contains spectra of C

and D. -e function u is called operator concave if the above
inequality is reversed.

Definition 2 (see [4]). Considering u: I⟶ R a function, it
is called η-convex function if the following inequality holds:

u(sl +(1 − s)m)≤ u(m) + sη(u(l), u(m)), (3)

where s ∈ [0, 1] and for all l, m ∈ I.

Definition 3 (see [26]). Let u: I⟶ R be a function, and we
call it operator η-convex function, if the next inequality is
maintained,

u(sC +(1 − s)D)≤ u(C) + sη(u(C), u(D)), (4)

for all s ∈ [0, 1] and for every C and D, which are bounded
self-adjoint operators in B(H), where I contains spectra of C

and D. -e above function u is called operator η-concave
function, if the above inequality is reversed.

Remark 1. Equation (4) reduces to the operator convex
function for η(l, m) � l − m.

Definition 4 (see [27]). Suppose a function u: I⟶ R, and
we call it p-convex function, if

u s
p

+(1 − s)m
p

􏼂 􏼃
1/p

􏼒 􏼓≤ su(l) +(1 − s)u(m), (5)

for all l, m ∈ I, s ∈ [0, 1], and I is a p-convex set.

Definition 5. Let η: C × C⟶ D be a bifunction for ap-
propriate C, D⊆R and I be a p-convex set; then, we call
u: I⟶ R(p, η)-convex function, if

u sl
p

+(1 − s)m
p

􏼂 􏼃
1/p

􏼒 􏼓≤ u(m) + sη(u(l), v(m)), (6)

for all l, m ∈ I and s ∈ [0, 1].
-e paper is organized as follows. Section 2 is devoted for

some basic properties, and Section 2.1 is devoted to Schur-
type inequality for operator (p, η)-convexity. However,

Sections 2.2–2.4 are devoted for Hermite–Hadamard-,
Jensen-, and Fejér-type inequalities, respectively.

2. Basic Properties

Now, we are ready to set forth the definition of operator
(p, η)-convex function.

Definition 6. Considering u: I⟶ R a function, we call it
operator (p, η)-convex function, if the following inequality
is maintained:

u sC
p

+(1 − s)D
p

􏼂 􏼃
1/p

􏼒 􏼓≤ u(D) + sη(u(C), u(D)), (7)

for all s ∈ [0, 1] and for every C and D which are bounded
self-adjoint operators in B(H), where I contains spectra of C

and D.
-e above function u in (7) is known as operator

(p, η)-concave function, if the above inequality is reversed.

Example 1. Let u: I⟶ R be a function, where u(C) � Cp

and η(C, D)≥C − D also C≥ 0; then, u is operator
(p, η)-convex function.

Proof. Take

u sC
p

+(1 − s)D
p

( 􏼁
1/p

􏼔 􏼕 � sC
p

+(1 − s)D
p

� sC
p

+ D
p

− sD
p

� D
p

+ sC
p

− sD
p

� D
p

+ s C
p

− D
p

( 􏼁

� D
p

+ s(u(C) − u(D))

≤ u(D) + sη(u(C), u(D)).

(8)

Hence, u is an operator (p, η)-convex function. □

Proposition 1. Considering u, v: I⟶ R as two operators
(p, η) convex functions, the following holds:

(i) If η is additive, then u + v is operator (p, η)-convex
function

(ii) If η is nonnegatively homogenous, then, for any c≥ 0,
cu: I⟶ R is an operator (p, η)-convex function

Proof.

(i) Using operator (p, η)-convexity, we have

u sC
p

+(1 − s)D
p

􏼂 􏼃
1/p

􏼒 􏼓≤ (u(C) + sη(u(C), u(D))),

(9)

v sC
p

+(1 − s)D
p

􏼂 􏼃
1/p

􏼒 􏼓≤ v(D) + sη(v(C), v(D)), (10)

for all C, D and s ∈ [0, 1], where I contains the spectra
of C and D.

2 Journal of Mathematics



By summing up the above inequalities (9) and (10),

(u + v) sC
p

+(1 − s)D
p

􏼂 􏼃
1/p

􏼒 􏼓 � [u(D) + sη(u(C), u(D))] +[v(D) + sη(v(C), v(D))]

≤ v(D) + v(D) + s[η(u(C), u(D)) + η(u(C), u(D))]

� u(D) + v(D) + s[η(u(C) + v(D), u(D) + v(D))]

� (u + v)(D) +[η((u + v)(C), (u + v)(D))],

(11)

implies that u + v is an operator (p, η)-convex.
(ii) Consider

(cu) sC
p

+(1 − s)D
p

􏼂 􏼃
1/p

􏼒 􏼓 � cu sC
p

+(1 − s)D
p

􏼂 􏼃
1/p

􏼒 􏼓

≤ c[u(D) + sη(u(C), u(D))]

� cu(D) + sη(u(C), u(D))

� cu(D) + sη(cu(C), cu(D))

� (cu)(D) + sη((cu)(U), (cu)(D)),

(12)

implies that cu is an operator (p, η)-convex
function. □

Theorem 1. Assume uj: I⟶ R, j ∈ J, is the nonempty
collection of operator (p, η)-convex functions such that

(a) :ere exist α ∈ [0,∞) and β ∈ [−1,∞) such that
η(C, D) � αC + βD for all C, D whose spectra con-
tained in I

(b) For each C ∈ I, supj∈Juj(C) exists in R; then,
u: I⟶ R is defined by u(C) � supj∈Juj(C) for each
C ∈ I is operator (p, η)-convex function.

Proof. For any C, D ∈ I and s ∈ [0, 1], we have

u sC
p

+(1 − s)D
p

􏼂 􏼃
1/p

� supj∈Juj sC
p

+(1 − s)D
p

􏼂 􏼃
1/p

≤ supj∈J uj(D) + sη uj(C), uj(D)􏼐 􏼑􏼐 􏼑

� supj∈J uj(D) + s αuj(C) + βuj(D)􏼐 􏼑􏼐 􏼑

� supj∈J(1 + βs)uj(D) + αsuj(C)

≤ (1 + βs)supj∈Juj(D) + αssupj∈Juj(C)

� (1 + βs)u(D) + αsu(C)

� u(D) + s(αu(C) + βu(D))

� u(C) + sη(u(C), u(C)).

(13)
□

2.1. Schur-Type Inequality

Theorem 2. Let η: C × C⟶ B be a bifunction for appro-
priate C, D⊆R and let u be a function defined on interval I

such that l is operator (p, η)-convex function. :en, for all
C1, C2, C3 ∈ I such that C1 <C2 <C3 and C

p
3 − C

p
1 ,

C
p
3 − C

p
2 , C

p
2 − C

p
1 ∈ (0, 1), the following inequality holds:

u C3( 􏼁 C
p
3 − C

p
1􏼐 􏼑 − u C2( 􏼁 C

p
3 − C

p
1􏼐 􏼑 + C

p
3 − C

p
2􏼐 􏼑η u C1( 􏼁, u C3( 􏼁( 􏼁≥ 0.

(14)

Proof. Let u be an operator (p, η)-convex function and let
C1, C2, C3 ∈ I be given. -en, we have

C
p
3 − C

p
2

C
p
2 − C

p
1
,
C

p
2 − C

p
1

C
p
3 − C

p
1
∈ (0, 1)

C
p
3 − C

p
2

C
p
3 − C

p
1

+
C

p
2 − C

p
1

C
p
3 − C

p
1

� 1.

(15)

Invoking (4), for s � (C
p
3 − C

p
2 /C

p
3 − C

p
1 ), C � C1, and

D � C3, we have C
p
2 � sCp + (1 − s)Dp and

u C2( 􏼁≤ u C3( 􏼁 +
C

p
3 − C

p
2

C
p
3 − C

p
1
η u C1( 􏼁, u C3( 􏼁( 􏼁. (16)

Assuming C
p
3 − C

p
1 > 0 and after the multiplication on

the above inequality by C
p
3 − C

p
1 , we will obtain inequality

(14). □

2.2.Hermite–Hadamard-Type Inequalities. Next, we employ
the Hermite–Hadmard-type inequality for the above said
generalization.

Theorem 3. Assume u: I⟶ R be operator (p, η)-convex
function for any C and D, whose spectra is contained in I with
condition C<D; then, the next estimate holds:

u
Cp + Dp

2
􏼠 􏼡

1/p

−
p

2 Dp − Cp( )
􏽚

b

a
u

p− 1η

· u C
p

+ D
p

− u
p

( 􏼁
1/p

, u(l)􏼒 􏼓dl

≤
p

Dp − Cp
􏽚

b

a
l
p− 1

u(l)dl

≤
u(C) + u(D)

2
+
1
4

[η(u(C), u(D)) + η(u(D), u(C))].

(17)
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Proof. Take Sp � sCp + (1 − s)Dp and Tp � (1 − s)Cp+

sDp, which implies
Cp + Dp

2
�

Sp + Tp

2
,

u
Cp + Dp

2
􏼠 􏼡

1/p

� u
Sp + Tp

2
􏼠 􏼡

1/p

.

(18)

By definition of operator (p, η)-convex function, we
have

u
Cp + Dp

2
􏼠 􏼡

1/p

� u
1
2

sC
p

+(1 − s)D
p

( 􏼁
1/p

􏼒 􏼓
p

+
1
2

(1 − s)C
p

+ sC
p

( 􏼁
1/p

􏼒 􏼓
p

􏼒 􏼓
1/p

≤ u (1 − s)C
p

+ sV
p

( 􏼁
1/p

+
1
2
η u sC

p
+(1 − s)D

p
( 􏼁

1/p
, u (1 − s)C

p
+ sV

p
( 􏼁

1/p
􏼒 􏼓.

(19)

Integrating the above inequality w.r.t “x” on [0, 1], we
will obtain

u
Cp + Dp

2
􏼠 􏼡

1/p

≤ 􏽚
1

0
u (1 − s)C

p
+ sV

p
( 􏼁

1/pds

+
1
2

􏽚
1

0
η u sC

p
+(1 − s)D

p
( 􏼁

1/p
,􏼒

u (1 − s)C
p

+ sV
p

( 􏼁
1/p

􏼓ds,

(20)

which implies

u
CP + DP

2
􏼠 􏼡

1/p

−
p

2 Dp − Cp( )
􏽚

b

a
l
p− 1η

· u C
p

+ D
p

− l
p

( 􏼁
1/p

, u(l)􏼒 􏼓dl

≤
p

Dp − Cp
􏽚

b

a
l
p− 1

u(l)dl.

(21)

Now,

􏽚
b

a
l
p− 1

u(l)dl �
Dp − Cp

p
􏽚
1

0
u sC

p
+(1 − s)D

p
( 􏼁

1/pds

≤
Dp − Cp

p
u(b) + 􏽚

1

0
sη(u(C), u(D))ds􏼠 􏼡,

(22)

which implies
p

Dp − Cp
􏽚

b

a
l
p− 1

u(l)dl ≤ u(D) + 􏽚
1

0
sη(u(C), u(D))ds.

(23)

Similarly,
p

Dp − Cp
􏽚

b

a
l
p− 1

u(l)dl ≤ u(C) + 􏽚
1

0
sη(u(D), u(C))ds.

(24)
Summing up (21) and (23) yields

p

Dp − Cp
􏽚

b

a
l
p− 1

u(l)dl≤
u(C) + u(D)

2
+
1
4

[η(u(C), u(D))

+ η(u(D), u(C))].

(25)

Combining (21) and (25) and small calculation yields
(17). □

Remark 2. (17) is the classical Hermite–Hadamard-type
inequality for the operator convex function for η(l, m) �

l − m and p � 1.

2.3. Jensen-Type Inequalities

Lemma 1. Suppose u: I⟶ R be an operator (p, η)-convex
function, for C1andC2, where I contains the spectra of C and
D and α1 + α2 � 1, and we have

u α1C1 + α2C2( 􏼁≤ u C2( 􏼁 + αη u C1( 􏼁, u C2( 􏼁( 􏼁. (26)

Also, when n> 2, for C1, C2, . . . , Cn, whose spectra is
contained in I, where 􏽐

n
i�1 αi � 1 and Ti � 􏽐

i
j�1 αj, we have

u 􏽘

n

i�1
αiC

p
i

⎛⎝ ⎞⎠

1/p

� u Tn−1 􏽘

n− 1

i�1

αi

Tn−1
C

P
i

⎛⎝ ⎞⎠

1/p

+ αnCn
⎛⎝ ⎞⎠

≤ u Cn( 􏼁 + Tn−1η u 􏽘
n− 1

i�1

αi

Tn−1
C

p

i
⎛⎝ ⎞⎠

1/p

, u Cn( 􏼁⎛⎝ ⎞⎠.

(27)

Now, in the proof of next theorem, we will utilize the
above lemma.

Theorem 4 (Jensen-type inequality). Let w1, w2, . . . ,

wn ∈ R+ with n≥ 2 and for C1, C2, . . . , Cn, whose spectra is
contained in I. Let u: I⟶ R be an operator (p, η)-convex
function and η be nondecreasing and nonnegatively sublinear
in the first variable; then, we have the following inequality:
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u
1

Wn

􏽘

n

i�1
wiC

p
i

⎡⎣ ⎤⎦
1/p

⎛⎝ ⎞⎠≤ u Cn( 􏼁 + 􏽘
n

i�1

Wi

Wn

􏼠 􏼡ηu

· Ci, Ci+1, . . . , Cn( 􏼁,

(28)

where Wn � 􏽐
n
i�1 wi, also

ηu Ci, Ci+1, . . . , Cn( 􏼁 � η ηl Ci, Ci+1, . . . , Cn−1( 􏼁, u Cn( 􏼁( 􏼁,

(29)

and ηu(C) � u(C) for all C whose spectra contained in I.

Proof. Since η is nondecreasing and nonnegatively sublinear
in the first variable, so from the above lemma it yields that

u
1

Wn

􏽘

n

i�1
wiC

p
i

⎡⎣ ⎤⎦
1/p

⎛⎝ ⎞⎠ � u
wn

Wn

C
p
n + 􏽘

n− 1

i�1

wi

Wn

C
p
i

⎡⎣ ⎤⎦

1/p

⎛⎝ ⎞⎠

� u
Wn− 1

Wn

􏽘

n− 1

i�1

wi

Wn−1
C

p
i +

wn

Wn

C
p
n

⎡⎣ ⎤⎦

1/p

⎛⎝ ⎞⎠

≤ u Cn( 􏼁 +
Wn−1

Wn

η u 􏽘
n− 1

i�1

wi

Wn−1
C

p
i

⎡⎣ ⎤⎦

1/p

⎛⎝ ⎞⎠, u Cn( 􏼁⎛⎝ ⎞⎠

� u Cn( 􏼁 +
Wn−1

Wn

η u
Wn− 2

Wn−1
􏽘

n− 2

i�1

wi

Wn−2
C

p
i +

wn− 1

Wn−1
C

p
n−1

⎡⎣ ⎤⎦

1/p

, u Cn( 􏼁⎛⎝ ⎞⎠

≤ u Cn( 􏼁 +
Wn−1

Wn

η u un−1( 􏼁 +
Wn−2

Wn−1
η u 􏽘

n− 2

i�1

wi

Wn−2
C

p

i
⎡⎣ ⎤⎦

1/p

, u Cn−1( 􏼁⎛⎝ ⎞⎠, u Cn( 􏼁⎛⎝ ⎞⎠

≤ u Cn( 􏼁 +
Wn−1

Wn

η u Cn−1( 􏼁, u Cn( 􏼁( 􏼁

+
Wn−2

Wn

η η u 􏽘
n− 2

i�1

wi

Wn−2
C

p
i

⎡⎣ ⎤⎦

1/p

, u ln−1( 􏼁⎛⎝ ⎞⎠, u ln( 􏼁⎛⎝ ⎞⎠

⋮

≤ u Cn( 􏼁 +
Wn−1

Wn

η u Cn−1( 􏼁, u Cn( 􏼁( 􏼁 +
Wn−2

Wn

η η u Cn−2( 􏼁, u Cn( 􏼁( 􏼁, u Cn( 􏼁( 􏼁

+ · · · +
W1

Wn
η η · · · η u C1( 􏼁, u C2( 􏼁( 􏼁, u C3( 􏼁 · · ·( 􏼁, u Cn−1( 􏼁, u Cn( 􏼁( 􏼁( 􏼁

� u Cn( 􏼁 +
Wn−1

wn

ηu Cn−1, Cn( 􏼁 +
Wn−2

Wn

ηu Cn−2, Cn−1, Cn( 􏼁

+ · · · +
W1

Wn

ηu C1, C2, . . . , Cn−1, Cn( 􏼁

� u(C)n + 􏽘
n−1

i�1

Wi

Wn

􏼠 􏼡ηu Ci, Ci+1, . . . , Cn( 􏼁.

(30)
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Hence, the proof is completed. □

Remark 3 (28) is the Jensen-type inequality for operator
η-convex functions for p � 1.

Remark 4 (28) is the Jensen-type inequality for the operator
convex function for p � 1 and η(l, m) � l − m.

2.4. Fejér-Type Inequality

Theorem 5. Let u, v be nonnegative operator (p, η)-convex
functions a, b ∈ IC<D such that uv ∈ L1[a, b]; then,

p

Dp − Cp
􏽚

b

a
u

p− 1
u(l)v(l)dl≤C(C, D) +

1
2

D(C, D), (31)

where

C(C, D) � u(D)Cv(D) +
1
3
η(u(C), u(D))η(v(C), v(D)),

D(C, D) � v(D)η(v(C), v(D)) + v(D)η(u(C), u(D)).

(32)

Proof. Since u and v are operator (p, η)-convex functions,
we have

u sU
p

+(1 − s)D
p

􏼂 􏼃
1/p

􏼒 􏼓≤ u(D) + sη(u(C), u(D)),

v sU
p

+(1 − s)D
p

􏼂 􏼃
1/p

􏼒 􏼓≤ v(D) + sη(v(C), v(D)),

(33)

for all s ∈ [C, D]. Since u and v are nonnegative, so

u sU
p

+(1 − s)D
p

􏼂 􏼃
1/p

􏼒 􏼓v sU
p

+(1 − s)D
p

􏼂 􏼃
1/p

􏼒 􏼓

≤ u(D)v(D) + su(D)η(v(C), v(D)) + sv(D)η(u(C), u(D))

+ s
2η(u(C), u(D))η(v(C), v(D)).

(34)

Integrating (34) over (0, 1), we will obtain the following
inequality:

􏽚
1

0
u sU

p
+(1 − s)D

p
􏼂 􏼃

1/p
􏼒 􏼓v sU

p
+(1 − s)D

p
􏼂 􏼃

1/p
􏼒 􏼓ds

≤ 􏽚
1

0
u(D)v(D)ds + 􏽚

1

0
su(D)η(v(C), v(D))ds

+ 􏽚
1

0
sv(D)η(u(C), u(D))ds

+ 􏽚
1

0
s
2η(u(C), u(D))η(v(C), v(D))ds.

(35)

Setting u � [sCp + (1 − s)Dp]1/p, we obtain

p

Dp − Cp
􏽚

b

a
u

p− 1
u(l)v(l)dl ≤ u(D)v(D) +

1
2

u(D)η(v(C), v(D))

+
1
2

v(D)η(u(C), u(D)) +
1
3
η(u(C), u(D))η(v(C), v(D)).

(36)

-en,
p

Dp − Cp
􏽚

b

a
u

p− 1
u(l)g(l)dl≤C(C, D) +

1
2

D(C, D).

(37)
□

Remark 5. If we put p � 1 and η(l, m) � l − m in (31), then it
reduces for operator convex functions.

3. Conclusion

In this report, we introduced the definition of operator
(p, η)-convex functions and derived some basic properties
for operator (p, η)-convex function. We also gave the
conditions under which operations’ function preserves the
operator (p, η)-convexity. Furthermore, we developed fa-
mous Hermite–Hadamard, Jensen-type, Schur-type, and
Fejér-type inequalities for this generalized function.
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