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Let R be an associative ring with identity and M be a unitary right R-module. A submodule N of M is called a uniformly primal
submodule provided that the subset B of R is uniformly not right prime to N, if there exists an element s ∈M − N with
sRB⊆N.*e set adj(N) � r ∈ R|tmRrn⊆qNh for Somem ∈ CM  is uniformly not prime to N.*is paper is concerned with the
properties of uniformly primal submodules. Also, we generalize the prime avoidance theorem for modules over noncommutative
rings to the uniformly primal avoidance theorem for modules.

1. Introduction

*roughout this paper, all rings are associative with identity
and all modules are unitary modules. For detailed de-
scription regarding rings andmodules, interested readers are
encouraged to go through the book of Kelarev et al. [1]. *e
concept of uniformly primal ideal has been introduced and
studied by Barnes [2]. Let A be an ideal of R. *e ideal B of R
is uniformly not right prime to A, if there exists an element
y ∈ R − A with yRB⊆A. A is called uniformly primal if
adj(A) is uniformly not right prime to A where
adj(A) � x ∈ R|yRx⊆A for somey ∈ R − A . *e prime
avoidance theorem for rings with identity [3] states that if an
ideal I of a ring is contained in a union of a finite number of
prime ideals (P1, P2, . . . , Pn), then I must be contained in
Pk for some k ∈ 1, 2, . . . , n{ }. Karamzadeh [4] generalizes the
prime avoidance theorem for any ring that is not necessarily
commutative. *e aim of Section 1 is to generalize the prime
avoidance theorem for rings over noncommutative rings to
the uniformly primal avoidance theorem over noncom-
mutative rings.

*e concept of uniformly primal submodules has been
introduced and studied by Dauns in [5]. A submodule N of
M is called a uniformly primal submodule provided that the
set adj(N) � x ∈ R|mRr⊆N for somem ∈M{ } is uniformly
not prime to N, where the subset B of R is uniformly not

right prime to N if there exists an element s ∈ M − N with
sRB⊆N. In particular, a number of papers concerning
primal submodules have been studied by various authors
(see, for example, [6–10]). In Section 2, we give some basic
results about uniformly primal submodules and show that
N1, N2, . . . , Nn is a finite collection of uniformly primal
submodules of an R-moduleMwith adj(Nj) � Pj for every j
and (Nj: M)⊄adj(Nk) whenever j≠ k. *en,
S′ � M − ∪ n

i�1Ni is an S-system subset of M, where
S � R − ∪ n

i�1Pi. Also, we study the prime avoidance theorem
for modules over noncommutative rings and generalize it to
the uniformly primal avoidance theorem for modules.

2. Uniformly Primal Ideal

*e concept of primal ideals over noncommutative has been
introduced and studied by Fuchs [11].

Definition 1. Let A be an ideal of R. *e adjoint of A is the
set of all elements of R that are not right prime to A and
denoted by adj(A). In other words, adj(A) � x ∈ R|yRx⊆A

for somey ∈ R − A}.

Definition 2. *e ideal A of R is said to be primal if adj(A)

forms an ideal of R. In this case, the adjoint of A will also be
called the adjoint ideal of A.
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Definition 3. *e ideal B of R is uniformly not right prime to
A if there exists an element y ∈ R − A with yRB⊆A.

Definition 4. An ideal A of a ring R is said to be uniformly
primal if adj(A) is uniformly not right prime to A.

Proposition 1 (see [2]). If A is a uniformly primal ideal in R,
then adj(A) is a prime ideal of R.

Proposition 2 (see [3]). If P, P1 , andP2 are ideals of R such
that P⊆P1 ∪P2, then either P⊆P1 or P⊆P2. )e definition of
efficient union of ideals was introduced in the rings that are
commutative (see [12]). We give a generalization to it in rings
that are not necessary commutative as follows.

Definition 5. Let P, P1, P2, . . . , Ps be ideals of a ring R. *e
covering P⊆P1 ∪P2 ∪ · · · ∪Ps of P is called efficient if P is
not contained in the union of any s − 1 of the idealsPi

′s.
Analogously, we shall say P � P1 ∪P2 ∪ · · · ∪Ps is an effi-
cient union if none of the Pi

′s may be excluded. Any cover or
union consisting of ideals of R can be reduced to an efficient
one, called an efficient reduction, by deleting any unnec-
essary terms. *e following very important lemma is based
on McCoy over commutative rings (see [3]).

Lemma 1 (see [3]). Let P � P1 ∪P2 ∪ · · · ∪Psbe an efficient
union of ideals where s> 2. )en, ∩ j≠kPj � ∩ s

j�1Pj for all
k ∈ 1, 2, . . . , s{ }. As an application, we obtain following
corollary.

Corollary 1. Let P⊆P1 ∪P2 ∪ · · · ∪Ps be an efficient cover of
ideals of a ring R where s> 2. )en, P∩ ∩ j≠kPj ⊆Pk for all
k ∈ 1, 2, . . . , s{ }.

Proof. Since P⊆P1 ∪P2 ∪ · · · ∪Psis an efficient covering,
P⊆(P∩P1)∪ (P∩P2)∪ · · · ∪ (P∩Ps) is an efficient union.
Now, by Lemma 1, P∩ ∩ j≠kPj � ∩ j≠k(P∩Pj)⊆Pk. To
prove the uniformly primal avoidance theorem for rings, we
need the following result on the uniformly primal ideal. □

Proposition 3. Let P⊆P1 ∪P2 ∪ · · · ∪Ps be an efficient
covering consisting of ideals where s> 2. If adj(Pi)⊄adj(Pk)

for every i≠ j, then no Pk for k ∈ 1, 2, . . . , s{ } is a uniformly
primal ideal of R.

Proof. Suppose that some Pk is uniformly primal ideal.
SinceP⊆P1 ∪P2 ∪ · · · ∪Ps is an efficient covering, there
exists an element ak ∈ P − Pk. If i≠ j, then adj(Pi)⊄adj(Pk),
so there exists rj ∈ adj(Pj) such that rj ∉ adj(Pk). Since Pk is
a uniformly primal ideal, then by Proposition 1, adj(Pk) is a
prime ideal of R. *erefore, r � i≠kri ∈ adj(Pj), but
r ∉ adj(Pk). Consequently, ekRr⊆P∩Pj for every k≠ j, but
ekRr⊄Pk, which contradicts the fact that
P∩ ∩ j≠kPj � ∩ j≠k(P∩Pj)⊆Pk (by Corollary 1). *erefore,
no Pk is a uniformly primal. Now, we will give the proof of
the main theorem of this section. □

Theorem 1 (uniformly primal avoidance theorem of rings).
Let P1, P2, . . . , Ps be a finite number of ideals of a ring R and
P be an ideal of R such that P⊆P1 ∪P2 ∪ · · · ∪Ps. Assume
that at least two of the Pi

′s are not uniformly primal and that
adj(Pi)⊄adj(Pj) whenever i≠ j. *en, P⊆Pk for some
k ∈ 1, 2, . . . , s{ }.

Proof. For the given covering P⊆P1 ∪P2 ∪ · · · ∪Ps, let
P⊆Pα1 ∪Pα2 ∪ · · · ∪Pαm

be its efficient reduction. *en,
1≤m≤ s and m≠ 2 where if m � 2, then by Proposition 2,
P⊆P1 or P⊆P2. If m> 2, then there exists at least one Pαr

to be
uniformly primal ideal. By Proposition 3, this is impossible
as adj(Pi)⊄adj(Pj) if i≠ j. Hence, m � 1, so P⊆Pk for some
k. □

3. Uniformly Primal Submodule

*e concept of primal submodules has been introduced and
studied by Dauns in [5].

Definition 6. Let M be an R-module and N be a submodule
of M. For any a ∈ R, the submodule m ∈M|mRa⊆N{ } is
denoted by Na− 1. Analogously, for a subset A of R, NA− 1

� m ∈M|mRA⊆N{ } where RA � mra: |r ∈ R, a ∈ A{ }.

Definition 7. Let M be an R-module and N be a submodule
of M. *e element a ∈ R is right prime to N if Na(−1) � N,
i.e., if mRa⊆Nwherem ∈M implies m ∈ N. *e element
a ∈ R is not right prime to N if Na(−1) ≠N, i.e., there exists
an element m ∈M − N with mRa⊆N, since N⊆Na(−1). A
subset A of R is not right prime to N if for any a ∈ A, a is not
right prime to N. In this case, we say that A is pointwise not
right prime to N. *e subset A of R is uniformly not right
prime to N if there exists an element s ∈M − N with
sRA⊆N, i.e.,A is uniformly not right prime toN if and only if
NA− 1 ≠N.

Definition 8. Let M be an R-module and N be a submodule
of M. *e adjoint of N is the set of all elements of R that are
not right prime to N and denoted by adj(N). In the other
words, adj(N) � r ∈ R|mRr⊆N forsomem ∈M{ }.

Definition 9. LetM be an R-module. A proper submodule N
ofM is said to be primal if adj (N) forms an ideal of R. In this
case, the adjoint ofNwill also be called the adjoint ideal ofN.

Proposition 4. Let N be a submodule of an R-module M. If
adj(N) is uniformly not prime to N, then adj(N) is an ideal of
R, and as a consequence, N is a primal submodule.

Definition 10. Let M be an R-module. A proper submodule
N ofM is said to be uniformly primal if adj(N) is uniformly
not prime to N.

Proposition 5 (see [8]). Let M be an R-module. If N is a
uniformly primal submodule of M, then adj(N) is a prime
ideal of R. In the following propositions, we show the behavior
of a primal submodule under isomorphism.
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Proposition 6. Let f: M⟶M′ be a module isomorphism.
If N is a primal submodule of M, then
f(adj(N)) � adj(f(N)).

Proof. Let a ∈ f(adj(N)). Since f is a module isomorphism,
then f− 1(a) ∈ adj(N) so that there exist s ∈M − Nsuch
that sRf− 1(a)⊆N. Since f is a module isomorphism, then
f(s)Ra � f(sRf− 1(a))⊆f(N), but s ∈M − Nso that
f(s) ∈M′ − f(N) which implies that a ∈ adj(f(N)). *us,
f(adj(N))⊆adj(f(N)). Now, let a ∈ f(adj(N)) so that
there exist t ∈M′ − f(N) such that tRa⊆f(N). Since f is a
module isomorphism, then f− 1(t)Rf− 1(a)⊆
f(N) � f− 1(tRa)⊆f− 1(f(N)) � N, but t ∈M′ − f(N) so
that f− 1(t) ∈M − Nwhich implies that f− 1(a) ∈ adj(N).
*at is, a ∈ f(adj(N)). *us, f(adj(N))⊆adj(f(N)). □

Proposition 7. Let f: M⟶M′ be a module isomorphism.
If N is a primal submodule of M, then f(N) is a primal
submodule of M′.

Proof. Let a, b ∈ (adj(f(N))). Since f is a module iso-
morphism, then by Proposition 6, we have f− 1 (a),

f− 1(b) ∈ f− 1(adj(f(N))) � adj(f− 1(f(N))) � adj(N).
But N is a primal submodule; then, f− 1(a + b) �

f− 1(a) + f− 1(b) ∈ adj(N). Also, since f is a module iso-
morphism, we have a + b ∈ f(adj(N)). Hence,
a + b ∈ adj(f(N)) by Proposition 6, where f(N) is a primal
submodule of M′. □

Proposition 8. Let N and L be proper submodules of an
R-module M and I be an ideal of R. If LI⊆N, then either
L⊆Nor I⊆adj(N).

Proof. Assume L⊄N; then, there is l ∈ L − N. For each a ∈ I,
lRa⊆LI⊆Nwhile l ∉ N; thus, a ∈ adj(N). Callialp and Takir
introduced the following definition (see [13]). □

Definition 11. Let N, N1, N2, . . . , Nn be submodules of an
R-module M. *e covering N⊆N1 ∪N2 ∪ · · · ∪Nn of N is
called efficient if N is not contained in the union of any n − 1
of the submodulesNi

′s. Analogously, we shall say
N⊆N1 ∪N2 ∪ · · · ∪Nnis an efficient union if none of the Ni

′s
may be excluded.

Proposition 9. If L and N are submodules of an R-module
M, then(L∩N: M) � (L: M)∩ (N: M).

Proof. Let a ∈ (L∩N: M). *en, Ma⊆L∩N. *us, Ma⊆L
and Ma⊆N; hence, a ∈ (L: M)∩ (N: M). *erefore,
(L∩N: M)⊆(L: M)∩ (N: M). Now, if b ∈ (L: M)∩
(N: M), then b ∈ (L: M)and b ∈ (N: M) so that Mb⊆L and
Mb⊆N; thus, Mb⊆L∩N and then b ∈ (L∩N: M). *ere-
fore, (L: M)∩ (N: M)(L∩N: M). □

Proposition 10 (see [13]). Let N⊆N1 ∪N2 ∪ · · · ∪Nn be an
efficient cover of submodules of an R-module M where n> 2.
)en, N∩  ∩ j≠kNj⊆Nkfor all k ∈ 1, 2, . . . , n{ }. Now, by using
Propositions 9 and 10 we will prove the following lemma and
theorem.

Lemma 2. Let N⊆N1 ∪N2 ∪ · · · ∪Nn be an efficient cover of
submodules of an R-module M where n> 2; then, for all
j ∈ 1, 2, . . . , n{ }, ∩ i≠j(Ni: M)⊆adj(Nj).

Proof. Let j ∈ 1, 2, . . . , n{ }. Put ∩ i≠j(Ni: M) � Pj. By
Proposition 9, (∩ i≠jNi: M) � Pj. So, MPj⊆∩ i≠jNi, and
thus NPj⊆∩ i≠jNi. But NPj⊆N; then, NPj⊆N∩
(∩ i≠jNi)⊆Nj by Proposition 10. *is implies either N⊆Nj

or Pj⊆adj(Nj). But N⊄Nj, and this implies
that∩ i≠j(Ni: M)⊆adj(Nj). □

Theorem 2. Let N be a submodule of an R-module M. If
N1, N2, ..., Nn are submodules of M such that
N⊆N1 ∪N2 ∪ · · · ∪Nnand ∩ i≠j(Ni: M)⊄adj(Nj) for all
j � 1, 2, . . . , n except possibly for at most two of the j’s, then
N⊆Nk for some k ∈ 1, 2, . . . , n{ }.

Proof. For the given covering N⊆N1 ∪N2 ∪ · · · ∪Nn, let
N⊆Nα1 ∪Nα2 ∪ · · · ∪Nαm

be its efficient reduction. *en,
1≤m≤ n and m≠ 2. If m> 2, then there exists at least one Nij
satisfying ∩ i≠j(Nαi

: M)⊆adj(Nαj
) which is contradiction to

Lemma 2. Hence, m � 1, so N⊆Nα1 � Nk for some
k ∈ 1, 2, . . . , n{ }.

Bland in [14] proved the following result. □

Corollary 2. Let P be a prime ideal of a ring R and suppose
that A and B are ideals in R. If A∩B⊆P, then either
A⊆P orB⊆P. )e following corollary follows immediately
from Proposition 5 and Corollary 2.

Corollary 3. Let N1, N2, . . . , Nn be uniformly primal sub-
modules. )en, the following two conditions are equivalent:

(a) ∩ i≠j(Ni: M)⊄adj(Nj)

(b) (Ni: M)⊄ adj(Nj)whenever i ≠ j

Now, the main theorem of this section is uniformly primal
avoidance theorem which follows immediately from Propo-
sition 5, )eorem 2, and Corollary 3.

Theorem 3 (uniformly primal avoidance theorem for
modules). Let N be a submodule of an R-module M.
N1, N2, . . . , Nn are submodules of M such that
N⊆N1 ∪N2 ∪ · · · ∪Nn. Assume that at most two of the Ni

′s
are not uniformly primal and (Ni: M)⊄ adj(Nj)

whenever i ≠ j; then, N⊆Nkfor some k ∈ 1, 2, . . . , n{ }.

Corollary 4 (see [5]). Let M be an R-module. If N is a prime
submodule of M, then N is primal. Since every prime sub-
module is uniformly primal by Corollary 4, then the uniformly
primal avoidance theorem is a generalization of the prime
avoidance theorem for modules. Now, we will recall the
concept of S-system subsets of modules, which was introduced
in [11] (also see [13,15]). )en, we will prove some results on
the S-system and uniformly primal submodule.

Definition 12. A nonempty subset S of a ring R is said to be
an m-system if for any a, b ∈ S, there exists r ∈ R such that
arb ∈ S.
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Definition 13. LetM be an R-module and S be an m-system.
A nonempty subset N of R-moduleM is said to be a S-system
if for any a ∈ S and m ∈ N, there exists r ∈ R such that
mra ∈ N.

Proposition 11. LetM be an R-module and N be a uniformly
primal submodule of M. )en, M − N is an S-system where
S � R − adj(N).

Proof. Since N is a uniformly primal submodule of M, by
Proposition 5, adj(N) is a prime ideal of R. Let a ∈ S �

R − adj(N) and t ∈M − N, so tRa⊄N. *erefore, M − N is
an S-system. □

Proposition 12. Let P1, P2, . . . , Pn be a finite number of
prime ideals in a ring R and S � R − ∪ n

i�1Pi. )en, S is an
m-system subset of R.

Proof. Let a, b∈S and assume on the contrary that aRb⊄S;
thus, aRb⊆∪ n

i�1Pi. *en, RaRbR ⊆∪ n
i�1Pi. Hence, by the

prime avoidance theorem for rings (see [3] and [4]), we have
(RaR)(RbR) � RaRbR ⊆Pi for some i � 1, 2, . . . , n. Since Pi

is prime, then either RaR ⊆Pi or RbR⊆Pi. If RaR⊆Pi,
then a ∉ S which is a contradiction. Similarly, if RbR⊆Pi,
then there exists r ∈ R such that arb ∈ S. *erefore, S is an
m-system subset of R. □

Proposition 13. Let N1, N2, . . . , Nn be a finite collection of
uniformly primal submodules of an R-module M with
adj(Nj) � Pj for every j and (Nj: M)⊄adj(Nk)whenever
j ≠ k. )en, S∗ � M − ∪ n

i�1Ni is an S-system subset of M,
where S � R − ∪ n

i�1Pi.

Proof. By Proposition 12, S is an m-system subset of R, so to
prove S∗is an S-system, let a ∈ S and m ∈ S∗ and assume on
the contrary that mRa⊄S∗; thus, mRa⊆∪ n

i�1Ni. *en,
mRaR⊆∪ n

i�1Ni, so by *eorem 3 (uniformly primal
avoidance theorem for modules), we have mRaR⊆Niand
mRa⊆Ni for some i � 1, 2, . . . , n. Since Niis uniformly
primal, then m ∈ Nior a ∈ adj(Ni). If m ∈ Ni, then m ∉ S∗

which is a contradiction. If a ∈ adj(Ni), then a ∉ S. *en,
there exists r ∈ R such that mra ∈ S∗. *erefore, S∗is an
S-system subset of M. □
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