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With the great progress of fractional calculus, integral inequalities have been greatly enriched by fractional operators; users and
researchers have formed a real-world phenomenon in the production of the evaluation process, which results in convexity.
Monotonicity and inequality theory has a strong relationship, whichever we work on, and we can apply it to the other one due to
the strong correlation produced between them, especially in the past few years. In this article, we introduce some estimations of left
and right sides of the generalized Caputo fractional derivatives of a function for nth order differentiability via convex function, and
related inequalities have been presented. Monotonicity and convexity of functions are used with some usual and straightforward
inequalities. Moreover, we establish some new inequalities for C

⌣
eby s

⌣ ev and Gr€uss type involving the generalized Caputo
fractional derivative operators. �e finding provides the theoretical basis and practical significance for the establishment of
fractional calculus in convexity. It also introduces new ways of thinking and methods for innovative scientific research.

1. Introduction

�e field of fractional calculus deals with the integrals and
differentiation of arbitrary noninteger order. In the last three
centuries, this field has been considered as the most powerful
tool in describing anomalous kinetics and its wide applications
in diverse domains. Numerous phenomena such as mathe-
matics, statistics, engineering, physics, chemistry, and biology
can be modeled by utilizing ordinary differential equations
involving fractional derivatives. Many mathematicians and
physicists have contributed to the development of the theories of
fractional calculus [1–11]. In practical applications, various types
of fractional integrals and derivative operators such as Rie-
mann–Liouville, Caputo, Riesz, Hilfer, Hadamard, Erde-
lyi–Kober, Saigo, and Marichev–Saigo–Maeda were extensively
studied by various researchers, see [12–17].

Later on, the mathematicians introduced the notion of
fractional conformable integrals and derivatives which are
cited therein. Khalil et al. [18] introduced fractional con-
formable derivatives operators with some shortcomings.
Abdeljawad [19] investigated the properties of the fractional
conformable derivative operators. Jarad et al. [20] defined
generalized fractional conformable integral and derivative
operators. In [21], Abdeljawad and Baleanu gave certain
monotonicity results for fractional difference operators with
discrete exponential kernels. Almeida [22] proposed Caputo
fractional derivative in the sense of another function ϑ, and
in [1], the authors contemplated the idea of Rie-
mann–Liouville fractional integrals in the sense of another
function ϑ. In [23], Atangana and Baleanu defined new
fractional derivative operator with the nonlocal and non-
singular kernel.
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Inequalities concerning functions of two or several in-
dependent variables play an essential role in the continuous
development of the theory and applications of differential
and integral equations. Currently, distinctive versions of
such inequalities had been developed which can be useful in
the study of various classes of differential and integral
equations. �ose inequalities act as a far-reaching tool to
study plasma physics, robotics, automatic control and many
other branches of pure and applied sciences, and differential
and integral equations [24, 25].

Convex functions are very useful in the mathematical
analysis due to their fascinating properties and convenient
characterizations.

Definition 1. A function U: I⟶ R is said to be convex
function, if the following inequality holds:

U ζτ1 +(1 − ζ)τ2( 􏼁≤ ζU τ1( 􏼁 +(1 − ζ)U τ2( 􏼁, (1)

for all τ1, τ2 ∈ I and ζ ∈ [0, 1]. If inequality (1) holds in the
reverse order, then the function U is called concave
function.

For convex functions, many equalities or inequalities
have been established by many authors; for example, Hardy-
type inequality, Ostrowski-type inequality, and Gagliar-
do–Nirenberg-type inequality, but the most celebrated and
significant inequality is the Hermite–Hadamard-type in-
equality [26–29], which is defined as

U
τ1 + τ2

2
􏼒 􏼓≤

1
τ2 − τ1

􏽚
τ2

τ1
U(x)dx≤

U τ1( 􏼁 + U τ2( 􏼁

2
. (2)

A number of mathematicians in the field of applied and
pure mathematics have dedicated their efforts to extend,
generalize, counterpart, and refine the Hermite–Hadamard
inequality (2) for different classes of convex functions. For
more recent results obtained on inequality (2), we refer the
reader to references [30–35].

Inspired by the aforementioned development, we pro-
pose a famous approach of generalized fractional derivative
investigated in [1, 22], especially Caputo fractional derivative
in the ϑ-Hilfer sense is being utilized widely and further-
more, effectively utilized in numerous parts of sciences and
engineering, see [36, 37]. Our concern is to utilize the
convexity property of functions and use the absolute of their
derivatives in obtaining the bounds for generalized Caputo
fractional derivative presented by Definition 2.3. �e new
derivative is used to model the world, and we are capable of
seeing that the choice of the generalized Caputo fractional
derivative operator is essential for the efficiency of the
numerical methods, fractional differential equations, and
fractional integrodifferential equations.

It is widely recognized that C
⌣
ebys

⌣ev and Gr€uss type
inequalities in continuous and discrete cases which play a
significant role in studying the qualitative conduct of dif-
ferential and difference equations, respectively, in addition
to many other areas of mathematics. Inspired by C

⌣
ebys

⌣ ev
[38] and Gr€uss [39], our aim is to show more general
versions of C

⌣
ebys

⌣ ev and Gr€uss type inequalities.

C
⌣
ebys

⌣ ev [38] introduced the well-known celebrated
functional and is defined as follows:

I(U,V) �
1

τ2 − τ1
􏽚
τ2

τ1
U(λ)V(λ)dλ

−
1

τ2 − τ1
􏽚
τ2

τ1
U(λ)dλ􏼠 􏼡

1
τ2 − τ1

􏽚
τ2

τ1
V(λ)dλ􏼠 􏼡,

(3)

whereU andV are two integrable functions on [τ1, τ2]. If U
and V are synchronous, i.e.,

(U(λ) − U(ω))(V(λ) − V(ω))≥ 0, (4)

for any λ,ω ∈ [τ1, τ2], then s(U,V)≥ 0.
Functional (3) has vast applications in probability, nu-

merical analysis, quantum, and statistical theory. Alongside
facet with numerous applications, the functional (3) has
gained plenty of interest to yield a variety of fundamental
inequalities (see, for example, [40–42]).

Another interesting and fascinating aspect of the theory
of inequalities is the Gr€uss type inequality [39] stated as
follows:

|s(U,V)|≤
(Q − q)(R − r)

4
, (5)

where two integrable functions U and V on [τ1, τ2], and
fulfill the following:

q≤U(λ)≤Q,

r≤V(λ)≤R,
(6)

for all λ ∈ [τ1, τ2] and for some q, Q, r, R ∈ R.
Many famous versions mentioned in the literature are

direct effects of the numerous applications in optimizations
and transform theory, see [24, 25, 42–51].

�e principal aim of the present paper is to establish
new bounds of some of the left-sided and right-sided
Caputo fractional derivatives in Hilfer sense via convex
functions that have been established. Some related in-
equalities via convexity andmonotonicity of used functions
have been proved. Moreover, the novel version of Gr€uss
and C

⌣
ebys

⌣ ev types integral inequalities associated with
Caputo fractional derivative operators in Hilfer sense are
established for nth order differentiability of functions. We
provide innovative special cases using a Caputo fractional
derivative operator in Hilfer sense related to (3) and (5).
Consequently, the effects furnished on this research paper
are more generalized and may be useful in the study of
fractional integral operators.

2. Preliminaries

In this sequel, we introduce a few notations and definitions
of fractional calculus and present initial results wished in our
proofs later.

Definition 2. (see [1, 2]). A function U(λ) is said to be in
Lp,r[0,∞] space if
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Lp,r[0,∞) � U: ‖U‖Lp,r[0,∞) � 􏽚
υ2

υ1
|U(λ)|

pλrdλ􏼠 􏼡

(1/p)

<∞, 1≤p<∞, r≥ 0
⎧⎨

⎩

⎫⎬

⎭. (7)

For r � 0,

Lp[0,∞) � U: ‖U‖Lp[0,∞) � 􏽚
υ2

υ1
|U(λ)|

pdλ􏼠 􏼡

(1/p)

<∞, 1≤p<∞
⎧⎨

⎩

⎫⎬

⎭. (8)

Definition 3. (see [52]). Let U ∈ L1[0,∞) and ϑ be an in-
creasing and positive monotone function on [0,∞) and also
derivative ϑ′ is continuous on [0,∞) and ϑ(0) � 0. �e
space χp

ϑ(0,∞)(1≤p<∞) of those real-valued Lebesgue
measurable functions U on [0,∞) for which

‖U‖χp

ϑ
� 􏽚
∞

0
|U(λ)|

pϑ′(λ)dλ􏼒 􏼓
(1/p)

<∞, 1≤p<∞,

(9)

and for the case p �∞

‖U‖χ∞ϑ
� ess sup

0≤λ<∞
ϑ′(λ)U(λ)􏼂 􏼃. (10)

In particular, when ϑ(λ) � λ, (1≤p<∞), the space
χp

ϑ(0,∞) coincides with the Lp[0,∞)-space, and further-
more, if we take ϑ(λ) � ln λ, (1≤p<∞), the space χp

ϑ(0,∞)

concurs with Lp,u[1,∞)-space.

Definition 4. (see [1, 22]). Let (τ1, τ2)(− ∞≤ τ1 < τ2 ≤∞) be
a finite or infinite real interval and ϱ > 0. Let ϑ(ζ) be an
increasing and positive monotone function on (τ1, τ2].
�en, the left Caputo fractional derivative in the ϑ-Hilfer
sense of order ϱ > 0 is given by

c
D
ϱ,ϑ
τ+
1
U(λ) ≔ I

n− ϱ,ϑ
τ+
1

1
ϑ′(λ)

d
dλ

􏼠 􏼡

n

U(λ), (11)

and the right Caputo fractional derivative in the ϑ-Hilfer
sense of U by

c
D
ϱ,ϑ
τ−
2
U(λ) ≔ I

n− ϱ,ϑ
τ−
2

−
1

ϑ′(λ)

d
dλ

􏼠 􏼡

n

U(λ), (12)

where n � [ϱ] + 1 for ϱ ∉ N, n � ϱ for ϱ ∈ N and if ϱ ∉ N;
then,

c
D
ϱ,ϑ
τ+
1
U(λ) �

1
Γ(n − ϱ)

􏽚
λ

τ1
ϑ′(ζ)(ϑ(λ) − ϑ(ζ))

n− ϱ− 1
U

[n]
ϑ (ζ)dζ,

(13)

c
D
ϱ,ϑ
τ−
2
U(λ) �

(− 1)
n

Γ(n − ϱ)
􏽚
τ2

λ
ϑ′(ζ)(ϑ(ζ) − ϑ(λ))

n− ϱ− 1
U

[n]
ϑ (ζ)dζ,

(14)

where Γ(z) � 􏽒
∞
0 ζz− 1

e− ζdζ is the Euler gamma function.

Remark 1. It can be easily noticed that

(1) When ϑ(ζ) � ζ, then (13) and (14) are the classical
Caputo derivative [1]

(2) When ϑ(ζ) � ln ζ, then (13) and (14) are the
Caputo–Hadamard fractional derivative [43]

(3) when ϑ(ζ) � ζρ/ρ, then (13) and (14) are the Caputo
modification of the left and right generalized frac-
tional derivatives in the sense of [53]

(4) When ϑ(ζ) � (ζ − a)ρ/ρ, then (13) and (14) are the
fractional conformable derivative in the sense of [20]

Now, we present a one-sided fractional operator which is
known as the generalized Caputo fractional derivative
operator.

Definition 5. Let (τ1, τ2)(− ∞≤ τ1 < τ2 ≤∞) be a finite or
infinite real interval and ϱ > 0. Let ϑ(ζ) be an increasing and
positive monotone function on (tau1, tau2]. �en, the left-
sided and right-sided Caputo fractional derivative in the
ϑ-Hilfer sense of order ϱ is defined as follows:

D
ϑ,ϱ
0+ U(λ) �

1
Γ(n − ϱ)

􏽚
λ

0
ϑ′(ζ)(ϑ(λ) − ϑ(ζ))

n− ϱ− 1
U(ζ)dζ.

(15)

3. Hermite–Hadamard-Type Inequalities for
Caputo Fractional Derivative in the
ϑ-Hilfer Sense

Theorem 1. For n ∈ N, ϱ, δ ≥ 1, and let there be a real-
valued n-times differentiable function U: I � [τ1,
τ2]⟶ R defined on I. Also, assume that ϑ be differ-
entiable and strictly increasing such that with
ϑ′ ∈ L1([τ1, τ2]). If ϑ

(n) is a convex function on I, for all
τ1, τ2 ∈ I and τ1 < τ2, then
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Γ(n − ϱ + 1)
c
D
ϱ− 1,ϑ
τ+
1

U􏼒 􏼓(λ) + Γ(n − δ + 1)
c
D
ϱ− 1,ϑ
τ−
2

U􏼒 􏼓(λ)

≤
ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− ϱ

λ − τ1
λ − τ1( 􏼁􏼂

U
(n)

(λ)ϑ(λ) − U
(n) τ1( 􏼁ϑ τ1( 􏼁􏽨 􏽩

− U
(n)

(λ) − U
(n) τ1( 􏼁􏼐 􏼑 􏽚

λ

τ1
ϑ(ζ)dζ􏼣

+
ϑ τ2( 􏼁 − ϑ(λ)( 􏼁

n− δ

τ2 − λ
τ2 − λ( 􏼁􏼂

U
(n) τ2( 􏼁ϑ τ2( 􏼁 − U

(n)
(λ)ϑ(λ)􏽨 􏽩

− U
(n) τ2( 􏼁 − U

(n)
(λ)􏼐 􏼑 􏽚

τ2

λ
ϑ(ζ)dζ􏼕.

(16)

Proof. Utilizing the given hypothesis, we have

(ϑ(λ) − ϑ(ζ))
n− ϱ ≤ ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− ϱ
, (17)

where λ ∈ [τ1, τ2] and ζ ∈ [τ1, τ2], ϱ ≥ 1, and ϑ′(ζ)> 0.
Hence, the following inequality holds true:

ϑ′(ζ)(ϑ(λ) − ϑ(ζ))
n− ϱ ≤ ϑ′(ζ) ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− ϱ
. (18)

By the convexity of U(n), we have

U
(n)

(ζ)≤
λ − ζ
λ − τ1

U
(n) τ1( 􏼁 +

ζ − τ1
λ − τ1

U
(n)

(λ). (19)

From (18) and (19), one has

􏽚
λ

τ1
(ϑ(λ) − ϑ(ζ))

n− ϱ
U

(n)
(ζ)ϑ′(ζ)dζ

≤
ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− ϱ

λ − τ1
U

(n) τ1( 􏼁 􏽚
λ

τ1
(λ − ζ) + U

(n)
(λ)􏼢

􏽚
λ

τ1
ζ − τ1( 􏼁ϑ′(ζ)dζ􏼣.

(20)

Using (13) from Definition 4, we obtain

Γ(n − ϱ + 1)
c
D
ϱ− 1,ϑ
τ+
1

U􏼒 􏼓(λ)

≤
ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− ϱ

λ − τ1
⎡⎣ λ − τ1( 􏼁 U

(n)
(λ)ϑ(λ)􏽨

− U
(n) τ1( 􏼁ϑ τ1( 􏼁􏽩 − U

(n)
(λ) − U

(n) τ1( 􏼁􏼐 􏼑 􏽚
λ

τ1
ϑ(ζ)dζ􏼣.

(21)

Now, for λ ∈ [τ1, τ2], ζ ∈ [λ, τ2], and δ ≥ 1, the following
inequality holds true:

ϑ′(ζ)(ϑ(ζ) − ϑ(λ))
n− δ ≤ ϑ′(ζ) ϑ τ2( 􏼁 − ϑ(λ)( 􏼁

n− δ
. (22)

Utilizing convexity of U(n), it follows that

U
(n)

(ζ)≤
ζ − λ
τ2 − λ

U
(n) τ2( 􏼁 +

τ2 − ζ
τ2 − λ

U
(n)

(λ). (23)

Repeating the same procedure as we have done for (18)
and (19), one can acquire from (22) and (23); then,

Γ(n − δ + 1)
c
D

δ− 1,ϑ
τ−
2

U􏼒 􏼓(λ)≤
ϑ τ2( 􏼁 − ϑ(λ)( 􏼁

n− δ

τ2 − λ

× τ2 − λ( 􏼁 U
(n) τ2( 􏼁ϑ τ2( 􏼁 − U

(n)
(λ)ϑ(λ)􏽨 􏽩􏽨

− U
(n) τ2( 􏼁 − U

(n)
(λ)􏼐 􏼑 􏽚

τ2

λ
ϑ(ζ)dζ􏼕.

(24)

From inequalities (21) and (24), we get (16) which is
required. □

Corollary 1. If we take α � δ in (16), we get the result for
generalized Caputo fractional derivative operator:

Γ(n − α + 1)
c
D

α− 1,ϑ
τ+
1

U􏼒 􏼓(λ) +
c
D

α− 1,ϑ
τ−
2

U􏼒 􏼓(λ)􏼔 􏼕

≤
ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− α

λ − τ1
⎡⎣ λ − τ1( 􏼁 U

(n)
(λ)ϑ(λ)􏽨

− U
(n) τ1( 􏼁ϑ τ1( 􏼁􏽩 − U

(n)
(λ) − U

(n) τ1( 􏼁􏼐 􏼑 􏽚
λ

τ1
ϑ(ζ)dζ􏼣

+
ϑ τ2( 􏼁 − ϑ(λ)( 􏼁

n− α

τ2 − λ
􏼔 τ2 − λ( 􏼁 U

(n) τ2( 􏼁ϑ τ2( 􏼁􏽨

− U
(n)

(λ)ϑ(λ)􏽩 − U
(n) τ2( 􏼁 − U

(n)
(λ)􏼐 􏼑 􏽚

τ2

λ
ϑ(ζ)dζ􏼕.

(25)

Theorem 2. For n ∈ N, ϱ, δ ≥ 1, and let there be a real-valued
n-times differentiable function U: I � [τ1, τ2]⟶ R de-
fined on U: I � [τ1, τ2]⟶ R. Also, assume that ϑ be
differentiable and strictly increasing such that with
ϑ′ ∈ L1([τ1, τ2]). If |ϑ(n+1)| is a convex function on I, for all
τ1, τ2 ∈ I and τ1 < τ2, then
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Γ(n − ϱ + 1) cD
ϱ,ϑ
τ+
1
U􏼒 􏼓(λ) + Γ(n − δ + 1) cD

ϱ,ϑ
τ−
2
U􏼒 􏼓(λ)

− ϑ(λ) − ϑ τ1( 􏼁( 􏼁
n− ϱ

U
(n) τ1( 􏼁 + ϑ τ2( 􏼁 − ϑ(λ)( 􏼁

n− δ
U

(n) τ2( 􏼁􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− ϱ λ − τ1( 􏼁 U
(n+1) τ1( 􏼁

􏼌􏼌􏼌􏼌􏼌 + ϑ τ2( 􏼁 − ϑ(λ)( 􏼁
n− δ τ2 − λ( 􏼁 U

(n+1) τ2( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

2

+ U
(n+1)

(λ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− ϱ λ − τ1( 􏼁 + ϑ τ2( 􏼁 − ϑ(λ)( 􏼁
n− δ τ2 − λ( 􏼁

2
.

(26)

Proof. From convexity of |U(n+1)|, we have

U
(n+1)

(ζ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
λ − ζ
λ − τ1

U
(n+1) τ1( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 +
ζ − τ1
λ − τ1

U
(n+1)

(λ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(27)

From (27), one obtains

U
(n+1)

(ζ)≤
λ − ζ
λ − τ1

U
(n+1) τ1( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 +
ζ − τ1
λ − τ1

U
(n+1)

(λ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (28)

Since the function ϑ is differentiable and strictly in-
creasing, therefore we have the following inequality:

(ϑ(λ) − ϑ(ζ))
n− ϱ ≤ ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− ϱ
, (29)

where λ ∈ [τ1, τ2], ζ ∈ [τ1, λ], and ϱ > 0.
From (28) and (29), one has

(ϑ(λ) − ϑ(ζ))
n− ϱ

U
(n+1)

(ζ)

≤
ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− ϱ

λ − τ1
(λ − ζ) U

(n+1) τ1( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚

+ ζ − τ1( 􏼁 U
(n+1)

(λ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼛.

(30)

Integrating over [τ1, λ], we have

􏽚
λ

τ1
(ϑ(λ) − ϑ(ζ))

n− ϱ
U

(n+1)
(ζ)dζ

≤
ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− ϱ

λ − τ1
U

(n+1) τ1( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 􏽚
λ

τ1
(λ − ζ)dζ􏼨

+ U
(n+1)

(λ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 􏽚
λ

τ1
ζ − τ1( 􏼁dζ􏼩

� ϑ(λ) − ϑ τ1( 􏼁( 􏼁
n− ϱ λ − τ1( 􏼁

U
(n+1) τ1( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + U
(n+1)

(λ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

2
⎡⎢⎢⎣ ⎤⎥⎥⎦,

(31)

􏽚
λ

τ1
ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− ϱ
U

(n+1)
(ζ)dζ

� U
(n)

(ζ) ϑ(λ) − ϑ τ1( 􏼁( 􏼁
n− ϱ􏼌􏼌􏼌􏼌

λ
τ1

+(n − ϱ)

􏽚
λ

τ1
ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− ϱ− 1ϑ′(ζ)U
(n)

(ζ)dζ

� − U
(n) τ1( 􏼁 ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− ϱ

+ Γ(n − ϱ + 1)
c
D
ϱ,ϑ
τ+
1
U􏼒 􏼓(λ).

(32)

From (31), it follows that

Γ(n − ϱ + 1)
c
D
ϱ,ϑ
τ+
1
U􏼒 􏼓(λ) − U

(n) τ1( 􏼁 ϑ(λ) − ϑ τ1( 􏼁( 􏼁
n− ϱ

≤ ϑ(λ) − ϑ τ1( 􏼁( 􏼁
n− ϱ λ − τ1( 􏼁

U
(n+1) τ1( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + U
(n+1)

(λ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

2
⎡⎢⎢⎣ ⎤⎥⎥⎦.

(33)

Also, from (27), one has

U
(n+1)

(ζ)≥
λ − ζ
λ − τ1

U
(n+1) τ1( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 +
ζ − τ1
λ − τ1

U
(n+1)

(λ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼠 􏼡.

(34)

Repeating the same procedure as we did for (28), we have

U
(n) τ1( 􏼁 ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− ϱ
􏼂 􏼃 − Γ(n − ϱ + 1)

c
D
ϱ,ϑ
τ+
1
U􏼒 􏼓(λ)

≤ ϑ(λ) − ϑ τ1( 􏼁( 􏼁
n− ϱ λ − τ1( 􏼁

U
(n+1) τ1( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + U
(n+1)

(λ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

2
⎡⎢⎢⎣ ⎤⎥⎥⎦.

(35)

From (33) and (35), we obtain

Γ(n − ϱ + 1)
c
D
ϱ,ϑ
τ+
1

f􏼒 􏼓(λ) − U
(n) τ1( 􏼁 ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− ϱ
􏼂 􏼃

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ϑ(λ) − ϑ τ1( 􏼁( 􏼁
n− ϱ λ − τ1( 􏼁

U
(n+1) τ1( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + U
(n+1)

(λ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

2
⎡⎢⎢⎣ ⎤⎥⎥⎦.

(36)

From convexity of |U(n+1)|, one obtains

U
(n+1)

(ζ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
ζ − λ
τ2 − λ

U
(n+1) τ2( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 +
τ2 − λ
τ2 − λ

U
(n+1)

(λ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(37)

Now, for λ ∈ [τ1, τ2] and ζ ∈ [λ, τ2] and δ > 0, the fol-
lowing inequality holds true:

(ϑ(ζ) − ϑ(λ))
n− δ ≤ ϑ τ2( 􏼁 − ϑ(λ)( 􏼁

n− δ
. (38)

If we proceed in a similar way as we did for (28), (29),
and (34), one can get from (37) and (38) the following
inequality:
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Γ(n − δ + 1)
c
D

δ,ϑ
τ−
2
U􏼒 􏼓(λ) − U

(n) τ2( 􏼁 ϑ τ2( 􏼁 − ϑ(λ)( 􏼁
n− δ

􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ (ϑ(δ) − ϑ(λ))
n− δ τ2 − λ( 􏼁

U
(n+1)

(λ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + U
(n+1) τ2( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

2
⎡⎢⎢⎣ ⎤⎥⎥⎦.

(39)

From inequalities (36) and (39) via triangular inequality,
we get (26) which is required. □

Corollary 2. If we take ϱ � δ in (26), then we get the fol-
lowing inequality for generalized Caputo fractional derivative
operator:

Γ(n − ϱ + 1)
c
D
ϱ,ϑ
τ+
1
U􏼒 􏼓(λ) +

c
D
ϱ,ϑ
τ−
2
U􏼒 􏼓(λ)􏼚 􏼛

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− ϑ(λ) − ϑ τ1( 􏼁( 􏼁
n− ϱ

U
(n) τ1( 􏼁 + ϑ τ2( 􏼁 − ϑ(λ)( 􏼁

n− ϱ
U

(n) τ2( 􏼁􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

≤
ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− ϱ λ − τ1( 􏼁 U
(n+1) τ1( 􏼁

􏼌􏼌􏼌􏼌􏼌 + ϑ τ2( 􏼁 − ϑ(λ)( 􏼁
n− ϱ τ2 − λ( 􏼁 U

(n+1) τ2( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

2

+ U
(n+1)

(λ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− ϱ λ − τ1( 􏼁 + ϑ τ2( 􏼁 − ϑ(λ)( 􏼁
n− ϱ τ2 − λ( 􏼁

2
.

(40)

Lemma 1 (see [28]). Suppose that U: I⟶ R is a convex
function which is symmetric about (τ1 + τ2)/2; then, the
following inequality holds:

U
τ1 + τ2

2
􏼒 􏼓≤U(λ), λ ∈ τ1, τ2􏼂 􏼃. (41)

Theorem 3. For n ∈ N, ϱ, δ ≥ 1, and let there be a real-valued
n-times differentiable function U: I � [τ1, τ2]⟶ R de-
fined on I, where n is a positive integer such that U(n) be
positive convex and symmetric about (τ1 + τ2)/2. Also, as-
sume that ϑ be differentiable and strictly increasing such that
with ϑ′ ∈ L1([τ1, τ2]) for all τ1, τ2 ∈ I and τ1 < τ2; then,

1
2

1
n − ϱ + 1

+
1

n − δ + 1
􏼠 􏼡U

(n) τ1 + τ2
2

􏼒 􏼓

≤
Γ(n − ϱ + 1) cD

ϱ− 1,ϑ
τ+
1

U􏼒 􏼓 τ2( 􏼁

2 ϑ τ2( 􏼁 − ϑ τ1( 􏼁( 􏼁
n− ϱ+1 +

Γ(n − δ + 1) cD
δ− 1,ϑ
τ−
2

U􏼒 􏼓 τ1( 􏼁

2 ϑ τ2( 􏼁 − ϑ τ1( 􏼁( 􏼁
n− δ+1

≤
1

ϑ τ2( 􏼁 − ϑ τ1( 􏼁( 􏼁 τ2 − τ1( 􏼁
τ2 − τ1( 􏼁 U

(n) τ2( 􏼁ϑ τ2( 􏼁 − U
(n) τ1( 􏼁ϑ τ1( 􏼁􏽨 􏽩 − U

(n) τ2( 􏼁 − U
(n) τ1( 􏼁􏼐 􏼑 􏽚

τ2

τ1
ϑ(λ)dλ􏼢 􏼣.

(42)

Proof. Utilizing the given hypothesis, we have

ϑ(λ) − ϑ τ1( 􏼁( 􏼁
n− δ ≤ ϑ τ2( 􏼁 − ϑ τ1( 􏼁( 􏼁

n− δ
, (43)

where λ ∈ [τ1, τ2], δ > 0, and ϑ′(λ)> 0. Hence, the following
inequality holds true:

ϑ′(λ) ϑ(λ) − ϑ τ1( 􏼁( 􏼁
n− δ ≤ ϑ′ ϑ τ2( 􏼁 − ϑ τ1( 􏼁( 􏼁

n− δ
. (44)

By using the convexity of U(n), we have

U
(n)

(λ)≤
λ − τ1
τ2 − τ1

U
(n) τ2( 􏼁 +

τ2 − λ
τ2 − τ1

U
(n) τ1( 􏼁. (45)

From (44) and (45), one has

􏽚
τ2

τ1
ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− δ
U

(n)
(λ)ϑ′(λ)dλ

≤
ϑ τ2( 􏼁 − ϑ τ1( 􏼁( 􏼁

n− δ

τ2 − τ1
U

(n) τ2( 􏼁 􏽚
τ2

τ1
x − τ1( 􏼁ϑ′(λ)dλ􏼢

+U
(n) τ1( 􏼁 􏽚

τ2

τ1
τ2 − x( 􏼁ϑ′(λ)dλ􏼣.

(46)

Using (13) from Definition 4, we obtain
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Γ(n − δ + 1)
c
D

δ− 1,ϑ
τ−
2

f􏼒 􏼓 τ1( 􏼁

≤
ϑ τ2( 􏼁 − ϑ τ1( 􏼁( 􏼁

n− δ

τ2 − τ1
τ2 − τ1( 􏼁 U

(n) τ2( 􏼁ϑ τ2( 􏼁􏽨􏽨

− U
(n) τ1( 􏼁ϑ τ1( 􏼁􏽩 − U

(n) τ2( 􏼁 − U
(n) τ1( 􏼁􏼐 􏼑 􏽚

τ2

τ1
ϑ(λ)dλ􏼣.

(47)

Now for λ ∈ [τ1, τ2], ζ ∈ [λ, τ2], and ϱ > 0, the following
inequality holds true:

ϑ′(λ) ϑ τ2( 􏼁 − ϑ(λ)( 􏼁
n− ϱ ≤ ϑ′(λ) ϑ τ2( 􏼁 − ϑ τ1( 􏼁( 􏼁

n− ϱ
. (48)

By a similar argument which we have done for (44) and
(45), one can get from (45) and (48) the following inequality:

Γ(n − ϱ + 1)
c
D
ϱ− 1,ϑ
τ+
1

U􏼒 􏼓 τ2( 􏼁

≤
ϑ τ2( 􏼁 − ϑ τ1( 􏼁( 􏼁

n− ϱ

τ2 − τ1
τ2 − τ1( 􏼁 U

(n) τ2( 􏼁ϑ τ2( 􏼁􏽨􏽨

− U
(n) τ1( 􏼁ϑ τ1( 􏼁􏽩 − U

(n) τ2( 􏼁 − U
(n) τ1( 􏼁􏼐 􏼑 􏽚

τ2

τ1
ϑ(λ)dλ􏼣.

(49)

Since U(n) is convex and symmetric about (τ1 + τ2)/2
using Lemma 1 and multiplying (41) with
(ϑ(λ) − ϑ(τ1))

n− δϑ′(λ) and integrating over [τ1, τ2], we
obtain

U
(n) τ1 + τ2

2
􏼒 􏼓 􏽚

τ2

τ1
ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− δϑ′(λ)dλ

≤ 􏽚
τ2

τ1
ϑ(λ) − ϑ τ1( 􏼁( 􏼁

n− δϑ′(λ)U
(n)

(λ)dλ.

(50)

Using (14) from Definition 4, we obtain

U
(n) τ1 + τ2( 􏼁/2( 􏼁

2(n − δ + 1)
≤
Γ(n − δ + 1) cD

δ− 1,ϑ
τ−
2

U􏼒 􏼓 τ1( 􏼁

2 ϑ τ2( 􏼁 − ϑ τ1( 􏼁( 􏼁
n− δ+1 . (51)

Similarly, using Lemma 1 and multiplying (41) with
(ϑ(τ2) − ϑ(λ))n− ϱϑ′(λ) and then integrating over [τ1, τ2],
we have

U
(n) τ1 + τ2( 􏼁/2( 􏼁

2(n − ϱ + 1)
≤
Γ(n − ϱ + 1) cD

ϱ− 1,ϑ
τ+
1

U􏼒 􏼓 τ2( 􏼁

2 ϑ τ2( 􏼁 − ϑ τ1( 􏼁( 􏼁
n− ϱ+1 . (52)

Adding (51) and (52), we get the first inequality (42). □

Corollary 3. If we take ϱ � δ in (42), then we get the fol-
lowing inequality for generalized Caputo fractional derivative
operator:

1
n − ϱ + 1

􏼠 􏼡U
(n) τ1 + τ2

2
􏼒 􏼓

≤
Γ(n − ϱ + 1) cD

ϱ− 1,ϑ
τ+
1

U􏼒 􏼓 τ2( 􏼁 + cD
ϱ− 1,ϑ
τ−
2

U􏼒 􏼓 τ1( 􏼁􏼚 􏼛

2 ϑ τ2( 􏼁 − ϑ τ1( 􏼁( 􏼁
n− ϱ+1

≤
τ2 − τ1( 􏼁 U

(n) τ2( 􏼁ϑ τ2( 􏼁 − U
(n) τ1( 􏼁ϑ τ1( 􏼁􏽨 􏽩 − U

(n) τ2( 􏼁 − U
(n) τ1( 􏼁􏼐 􏼑 􏽒

τ2
τ1
ϑ(λ)dλ􏼔 􏼕

ϑ τ2( 􏼁 − ϑ τ1( 􏼁( 􏼁 τ2 − τ1( 􏼁
.

(53)

4. C
⌣
eby s

⌣
ev Type Inequalities for the Caputo

Fractional Derivative in the ϑ-Hilfer
Sense Operators

In this section, we present several C
⌣
ebys

⌣ev type inequalities
for Caputo fractional derivative in the ϑ-Hilfer sense op-
erator defined in (15).

Theorem 4. For n ∈ N, ϱ ≥ 1, and let there be two absolutely
continuous functions U and V which are synchronous on
[0,∞). Also, assume that ϑ be differentiable and strictly
increasing on [0,∞) with ϑ(0) � 0. Een, for all λ> 0, we
have

c
D
ϱ,ϑ
0+ UV􏼐 􏼑(λ)≥

Γ(n − ϱ + 1)

(ϑ(λ))
n− ϱ

c
D
ϱ,ϑ
0+ U􏼐 􏼑(λ)

c
D
ϱ,ϑ
0+ V􏼐 􏼑(λ).

(54)

Proof. Since U(n) and V(n) are synchronous on [0,∞), we
have

U
(n)

(r)V
(n)

(r) + U
(n)

(s)V
(n)

(s)≥U(n)
(r)V

(n)
(s)

+ U
(n)

(s)V
(n)

(r).

(55)

If we multiply both sides of inequality (55) by
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1
Γ(n − ϱ)

ϑ′(r)(ϑ(λ) − ϑ(r))
n− ϱ− 1

, λ ∈ R, (56)

results in
1
Γ(n − ϱ)

ϑ′(r)(ϑ(λ) − ϑ(r))
n− ϱ− 1

U
(n)

(r)V
(n)

(r)

+ U
(n)

(s)V
(n)

(s)
1
Γ(n − ϱ)

ϑ′(r)(ϑ(λ) − ϑ(r))
n− ϱ− 1

≥V(n)
(s)

1
Γ(n − ϱ)

ϑ′(r)(ϑ(λ) − ϑ(r))
n− ϱ− 1

U
(n)

(r)

+ U
(n)

(s)
1
Γ(n − ϱ)

ϑ′(r)(ϑ(λ) − ϑ(r))
n− ϱ− 1

V
(n)

(r).

(57)

Further integrating both sides with respect to r over
(0, λ) gives

1
Γ(n − ϱ)

􏽚
λ

0
ϑ′(r)(ϑ(λ) − ϑ(r))

n− ϱ− 1
U

(n)
(r)V

(n)
(r)dr

+ U
(n)

(s)V
(n)

(s)
1
Γ(n − ϱ)

􏽚
λ

0
ϑ′(r)(ϑ(λ) − ϑ(r))

n− ϱ− 1dr

≥V(n)
(s)

1
Γ(n − ϱ)

􏽚
λ

0
ϑ′(r)(ϑ(λ) − ϑ(r))

n− ϱ− 1
U

(n)
(r)dr

+ U
(n)

(s)
1
Γ(n − ϱ)

􏽚
λ

0
ϑ′(r)(ϑ(λ) − ϑ(r))

n− ϱ− 1
V

(n)
(r)dr.

(58)

Consequently, it follows that

c
D
ϱ,ϑ
0+ UV􏼐 􏼑(λ) + U

(n)
(s)V

(n)
(s)

1
Γ(n − ϱ)

􏽚
λ

0
ϑ′(r)(ϑ(λ) − ϑ(r))

n− ϱ− 1dr

≥V(n)
(s)

c
D
ϱ,ϑ
0+ U􏼐 􏼑(λ) + U

(n)
(s)

c
D
ϱ,ϑ
0+ V􏼐 􏼑(λ),

(59)

c
D
ϱ,ϑ
0+ UV􏼐 􏼑(λ)U

(n)
(s)V

(n)
(s)

(ϑ(λ))
n− ϱ

Γ(n − ϱ + 1)

≥V(n)
(s)

c
D
ϱ,ϑ
0+ U􏼐 􏼑(λ) + U

(n)
(s)

c
D
ϱ,ϑ
0+ V􏼐 􏼑(λ),

(60)

where

1
Γ(n − ϱ)

􏽚
λ

0
ϑ′(r)(ϑ(λ) − ϑ(r))

n− ϱ− 1dr �
(ϑ(λ))

n− ϱ

(n − ϱ)Γ(n − ϱ)
.

(61)

If we multiply both sides of inequality (60) by

1
Γ(n − ϱ)

ϑ′(s)(ϑ(λ) − ϑ(s))
n− ϱ− 1

, λ ∈ R, (62)

we arrive at

c
D
ϱ,ϑ
0+ UV􏼐 􏼑(λ)

1
Γ(n − ϱ)

ϑ′(s)(ϑ(λ) − ϑ(s))
n− ϱ− 1

+
1
Γ(n − ϱ)

ϑ′(s)(ϑ(λ) − ϑ(s))
n− ϱ− 1

U
(n)

(s)V
(n)

(s)
(ϑ(λ))

n− ϱ

Γ(n − ϱ + 1)

≥ c
D
ϱ,ϑ
0+ U􏼐 􏼑(λ)

1
Γ(n − ϱ)

ϑ′(s)(ϑ(λ) − ϑ(s))
n− ϱ− 1

V
(n)

(s)

+
c
D
ϱ,ϑ
0+ V􏼐 􏼑(λ)

1
Γ(n − ϱ)

ϑ′(s)(ϑ(λ) − ϑ(s))
n− ϱ− 1

U
(n)

(s).

(63)

Now, integrating over (0, λ) reveals

c
D
ϱ,ϑ
0+ UV􏼐 􏼑(λ)

1
Γ(n − ϱ)

􏽚
λ

0
ϑ′(s)(ϑ(λ) − ϑ(s))

n− ϱ− 1ds

+
1
Γ(n − ϱ)

􏽚
λ

0
ϑ′(s)(ϑ(λ) − ϑ(s))

n− ϱ− 1
U

(n)
(s)V

(n)

(s)ds
(ϑ(λ))

n− ϱ

Γ(n − ϱ + 1)

≥ c
D
ϱ,ϑ
0+ U􏼐 􏼑(λ)

1
Γ(n − ϱ)

􏽚
λ

0
ϑ′(s)(ϑ(λ) − ϑ(s))

n− ϱ− 1
V

(n)
(s)ds

+
c
D
ϱ,ϑ
0+ V􏼐 􏼑(λ)

1
Γ(n − ϱ)

􏽚
λ

0
ϑ′(s)(ϑ(λ) − ϑ(s))

n− ϱ− 1
U

(n)
(s)ds.

(64)

�erefore, we have

(ϑ(λ))
n− ϱ

Γ(n − ϱ + 1)

c
D
ϱ,ϑ
0+ UV􏼐 􏼑(λ) +

c
D
ϱ,ϑ
0+ UV􏼐 􏼑(λ)

(ϑ(λ))
n− ϱ

Γ(n − ϱ + 1)

≥ c
D
ϱ,ϑ
0+ U􏼐 􏼑(λ)

c
D
ϱ,ϑ
0+ V􏼐 􏼑(λ) +

c
D
ϱ,ϑ
0+ V􏼐 􏼑(λ)

c
D
ϱ,ϑ
0+ U􏼐 􏼑(λ).

(65)

�e proof of �eorem 4 is complete. □

Corollary 4. Setting ϱ � 1, then under the assumptions of
Eeorem 4, we have

c
D

ϑ
0+UV􏼐 􏼑(λ)≥

Γ(n)

(ϑ(λ))
n− 1

c
D

ϑ
0+U􏼐 􏼑(λ)

c
D

ϑ
0+V􏼐 􏼑(λ).

(66)

Corollary 5. Setting ϑ(λ) � λ, then under the assumption of
Eeorem 4, we have a new result for the Caputo fractional
derivative operator:

c
D
ϱ
0+UV( 􏼁(λ)≥

Γ(n − ϱ + 1)

(λ)
n− ϱ

c
D
ϱ
0+U( 􏼁(λ)

c
D
ϱ
0+V( 􏼁(λ).

(67)

Theorem 5. For n ∈ N, ϱ, δ ≥ 1, and let there be two abso-
lutely continuous functions U and V which are synchronous
on [0,∞). Also, assume that ϑ be differentiable and strictly

8 Journal of Mathematics



increasing on [0,∞) with ϑ(0) � 0. Een, for all λ> 0, we
have

cD
ϱ,ϑ
0+ UV􏼐 􏼑(λ)(ϑ(λ))

n− δ

Γ(n − δ + 1)
+

(ϑ(λ))
n− 〉 c

D
δ,ϑ
0+ UV􏼐 􏼑(λ)

Γ(n − ϱ + 1)

≥ c
D
ϱ,ϑ
0+ U􏼐 􏼑(λ)

c
D

δ,ϑ
0+ V􏼐 􏼑(λ) +

c
D
ϱ,ϑ
0+ V􏼐 􏼑(λ)

c
D

δ,ϑ
0+ U􏼐 􏼑(λ).

(68)

Proof. Using inequality (61) and multiplying both sides by
1
Γ(n − δ)

ϑ′(s)(ϑ(λ) − ϑ(s))
n− δ− 1

, λ ∈ R, (69)

yields

c
D
ϱ,ϑ
0+ UV􏼐 􏼑(λ)

1
Γ(n − δ)

ϑ′(s)(ϑ(λ) − ϑ(s))
n− δ− 1

+
1
Γ(n − δ)

ϑ′(s)(ϑ(λ) − ϑ(s))
n− δ− 1

U
(n)

(s)V
(n)

(s)
(ϑ(λ))

n− ϱ

Γ(n − ϱ + 1)

≥ c
D
ϱ,ϑ
0+ U􏼐 􏼑(λ)

1
Γ(n − δ)

ϑ′(s)(ϑ(λ) − ϑ(s))
n− δ− 1

V
(n)

(s)

+
c
D
ϱ,ϑ
0+ V􏼐 􏼑(λ)

1
Γ(n − δ)

ϑ′(s)(ϑ(λ) − ϑ(s))
n− δ− 1

U
(n)

(s).

(70)

Furthermore, integrating both sides with respect to s

over (0, λ) leads to
cD
ϱ,ϑ
0+ UV􏼐 􏼑(λ)

Γ(n − δ)
􏽚
λ

0
ϑ′(s)(ϑ(λ) − ϑ(s))

n− δ− 1ds

+
(ϑ(λ))

n− ϱ

Γ(n − ϱ + 1)

1
Γ(n − δ)

􏽚
λ

0
ϑ′(s)(ϑ(λ) − ϑ(s))

n− δ− 1
U

(n)

(s)V
(n)

(s)ds

≥
cD
ϱ,ϑ
0+ U􏼐 􏼑(λ)

Γ(n − δ)
􏽚
λ

0
ϑ′(s)(ϑ(λ) − ϑ(s))

n− δ− 1
V

(n)
(s)ds

+

cD
ϱ,ϑ
0+ V􏼐 􏼑(λ)

Γ(n − δ)
􏽚
λ

0
ϑ′(s)(ϑ(λ) − ϑ(s))

n− δ− 1
U

(n)
(s)ds.

(71)

�erefore, we have
cD
ϱ,ϑ
0+ UV􏼐 􏼑(λ)(ϑ(λ))

n− δ

(n − δ + 1)
+

(ϑ(λ))
n− 〉 c

D
δ,ϑ
0+ UV􏼐 􏼑(λ)

Γ(n − ϱ + 1)

≥ c
D
ϱ,ϑ
0+ U􏼐 􏼑(λ)

c
D

δ,ϑ
0+ V􏼐 􏼑(λ) +

c
D
ϱ,ϑ
0+ V􏼐 􏼑(λ)

c
D

δ,ϑ
0+ U􏼐 􏼑(λ).

(72)

Hence, this completes the proof. □

Remark. Applying�eorem 5 to ϱ � δ results in�eorem 4.

Corollary 6. Setting ϱ � δ � 1, then under the assumptions
of Eeorem 5, we have

c
D

ϑ
0+UV􏼐 􏼑(λ)≥

Γ(n)

(ϑ(λ))
n− 1

c
D

ϑ
0+U􏼐 􏼑(λ)

c
D

ϑ
0+V􏼐 􏼑(λ).

(73)

Corollary 7. Setting ϑ(λ) � λ, then under the assumption of
Eeorem 5, we have inequality for Caputo fractional
derivative:

λn− δ c
D
ϱ
0+UV( 􏼁(λ)

Γ(n − δ + 1)
+
λn− 〉 c

D
δ
0+UV􏼐 􏼑(λ)

Γ(n − ϱ + 1)

≥ c
D
ϱ
0+U( 􏼁(λ)

c
D

δ
0+V􏼐 􏼑(λ) +

c
D
ϱ
0+V( 􏼁(λ)

c
D

δ
0+U􏼐 􏼑(λ).

(74)

Theorem 6. For n ∈ N, ϱ ≥ 1, and let U(n)
j for 1≤ j≤ κ be

real-valued increasing functions defined on [0,∞). Also,
assume that ϑ be differentiable and strictly increasing on
[0,∞) with ϑ(0) � 0. Een, for all λ> 0, we have

c
D
ϱ,ϑ
0+ 􏽙

κ

j�1
Uj

⎛⎝ ⎞⎠(λ)≥
Γ(n − ϱ + 1)

(ϑ(λ))n− 〉
􏼢 􏼣

κ− 1

􏽙

κ

j�1

c
D
ϱ,ϑ
0+ Uj􏼐 􏼑(λ).

(75)

Proof. To prove the present theorem, we use mathematical
induction on κ ∈ N. Clearly, the case κ � 1 of (75) holds.

For κ � 2, since U
(n)
1 ,U

(n)
2 are increasing, we have

〈U(n)
1 (λ) − U

(n)
1 (ω),U

(n)
2 (λ) − U

(n)
2 (ω)〉 ≥ 0. (76)

Now, the left part of inequality (75) for κ � 2 is the same
as that of �eorem 4.

Suppose that inequality (82) holds for some κ≥ 3. We
observe that, since U

(n)
j is increasing, U � 􏽑

κ
j�1 U

(n)
j is

increasing. Let V � U
(n)
κ+1. �en, applying the case κ � 2 to

the function U and V produces

c
D
ϱ,ϑ
0+ 􏽙

κ

j�1
UjUκ+1

⎛⎝ ⎞⎠(λ)≥
Γ(n − ϱ + 1)

(ϑ(λ))
n− ϱ􏼢 􏼣

c
D
ϱ,ϑ
0+ 􏽙

κ

j�1
Uj

⎛⎝ ⎞⎠ c
D
ϱ,ϑ
0+ Uκ+1􏼐 􏼑(λ)

≥
Γ(n − ϱ + 1)

(ϑ(λ))n− ϱ􏼢 􏼣

κ

􏽙

κ+1

j�1

c
D
ϱ,κ
0+ Uj􏼐 􏼑(λ),

(77)

in which the induction hypothesis for κ is used inside the
deduction of second inequality. �e proof of �eorem 6 is
complete. □

Corollary 8. Let U(n)
j for 1≤ j≤ κ be real-valued increasing

functions defined on [0,∞). For ϱ > 0, we have
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c
D

ϑ
0+ 􏽙

κ

j�1
Uj

⎛⎝ ⎞⎠(λ)≥
Γ(n)

(ϑ(λ))n− 1􏼢 􏼣

κ− 1

􏽙

κ

j�1

c
D

ϑ
0+Uj􏼐 􏼑(λ).

(78)

Proof. �is follows from taking ϱ � 1 in �eorem 6. □

Corollary 9. If we choose ϑ(λ) � λ, then under the as-
sumptions of Eeorem 6, we have a new result for Caputo
fractional derivative operator:

c
D
ϱ
0+ 􏽙

κ

j�1
Uj

⎛⎝ ⎞⎠(λ)≥
Γ(n − ϱ + 1)

λn− ϱ􏼢 􏼣

κ− 1

􏽙

κ

j�1

c
D
ϱ
0+Uj􏼐 􏼑(λ).

(79)

Theorem 7. For n ∈ Nϱ≥ 1, let U,V be two absolutely
continuous mappings on [0,∞) such that U(n) is increasing,
V(n) is differentiable, and V(n+1) is a lower bound
c � infμ∈[0,∞)V

(n+1)(μ). Also, assume that ϑ be differentiable
and strictly increasing on [0,∞) with ϑ(0) � 0. Een, for all
λ> 0, we have

c
D
ϱ,ϑ
0+ UV􏼐 􏼑(λ)≥

Γ(n − ϱ + 1)

(ϑ(λ))
n− ϱ

c
D
ϱ,ϑ
0+ U􏼐 􏼑(λ)

c
D
ϱ,ϑ
0+ V􏼐 􏼑(λ)

−
θλ(ϑ(λ))

n− ϱ

Γ(n − ϱ + 1)

c
D
ϱ,ϑ
0+ U􏼐 􏼑(λ) + θ c

D
ϱ,ϑ
0+ IU􏼐 􏼑(λ),

(80)

where I(λ) is the identity function.

Proof. Let h(λ) � V(λ) − θλ. We shall show that h is
differentiable and increasing on [0,∞). As we did in the
proof of �eorem 6, for clarity, let Υ(λ) � θλ, and we find

c
D
ϱ,ϑ
0+ U(V − Υ)􏼐 􏼑(λ)≥

Γ(n − ϱ + 1)

(ϑ(λ))
n− ϱ

c
D
ϱ,ϑ
0+ U􏼐 􏼑(λ)

c
D
ϱ,ϑ
0+ (V − Υ)􏼐 􏼑(λ)

�
Γ(n − ϱ + 1)

(ϑ(λ))
n− ϱ

c
D
ϱ,ϑ
0+ U􏼐 􏼑(λ)

c
D
ϱ,ϑ
0+ V􏼐 􏼑(λ)

−
Γ(n − ϱ + 1)

(ϑ(λ))
n− ϱ

c
D
ϱ,ϑ
0+ U􏼐 􏼑(λ)

c
D
ϱ,ϑ
0+ Υ􏼐 􏼑(λ),

(81)

where
c
D
ϱ,ϑ
0+ U(V − Υ)􏼐 􏼑(λ) �

c
D
ϱ,ϑ
0+ UV􏼐 􏼑(λ) − θ c

D
ϱ,ϑ
0+ IU􏼐 􏼑(λ),

(82)

c
D
ϱ,ϑ
0+ Υ􏼐 􏼑(λ) �

θλ(ϑ(λ))
n− ϱ

Γ(n − ϱ + 1)
. (83)

Substituting (82) and (83) into (81) leads to the desired
results. □

Corollary 10. If we choose ϱ � 1, then under the assumption
of Eeorem 7, we have

c
D

ϑ
0+UV􏼐 􏼑(λ)≥

Γ(n)

(ϑ(λ))
n− 1

c
D

ϑ
0+U􏼐 􏼑(λ)

c
D

ϑ
0+V􏼐 􏼑(λ)

−
θλ(ϑ(λ))

n

Γ(n)

c
D

ϑ
0+U􏼐 􏼑(λ) + θ c

D
ϑ
0+IU􏼐 􏼑(λ),

(84)

where I(λ) is the identity function.

Corollary 11. If we choose ϑ(λ) � λ, then under the as-
sumption of Eeorem 7, we have a new result for Caputo
fractional derivative operator:

c
D
ϱ
0+UV( 􏼁(λ)≥

Γ(n − ϱ + 1)

λn− 〉

c
D
ϱ
0+U( 􏼁(λ)

c
D
ϱ
0+V( 􏼁(λ)

−
θλn− ϱ+1

Γ(n − ϱ + 1)

c
D
ϱ
0+U( 􏼁(λ) + θ c

D
ϱ
0+IU( 􏼁(λ),

(85)

where I(λ) is the identity function.

5. Gr€uss Type Inequalities for the Caputo
Fractional Derivative in the ϑ-Hilfer
Sense Operators

In this section, we prove some Gr€uss type inequalities in-
volving the Caputo fractional derivative in the ϑ-Hifer sense
operator defined in (15).

Theorem 8. For n ∈ N, ϱ, δ > 0, and let there be an absolutely
continuous functionU defined on [0,∞). Also, assume that ϑ
be differentiable and strictly increasing on [0,∞) with
ϑ(0) � 0. Suppose that there exist two integrable functions
Υ(n)

1 ,Υ(n)
2 on [0,∞) such that

Υ(n)
1 (λ)≤U(n)

(λ)≤Υ(n)
2 (λ), ∀λ ∈ [0,∞). (86)

�en, we obtain the following inequality for the gen-
eralized Caputo fractional integral operator:

c
D

ϑ,δ
0+ Υ1(λ)

c
D

ϑ,〉
0+ U(λ) +

c
D

ϑ,ϱ
0+ Υ2(λ)

c
D

ϑ,δ
0+ U(λ)

≥ c
D

ϑ,ϱ
0+ Υ2(λ)

c
D

ϑ,δ
0+ Υ1(λ) +

c
D

ϑ,ϱ
0+ U(λ)

c
D

ϑ,δ
0+ U(λ).

(87)

Proof. From (86), for all r≥ 0, s≥ 0, we have

Υ(n)
2 (r) − U

(n)
(r)􏼐 􏼑 U

(n)
(s) − Υ(n)

1 (s)􏼐 􏼑≥ 0,

Υ(n)
2 (r)U

(n)
(s) + Υ(n)

1 (s)U
(n)

(r)Υ(n)
1 (s)Υ(n)

2 (r)

+ U
(n)

(r)U
(n)

(s).

(88)

If we multiply both sides of (86) by
((ϑ(λ) − ϑ(r))n− ϱ− 1ϑ′(r))/Γ(n − ϱ) and integrating with
respect to r on (0, λ), we obtain
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U
(n)

(s)
1
Γ(n − ϱ)

􏽚
λ

0
(ϑ(λ) − ϑ(r))

n− ϱ− 1ϑ′(r)Υ(n)
2 (r)dr

+ Υ(n)
1 (s)

1
Γ(n − ϱ)

􏽚
λ

0
(ϑ(λ) − ϑ(r))

n− ϱ− 1ϑ′(r)U
(n)

(r)dr

≥Υ(n)
1 (s)

1
Γ(n − ϱ)

􏽚
λ

0
􏽚

λ

0

(ϑ(λ) − ϑ(r))
n− ϱ− 1ϑ′(r)Υ(n)

2 (r)dr+

U
(n)

(s)
1
Γ(n − ϱ)

􏽚
λ

0
(ϑ(λ) − ϑ(r))

n− ϱ− 1ϑ′(r)U
(n)

(r)dr,

(89)

which can be written as follows:

U
(n)

(s)
c
D

ϑ,ϱ
0+ Υ2(λ) + Υ(n)

1 (s)
c
D

ϑ,ϱ
0+ U(λ)≥Υ(n)

1 (s)
c
D

ϑ,ϱ
0+ Υ2

(λ) + U
(n)

(s)
c
D

ϑ,ϱ
0+ U(λ).

(90)

If we multiply both sides of (90) bs
((ϑ(λ) − ϑ(s))n− δ− 1ϑ′(s))/Γ(n − δ) and integrating with
respect to s on (0, λ), we obtain

c
D

ϑ,δ
0+ Υ1(λ)

c
D

ϑ,ϱ
0+ U(λ) +

c
D

ϑ,ϱ
0+ Υ2(λ)

c
D

ϑ,δ
0+ U(λ)

≥ c
D

ϑ,ϱ
0+ Υ2(λ)

c
D

ϑ,δ
0+ Υ1(λ) +

c
D

ϑ,ϱ
0+ U(λ)

c
D

ϑ,δ
0+ U(λ).

(91)

Hence, this completes the proof. □

Corollary 12. Let ϑ(λ) � λ in Eeorem 8; then, we have the
inequality for Caputo-type fractional derivative operator:

c
D

δ
0+Υ1(λ)

c
D
ϱ
0+U(λ) +

c
D
ϱ
0+Υ2(λ)

c
D

δ
0+U(λ)

≥ c
D
ϱ
0+Υ2(λ)

c
D

δ
0+Υ1(λ) +

c
D
ϱ
0+U(λ)

c
D

δ
0+U(λ).

(92)

Corollary 13. Let U be an absolutely continuous on [0,∞).
Suppose that q≤U(n)(λ)≤Q, for all λ ∈ [0,∞) and
q, Q ∈R. Een, for λ> 0, ϱ > 0, δ > 0, we have

q
ϑn− δ

(λ)

Γ(n − δ + 1)

c
D

ϑ,ϱ
0+ U(λ)􏼐 􏼑 + Q

ϑn− ϱ
(λ)

Γ(n − ϱ + 1)

c
D

ϑ,δ
0+ U(λ)􏼐 􏼑

≥ qQ
ϑn− δ

(λ)

Γ(n − δ + 1)

ϑn− 〉
(λ)

Γ(n − ϱ + 1)
+

c
D

ϑ,ϱ
0+ U(λ)

c
D

ϑ,δ
0+ U(λ).

(93)

Theorem 9. For n ∈ N, ϱ, δ > 0, and let there be an absolutely
continuous functionU defined on [0,∞). Also, assume that ϑ
be differentiable and strictly increasing on [0,∞) with
ϑ(0) � 0. Suppose that (86) holds, and moreover assume that
there exist φ(n)

1 and φ(n)
2 integrable functions on [0,∞) such

that

φ(n)
1 (λ)≤V(n)

(λ)≤φ(n)
2 (λ), ∀λ ∈ [0,∞). (94)

�en, the following inequalities hold for generalized
Caputo fractional derivative operator:

(a)
c
D

ϑ,δ
0+ φ1(λ)

c
D

ϑ,ϱ
0+ U(λ) +

c
D

ϑ,ϱ
0+ Υ2(λ)

c
D

ϑ,δ
0+ V(λ)≥ c

D
ϑ,δ
0+ φ1(λ)

c
D

ϑ,ϱ
0+ Υ2(λ) +

c
D

ϑ,ϱ
0+ U(λ)

c
D

ϑ,δ
0+ V(λ),

(b)
c
D

ϑ,δ
0+ Υ1(λ)

c
D

ϑ,ϱ
0+ V(λ) +

c
D

ϑ,ϱ
0+ φ2(λ)

c
D

ϑ,δ
0+ U(λ)≥ c

D
ϑ,δ
0+ Υ1(λ)

c
D

ϑ,ϱ
0+ φ2(λ) +

c
D

ϑ,δ
0+ U(λ)

c
D

ϑ,ϱ
0+ V(λ),

(c) c
D

ϑ,ϱ
0+ Υ2(λ)

c
D

ϑ,δ
0+ φ2(λ) +

c
D

ϑ,ϱ
0+ U(λ)

c
D

ϑ,δ
0+ V(λ)≥ c

D
ϑ,ϱ
0+ Υ2(λ)

c
D

ϑ,δ
0+ V(λ) +

c
D

ϑ,δ
0+ φ2(λ)

c
D

ϑ,ϱ
0+ U(λ),

(d)
c
D

ϑ,ϱ
0+ Υ1(λ)

c
D

ϑ,δ
0+ φ1(λ) +

c
D

ϑ,ϱ
0+ U(λ)

c
D

ϑ,δ
0+ V(λ)≥ c

D
ϑ,ϱ
0+ Υ1(λ)

c
D

ϑ,δ
0+ V(λ)+

c
D

ϑ,δ
0+ φ1(λ)

c
D

ϑ,ϱ
0+ U(λ).

(95)

Proof. From (86) and (94) for all r≥ 0, s≥ 0, we have

Υ(n)
2 (r) − U

(n)
(r)􏼐 􏼑 V

(n)
(s) − φ(n)

1 (s)􏼐 􏼑≥ 0, (96)

then

Υ(n)
2 (r)V

(n)
(s) + φ(n)

1 (s)U
(n)

(r)≥φ(n)
1 (s)Υ(n)

2 (r)

+ U
(n)

(r)V
(n)

(s).
(97)

If we multiply both sides of (97) by
((ϑ(λ) − ϑ(r))n− ϱ− 1ϑ′(r))/Γ(n − ϱ), and integrating with
respect to r on (0, λ), we have

V
(n)

(s)
1
Γ(n − ϱ)

􏽚
λ

0
(ϑ(λ) − ϑ(r))

n− ϱ− 1ϑ′(r)Υ(n)
2 (r)dr

+ φ(n)
1 (s)

1
Γ(n − ϱ)

􏽚
λ

0
(ϑ(λ) − ϑ(r))

n− ϱ− 1ϑ′(r)U
(n)

(r)dr

≥φ(n)
1 (s)

1
Γ(n − ϱ)

􏽚
λ

0
(ϑ(λ) − ϑ(r))

n− ϱ− 1ϑ′(r)Υ(n)
2 (r)dr

+ V
(n)

(s)
1
Γ(n − ϱ)

􏽚
λ

0
(ϑ(λ) − ϑ(r))

n− ϱ− 1ϑ′(r)U
(n)

(r)dr.

(98)
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It can be written as

V
(n)

(s)
c
D

ϑ,ϱ
0+ Υ2(λ) + φ(n)

1 (s)
c
D

ϑ,ϱ
0+ U(λ)

≥φ(n)
1 (s)

c
D

ϑ,ϱ
0+ Υ2(λ) + V

(n)
(s)

c
D

ϑ,ϱ
0+ U(λ).

(99)

If we multiply both sides of (99) by
((ϑ(λ) − ϑ(s))n− δ− 1ϑ′(s))/Γ(n − δ) and integrating with
respect to s on (0, λ), we obtain

c
D

ϑ,δ
0+ φ1(λ)

c
D

ϑ,ϱ
0+ U(λ) +

c
D

ϑ,ϱ
0+ Υ2(λ)

c
D

ϑ,δ
0+ V(λ)

≥ c
D

ϑ,δ
0+ φ1(λ)

c
D

ϑ,ϱ
0+ Υ2(λ) +

c
D

ϑ,ϱ
0+ U(λ)

c
D

ϑ,δ
0+ V(λ).

(100)

�is proves (a).
To prove (b) − (d), we use the following inequalities:

(b) φ(n)
2 (r) − V

(n)
(r)􏼐 􏼑 U

(n)
(s)Υ(n)

1 (s)􏼐 􏼑≥ 0,

(c) Υ(n)
2 (r) − U

(n)
(r)􏼐 􏼑 V

(n)
(s) − φ(n)

2 (s)􏼐 􏼑≤ 0,

(d) Υ(n)
1 (r) − U

(n)
(r)􏼐 􏼑 V

(n)
(s) − φ(n)

1 (s)􏼐 􏼑≤ 0.

(101)

�e following inequalities are special cases of�eorem 9. □

Corollary 14. LetU andV be two absolutely continuous on
[0,∞), λ, ϱ, δ > 0. Suppose that there exist real constants
q, Q, p, P such that

q≤U(n)
(λ)≤Q,

p≤V(n)
(λ)≤P, ∀λ ∈ [0,∞).

(102)

�en, we have

(i) p
ϑn− δ

(λ)

Γ(n − δ + 1)

c
D

ϑ,ϱ
0+ U(λ)􏼐 􏼑 + Q

ϑn− ϱ
(λ)

Γ(n − ϱ + 1)

c
D

ϑ,δ
0+ V(λ)􏼐 􏼑

≥pQ
ϑn− δ

(λ)

Γ(n − δ + 1)

ϑn− ϱ
(λ)

Γ(n − ϱ + 1)
+

c
D

ϑ,ϱ
0+ U(λ)

c
D

ϑ,δ
0+ V(λ),

(ii) q
ϑn− δ

(λ)

Γ(n − δ + 1)

c
D

ϑ,ϱ
0+ V(λ)􏼐 􏼑 + P

ϑn− ϱ
(λ)

Γ(n − ϱ + 1)

c
D

ϑ,δ
0+ U(λ)􏼐 􏼑

≥ qP
ϑn− δ

(λ)

Γ(n − δ + 1)

ϑn− ϱ
(λ)

Γ(n − ϱ + 1)
+

c
D

ϑ,δ
0+ U(λ)􏼐 􏼑

c
D

ϑ,ϱ
0+ V(λ)􏼐 􏼑,

(iii) PQ
ϑn− δ

(λ)

Γ(n − δ + 1)

ϑn− ϱ
(λ)

Γ(n − ϱ + 1)
+

c
D

ϑ,ϱ
0+ U(λ)􏼐 􏼑

c
D

ϑ,δ
0+ V(λ)􏼐 􏼑

≥Q
ϑn− ϱ

(λ)

Γ(n − ϱ + 1)

c
D

ϑ,δ
0+ V(λ)􏼐 􏼑 + P

ϑn− δ
(λ)

Γ(n − δ + 1)

c
D

ϑ,ϱ
0+ U(λ)􏼐 􏼑,

(iv) pq
ϑn− δ

(λ)

Γ(n − δ + 1)

ϑn− ϱ
(λ)

Γ(n − ϱ + 1)
+

c
D

ϑ,ϱ
0+ U(λ)􏼐 􏼑

c
D

ϑ,δ
0+ V(λ)􏼐 􏼑

≥ q
ϑn− ϱ

(λ)

Γ(n − ϱ + 1)

c
D

ϑ,δ
0+ V(λ)􏼐 􏼑 + p

ϑn− δ
(λ)

Γ(n − δ + 1)

c
D

ϑ,ϱ
0+ U(λ)􏼐 􏼑.

(103)

Corollary 15. Let U,V ∈ L1([0,∞]) and
ϑ(λ) � λ, λ> 0, ϱ > 0, δ > 0. Suppose that there exist real
constants q, Q, p, P, such that

q≤U(n)
(λ)≤Q,

p≤V(n)
(λ)≤P, ∀λ ∈ [0,∞).

(104)

�en, we have new inequalities for Caputo fractional
derivative operator:

(a)
c
D

δ
0+φ1(λ)

c
D
ϱ
0+U(λ) +

c
D
ϱ
0+Υ2(λ)

c
D

δ
0+V(λ)

≥ c
D

δ
0+φ1(λ)

c
D
ϱ
0+Υ2(λ) +

c
D
ϱ
0+U(λ)

c
D

δ
0+V(λ),

(b)
c
D

δ
0+Υ1(λ)

c
D
ϱ
0+V(ζ) +

c
D
ϱ
0+φ2(λ)

c
D

δ
0+U(λ)

≥ c
D

δ
0+Υ1(λ)

c
D
ϱ
0+φ2(λ) +

c
D

δ
0+U(λ)

c
D
ϱ
0+V(λ),

(c) c
D
ϱ
0+Υ2(λ)

c
D

δ
0+φ2(λ) +

c
D
ϱ
0+U(λ)

c
D

δ
0+V(λ)

≥ c
D
ϱ
0+Υ2(λ)

c
D

δ
0+V(λ) +

c
D

δ
0+φ2(λ)

c
D
ϱ
0+U(λ),

(d)
c
D
ϱ
0+Υ1(λ)

c
D

δ
0+φ1(λ) +

c
D
ϱ
0+U(λ)

c
D

δ
0+ (λ)

≥ c
D
ϱ
0+Υ1(λ)

c
D

δ
0+V(λ) +

c
D

δ
0+φ1(λ)

c
D
ϱ
0+U(λ).

(105)

Example 1. For n ∈ N, ϱ, δ > 0, and let there be an absolutely
continuous function U and V defined on [0,∞). Also,
assume that ϑ be differentiable and strictly increasing on
[0,∞) with ϑ(0) � 0, and p, q> 0 satisfying p + q � 1. �en,
for λ> 0, one has

a∗( 􏼁 p
c
D

ϑ,δ
0+ U(λ)

c
D

ϑ,ϱ
0+ V(λ) + q

c
D

ϑ,ϱ
0+ U(λ)

c
D

ϑ,δ
0+ V(c)

≥ c
D

ϑ,δ
0+ U

p
(λ)V

q
(λ)( 􏼁

c
D

ϑ,ϱ
0+ U

q
(λ)V

p
(λ)( 􏼁,

b∗( 􏼁 p
c
D

ϑ,δ
0+ U

p− 1
(λ)

c
D

ϑ,ϱ
0+ U(λ)V

q
(λ)( 􏼁

+ q
c
D

ϑ,ϱ
0+ V

q− 1
(λ)

c
D

ϑ,δ
0+ U

q
(λ)V(λ)( 􏼁

≥ c
D

ϑ,δ
0+ V

q
(λ)

c
D

ϑ,ϱ
0+ U

p
(λ),

c∗( 􏼁 p
c
D

ϑ,δ
0+ U(λ)

c
D

ϑ,ϱ
0+ V

(2/p)
(λ)

+ q
c
D

ϑ,δ
0+ V(λ)

c
D

ϑ,ϱ
0+ U

(2/p)
(λ)

≥ c
D

ϑ,δ
0+ U

p
(λ)V(λ)

c
D

ϑ,ϱ
0+ V

q
(λ)U

2
(λ),

d∗( 􏼁 p
c
D

ϑ,δ
0+ U

(2/p)
(λ)V

q
(λ)

c
D

ϑ,ϱ
0+ V

p− 1
(λ)

+ q
c
D

ϑ,δ
0+ V

q− 1
(λ)

c
D

ϑ,ϱ
0+ U

(2/p)
(λ)V

p
(λ)

≥ c
D

ϑ,δ
0+ U

2
(λ)

c
D

ϑ,ϱ
0+ V

2
(λ).

(106)

Proof. From the well-known weighted AM − GM
inequality,

pa + qb≥ a
p
b

q
, ∀ a, b≥ 0, p, q> 0, p + q � 1. (107)

By setting a � U(n)(r)V(n)(s) and
b � U(n)(s)V(n)(r), s, r> 1, we have
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pU
(n)

(r)V
(n)

(s) + qU
(n)

(s)V
(n)

(r)

≥ U
(n)

(r)V
(n)

(s)􏼐 􏼑
p
U

(n)
(s)V

(n)
(r)􏼐 􏼑

q
.

(108)
Multiplying both sides of (108) by

(ϑ′(s)(ϑ(λ) − ϑ(s))n− δ− 1ϑ′(r)(ϑ(λ) − ϑ(r))n− ϱ− 1) /Γ(n−

δ)Γ(n − ϱ), which is positive because r, s ∈ (0, λ), λ> 0, and
integrating the resulting identity from 0 to λ, we have

p

Γ(n − δ)Γ(n − ϱ)
􏽚
λ

0
􏽚
λ

0
ϑ′(s)(ϑ(λ) − ϑ(s))

n− δ− 1ϑ′(r)(ϑ(λ) − ϑ(r))
n− ϱ− 1

U
(n)

(r)V
(n)

(s)drds

+
q

Γ(n − δ)Γ(n − ϱ)
􏽚
λ

0
􏽚
λ

0
ϑ′(s)(ϑ(λ) − ϑ(s))

n− δ− 1ϑ′(r)(ϑ(λ) − ϑ(r))
n− ϱ− 1

U
(n)

(s)V
(n)

(r)drds

≥
1

Γ(n − δ)Γ(n − ϱ)
􏽚
λ

0
􏽚
λ

0
ϑ′(s)(ϑ(λ) − ϑ(s))

n− δ− 1ϑ′(r)(ϑ(λ) − ϑ(r))
n− ϱ− 1

× U
(n)

(r)V
(n)

(s)􏼐 􏼑
p
U

(n)
(s)V

(n)
(r)􏼐 􏼑

q
dsdr,

(109)

We conclude that

pD
ϑ,δ
0+ U(λ)D

ϑ,ϱ
0+ V(λ) + qD

ϑ,ϱ
0+ U(λ)D

ϑ,δ
0+ V(λ)≥Dϑ,δ

0+ U
p
(λ)V

q
(λ)( 􏼁D

ϑ,ϱ
0+ U

q
(λ)V

p
(λ)( 􏼁, (110)

which implies (a∗).�e rest of inequalities can be shown in a
similar way by the following choice of parameters in AM −

GM inequality:

b∗( 􏼁a �
U

(n)
(s)

U
(n)

(r)
, b �

V
(n)

(r)

V
(n)

(s)
,

U
(n)

(r), V
(n)

(s)≠ 0,

c∗( 􏼁a � U
(n)

(r) V
(n)

􏼐 􏼑
(2/q)

(s),

b � U
(n)

􏼐 􏼑
(2/q)

(s)V
(n)

(r),

d∗( 􏼁a �
U

(n)
􏼐 􏼑

(2/p)
(r)

V
(n)

(s)
,

b �
U

(n)
􏼐 􏼑

(2/q)
(s)

V
(n)

(r)
, V

(n)
(r), V

(n)
(r)≠ 0.

(111)

□

6. Conclusion

�emain objective of this paper will be a motivation source for
future studies. We established some new generalizations for
Hermite–Hadamard type pertaining nth-order differentiability
for convex functions via Caputo fractional operator in the
ϑ-Hilfer sense. To this date, this is the novel version of the
Grüss- and Čebyšev-type inequalities for two synchronous
functions via the Caputo fractional derivative in the ϑ-Hilfer
sense. �ese estimates, bounds, and inequalities hold for all
fractional operators mentioned in Remark 1. We conclude this
paper by emphasizing, again, that ourmain result here, being of

a very general in nature, can be specialized to yield numerous
interesting fractional integral inequalities. Furthermore, they
are expected to find some applications for establishing the
uniqueness of solutions in fractional boundary value problems
in the fractional partial differential equations.
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