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In this paper the two-parameter a-power exponential distribution is studied. We study the two-parameter a-power exponential
(u, A) distribution with the location parameter y > 0 and scale parameter A > 0 under progressive Type-II censored data with fixed
shape parameter a. We estimate the maximum likelihood estimators of these unknown parameters numerically since it cannot be
solved analytically. We use the approximate best linear unbiased estimators y* and 1", as an initial guesses to obtain the MLEs
and A. We estimate the interval estimation of these unknowns’ parameters. Monte Carlo simulations are performed and data

examples have been provided for illustration and comparison.

1. Introduction

The censoring sample takes place in the life testing exper-
iment, if we cannot notice the failure time of all items placed
on this experiment. To see this, assume a life-testing ex-
periment consisting from s units was kept under observa-
tion, and these units may be in industry manufactory,
individuals in clinical queue, computers, and any system in a
reliability study experiments so that if we preplanned to
remove some units from this experiment in order to provide
saving cost and time then after removing such units from
this experiment, the resulting data are named censored data.
There are three types of censoring schemes: Type-I, Type-II,
and progressive censoring schemes. Before defining these
types, assume # items are kept on a testing-life experiment;
then,

(1) Assume we decided to stop the experiment at pre-
fixed time T, to get only the failure time of the items
which fails prior to the time recorded, and the
resulting sample from this experiment is defined as
Type-I censoring sample.

(2) Assume that an experiment is stopped at Rth failure
then the resulting data is defined as Type-II censored
sample; note here Rth failure is considered to be

fixed, while X, denotes a random experiment
duration. For more details about Type-I and Type-II
censored samples, one can refer to Salah [1],
Balakrishnan and Aggarwala [2], Pradhan and
Kundu [3], and Lin et al. [4].

(3) Progressive censoring sample: assume s identical
items are placed on a life-testing experiment, and it is
decided to observe only k failures, and censor the
remaining s — k items progressively as follows. At the
time of the first failure, F, of the (s— 1) surviving
components are removed randomly from the ex-
periment; at the time of the next failure, F, of the
remaining (s—2 - F,) surviving components are
removed randomly from the experiment; repeat this
censoring up to the final stage, the time of the kth
failure, and we  have all  remaining
Fr=s-k-(F,-F,----—F;_,). The surviving
components are randomly removed from the ex-
periment and then the resulting censoring is called
progressive censoring. More precisely, it is named as
progressive Type-II censoring sample.

Let the sample Z 1., Zy s> - - - » Zpos DE @ progressively
Type-1I censored sample and (F;,F,,...,F;) be the pro-
gressive censoring scheme. Suppose that k, the number of
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observed failures, and (F,, F,, ..., F;) are all prefixed. Then,
we have the following special cases:

() IfF, =F,=---=F,_, =0and F; =s -k, then this
scheme is reduced to the Type-II censoring scheme.

2)If F=F,=---=F,=0 and k=5, then no cen-
soring happens (the complete data case). For pro-
gressive censoring and its inferences, one can refer to
Balakrishnan [5], Balakrishnan et al. [6], Salah [7],
Salah [8], Salah [9] and Khan et al. [10].

Mahdavi and Kundu [11] present a new method to add a
new parameter to a family of distribution. They named it as
a- power transformation (APT) method. They applied the
APT method to a specific class of distribution such as the
exponential distribution, and they called this new distri-
bution as the two-parameter a-power exponential (APE)
distribution. In this paper, we study the statistical inferences
of the APE (u,A) distribution under progressive Type-II
censoring schemes. Here, we define the APE distribution as
follows.

Definition 1. Let X be a random variable, then X follows a
two-parameter APE distribution APE (g, 1), with location
parameter (4> 0) and scale parameter (A>0) if the prob-
ability density function (pdf) and the cumulative distribu-
tion function (cdf) of X for any x > 0, respectively, are

log"l‘A A= ey,
£ x5 A) =1 (1)
[ A0, ifo=1,
(a1 ifatl
Foguwh)=1 a-1 ’ (2)
1-e W fg=1.

. ﬁ Alnoce,A (x#) g (1-e i)

1:104—1

L X~ A (x;- Ry
cl;[)»e M “)[e M ”)] ,

Since when « =1 in equation (5), then we have the log-
likelihood for the exponential distribution which is a special
case from APE distribution and is studied before, one can

1
InL = lnc+mln/\n —Z/l(x —p)+mlna- ln(xZe A ”)+ZR[ln(
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The rest of this paper is organized as follows. In Sections
2 and 3, we present the maximum likelihood estimators
MLEs (y,)t) and Fisher information matrix to estimate the
interval estimation for y and A. In Section 4, we derive the
approximate best linear unbiased estimators ABLUEs
(u*,A%) for y and A. In Section 5, numerical calculation and
simulation are preformed. Finally, conclusion is given in
Section 6.

2. Maximum Likelihood Estimator

This section presents the MLE () of 4 and the MLE (X) of A
from the APE (u,A) distribution when the samples are
progressively Type-II censored. To this end, assume X =
(X an Xopens> - -+ » Xyemen) 18 @ progressive Type-II cen-
soring sample from APE distribution and (R, R,,...,R,,)is
the progressively censoring scheme. Then, we have likeli-
hood function L(X,y,A) regarded to progressive Type-II
censored sample as

(sm3) 111

i=1

1 - F(xi:m:n’ U /\)]Ri’

(3)

zmn’y>

where
c=n(n-1-R)(n-2-R,—-R,),...,
Ry =+ =R,,).
For simplicity, we use L instead of L (X, u, 1) and x; for

X;mn- NOW, by substituting equations (1) and (2) into
equation (3) with some simplifications, we obtain

(4)

-(n-m+1-R,

R

o« a(pg*(*r#)) i
a—1 ’

ifa+l,
(5)

ifa=1.

refer to Balakrishnan et al. [6]. Now, from equation (5), the
log-likelihood function is given by

(1*8'““"”))> CIn(a- 1)]. 6)

i=1
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Differentiating equation (6) with respect to y and A,
respectively, we obtain

oln1 ) (5m1)
xi— )
" =ml— )Llnoc;e +AlnaZT)1,
(7)
olnL m & A (x-u)
=1 _I-’-Z(Xi y)(lnrxe 1)
_ A(xi-n)
—lnaz xyzle) .
-1
(8)

The MLEs i and 1 can be estimated by solving system of
equations: (dlnL/du) = 0 and (dInL/0A) = 0. It is observed

ux,«)((aew ) R (O (1 P ) - 1))

that MLEs cannot be obtained in explicit forms analytically
from the system, so one can use a numerical method to find
these MLEs numerically. Here, we use the Newton method
with ABLUEs as initial guesses for finding the MLEs i and A.

3. Fisher Information Matrix

In this section, we develop the interval estimates for the
parameters y and A of the APE distribution. To see this, we
derive the Fisher information matrix and then derive the
asymptotic Variance-Covariance matrix of these MLEs.
Hence, we have to derive the second derivatives of the InL
functions with respect to y and A. From equations (7) and
(8), we have

a InL _Az Z » ) (9)
a/,l ) ((Xefﬂ(xr#) _ 1)
m R (x; - p)’ _A(x"_”)(l + e’“”’”( ) na - 1))

i lnL _n lnocz 2 _A(x “ lnocz (i) i ’ e , (10)
ES = Gl

o’InL & (i

= 1 —u) -1 ((xi~#)
o\ on m+ n(x;(/\(x, u)—1e
Riefl(x"”‘)<ocﬂ(xm (1=A(x; —p) +A(x; —#)(ocefl(w)e’l(x”‘) Ina+ 1) - 1) (11)

From equations (9)-(11), the observed information
matrix can be inverted to obtain the asymptotic variance-
covariance matrix of the MLEs as follows:

o*InL| 9*InL
oW [ax oAy
(12)
*InL| *InL
Juorzx oA L
The distribution of pivotal quantities
p - Pk
b WVar(@)
~ 13
) (13)
p, =

\lVar(/T),

is considered to be standard normal regarded to the as-
ymptotic properties of MLEs. From P, and P,, one can
construct the confidence interval for y and A, respectively.

. 2
i1 (ae’/‘(xx #) _ 1)

Hence, 95% confidence intervals for ¢ and A based on the
MLEs are given by

[ —1.96+/Var (), i + 1.96+/Var (1) ],
- 1.96\Var(1), 1 + 1.96\Var (1) ].

4. Approximate Best Linear Unbiased Estimator

(14)

The BLUEs for ¢ and A are so difficult due to the difficulty in
solving the variance-covariance matrix X for the APE dis-
tribution and also its inverse =™ for large sample. In order to
that we derive the ABLUEs of y and A. To do this, suppose
that the progressively Type-II censored sample

x (Bookm) ¢ (Rivesl)

1:m:n 2:m:in

> Xﬂ(fii:n’Rm) > ( 1 5)

has been taken from APE distribution. By following the
method described by Balakrishnan and Aggarwala [2], we
compute the ABLUEs py* and A", respectively, as follows:



4
S (RyuR
we=Y AX g, (16)
i=1
Ny (RioR,)
A=Y B, (17)

where A; and B, are the coeflicients of the ABLUEs. In order
to find these coefficients, we developed an R-Code program.
The values of A; and B; are given in Table 1 and checked for
the conditions:

(18)

which is achieved. For more about the ABLUEs and the
coefficients A; and B;, see Balakrishnan and Aggarwala [2]
page 81 to page 110.

5. Simulation Study and
Numerical Calculations

Following the algorithm presented by Balakrishnan and
Sandhu [12], one can generate progressively Type-II cen-
sored samples from the standard APE distribution taking
u=0 and A = 1. We apply the given algorithm below to
perform the numerical computations and simulations
proposed in the previous sections.

Step 1: mindependent uniform (0, 1) variables W, ...,
W,, are generated
Step 2: for (R,,...,R,,) progressively censoring scheme,

VG S ) )
setV, =W, 2 s fori=1,2,...,m

Step 3:setU;=1-V,V, ...V, i,fori=12,...,
m, then U, ..U, 1S progressively Type-II
censored sample of size m from uniform (0, 1)
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Step 4: finally, for some given values of 4 and A, we have
X; = u+ 1/Mog[log a/log & — log[1 + (& — 1)u;]]  pro-
gressively generated from APE distribution

After applying the algorithm and selecting sample sizes
and censoring schemes from APE distribution given in
Table 2, we compute the ABLUEs of ¢ and A from equations
(16) and (17) and tabulate it in Table 1 for some chosen
values of the shape parameter a =1.5,2.5,3.5. We also
compute the biases and mean square error (MSE) of the
ABLUES of y and A in Tables 3-5. As we mentioned before,
we use the ABLUEs of ¢ and A to estimate the MLEs of ¢ and
A; these MLEs, biases, and MSEs of the parameters are
tabulated in Tables 6-8. All the computations are computed
using R program over 5000 Monte Carlo simulations. The
computations are carried out for some selected samples size:
n = 5,10, 20, 30, 50, 80, 100.

Example 1. From the APE distribution with 4 =0,A=1,
and « = 2.5, we generate a progressively Type-II censored
sample of size m = 6, from n = 20. The progressive censoring
scheme and its observations are

i 1 2 3 4 5 6
x; 0.1992 0.2402 0.4857 0.4920 0.5762 1.1805
R, 2 0 0 8 0 4

Using the above censored sample and from the likeli-
hood equations, (7) and (8), we compute the MLEs of 4 and A
to be

fi = —0.1764, o)
- 19
1 = 1.0982.

Using the above MLEs, the 95% confidence intervals for
the location y and scale A parameters are (-0.4812,2.2661)
and (1.0255,2.3089), respectively.

Similarly, we obtain the ABLUEs of y and A from Table 1
and equations (16) and (17) to be

= 0.1992 % 1.1633 + 0.2402 * 0.0004 + 0.4857 * (—0.0019) + 0.4920  (~0.0800) + 0.5762 % (~0.0082) + 1.1805 * (—0.0736),

u* = 0.0999,

(20)

A" =0.1992 % (=2.1928) + 0.2402 * 0.0467 + 0.4857 + 0.0674 + 0.4920 * 1.0560 + 0.5762 * 0.1279 + 1.1805 = 0.8948,

A" =1.2568.

Here, we notice that the ABLUEs are so closed to the
MLEs of the parameters p and A, and this shows that
ABLUE:s give good initial guesses when estimating the MLEs
of these parameters.

Example 2. The following data {2.247, 2.64, 2.908, 3.099,
3.126, 3.245, 3.328, 3.355, 3.383, 3.572, 3.581, 3.681, 3.726,
3.727, 3.728, 3.783, 3.785, 3.786, 3.896, 3.912, 3.964, 4.05,
4.063, 4.082, 4.111, 4.118, 4.141, 4.246, 4.251, 4.262, 4.326,

4.402, 4.457, 4.466, 4.519, 4.542, 4.555, 4.614, 4.632, 4.634,
4.636, 4.678, 4.698, 4.738, 4.832, 4.924, 5.043, 5.099, 5.134,
5.359, 5.473, 5.571, 5.684, 5.721, 5.98, 6.06} was taken from
Bader and Priest [13] and represents the strength for single
carbon fibers and impregnated 1000-cardon fiber tows,
measured in GPa. The data is reported at gange length 1 mm.
These data fitted the APE distribution, see Mahdavi and
Kundu [11]. We found that the MLEs of 4 and A for the
complete data are
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TaBLE 1: Coeflicients of ABLUEs of y and A from APE distribution.
a=15 a=25 o =35
Scheme/sum
A B; A B; A B;
1.3300 -1.5176 1.3522 —-1.3062 1.3716 —-1.2033
[1] —0.0823 0.4036 —0.0625 0.3028 —0.0457 0.2546
—0.2477 1.1140 —0.2898 1.0034 -0.3259 0.9487
Sum =1 = ~1 = ~1 ~
1.1091 -0.9709 1.1117 —0.8253 1.1368 —0.7565
-0.0186 0.1851 —0.0079 0.1225 0.0022 0.0939
[2] —0.0235 0.2153 —0.0220 0.1803 -0.0209 0.1655
-0.0277 0.2416 —0.0324 0.2204 -0.0366 0.2101
—0.0393 0.3289 —0.0494 0.3022 —0.0584 0.2870
Sum =1 =~ =~ = =~ ~
1.1651 —2.7948 1.1633 -2.1928 1.1613 —1.8893
—0.0064 0.1219 0.0004 0.0467 0.0076 0.0078
(3] —0.0070 0.1305 —0.0019 0.0674 0.0034 0.0368
—0.0805 1.3575 —0.0800 1.0560 —-0.0802 0.9056
—0.0094 0.1659 —0.0082 0.1279 -0.0071 0.1115
-0.0618 1.0190 —0.0736 0.8948 —0.0850 0.8275
Sum =1 = = = = =
1.0831 -2.1149 1.0770 -1.6014 1.0719 —1.3558
—-0.0419 1.0740 —0.0331 0.7273 -0.0254 0.5638
—0.0036 0.0980 —0.0014 0.0565 0.0007 0.0383
(4] —0.0041 0.1085 —0.0030 0.0784 -0.0021 0.0662
—0.0045 0.1176 —0.0043 0.0958 —-0.0043 0.0871
—0.0049 0.1254 —0.0054 0.1094 —0.0060 0.1026
—0.0053 0.1320 —0.0063 0.1198 —0.0073 0.1137
-0.0189 0.4594 —0.0234 0.4141 -0.0276 0.3870
Sum =] ~ =~ =~ =~ =~
1.1089 —4.4962 1.1086 —3.4660 1.1079 —2.9249
—0.0015 0.0665 0.0003 0.0163 0.0023 —0.0116
-0.0015 0.0685 0.0001 0.0216 0.0018 —0.0037
—-0.0016 0.0704 —0.0002 0.0267 0.0014 0.0037
[5] -0.0016 0.0723 —0.0004 0.0315 0.0010 0.0107
—0.0018 0.0742 —0.0006 0.0362 0.0006 0.0173
-0.0017 0.0760 —0.0007 0.0407 0.0003 0.0235
—0.0018 0.0778 —0.0009 0.0449 —0.0004 0.0294
—-0.0018 0.0796 —-0.0011 0.0490 —0.0004 0.0349
—0.0957 3.9109 —0.1056 3.1991 -0.1149 2.8206
Sum =] ~ ~ ~ ~ ~
1.0393 —2.5953 1.0390 -2.0121 1.0386 —-1.7159
—0.0006 0.0416 0.0001 0.0097 0.0009 —0.0069
—0.0006 0.0430 0.0000 0.0133 0.0007 -0.0017
—0.0006 0.0444 0.0000 0.0168 0.0005 0.0032
S$1002007120304962 0.0457 —0.0001 0.0200 0.0004 0.0078
—0.0007 0.0470 —0.0002 0.0231 0.0002 0.0120
—0.0007 0.0483 —0.0003 0.0261 0.0001 0.0160
[6] —0.0007 0.0495 —-0.0004 0.0289 0.0001 0.0198
—0.0007 0.0507 —0.0004 0.0316 —0.0002 0.0233
—0.0008 0.0519 —0.0005 0.0342 —0.0003 0.0266
—0.0008 0.0531 —0.0006 0.0366 —0.0004 0.0297
—0.0008 0.0542 —0.0006 0.0389 —-0.0005 0.0326
—0.0008 0.0552 —0.0007 0.0411 —0.0006 0.0353
—0.0008 0.0563 —0.0008 0.0433 —0.0007 0.0379
—0.0301 1.9544 —0.0345 1.6485 —0.0388 1.4803

Sum =1
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TaBLE 1: Continued.

a=15 o =25 o =35
Scheme/sum
A; B; A; B; A; B;
1.0405 -3.3421 1.0388 -2.5137 1.0370 —2.0908
—0.0099 0.8228 —0.0082 0.5501 -0.0066 0.4091
—0.0003 0.0309 0.0008 0.0079 0.0005 —0.0040
—0.0003 0.0317 0.0003 0.0099 0.0005 —0.0011
—0.0004 0.0325 0.0000 0.0118 0.0004 0.0016
—0.0004 0.0332 —0.0004 0.0136 0.0003 0.0048
—0.0004 0.0339 —0.0008 0.0154 0.0002 0.0067
—0.0004 0.0347 —0.0001 0.0171 0.0002 0.0090
—0.0004 0.0354 —0.0002 0.0188 0.0000 0.0112
(7] —0.0004 0.0361 —-0.0002 0.0204 0.0000 0.0133
—0.0004 0.0367 —0.0002 0.0219 0.0000 0.0154
—0.0004 0.0374 —-0.0003 0.0234 0.0000 0.0173
—0.0004 0.0381 —-0.0003 0.0248 —-0.0001 0.0191
—-0.0004 0.0387 —-0.0003 0.0262 —-0.0002 0.0209
—0.0005 0.0393 —-0.0003 0.0275 —-0.0002 0.0225
—0.0005 0.0399 —0.0004 0.0288 —0.0003 0.0241
—0.0005 0.0405 —-0.0004 0.0300 —-0.0003 0.0257
—0.0005 0.0411 -0.0004 0.0312 -0.0004 0.0271
—0.0115 0.9314 -0.0130 0.7792 -0.0146 0.6968
—0.0125 1.0078 -0.0144 0.8557 -0.0164 0.7713
Sum =1 =0 =1 =0 ~1 ~
TaBLE 2: Sample sizes and censoring schemes from APE distribution.
n m Scheme Censoring scheme
5 3 (1] (1,0,1)
10 5 [2] (5,0,0,0,0)
20 6 (3] (2,0,0,8,0,4)
30 8 (4] (10, 10,0,0,0,0,0,2)
50 10 [5] (0,0,0,0,0,0,0,0,0,40)
80 15 (6] (35,0,0,0,0,0,0,0,0,0,0,0,0,0, 30)
100 20 [7] (20,20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 20, 20)
TaBLE 3: ABLUEs p*, A", biases, and MSEs for y and A from APE distribution when «a = 1.5.
Scheme u A" Bias (p*) Bias(1") MSE (u*) MSE (A%)
[1] 0.0477 1.0575 0.0059 0.1439 0.0736 0.6482
[2] 0.1347 1.2711 0.0036 0.1172 0.0178 0.3989
(3] —0.0088 1.2199 0.0057 0.0098 0.0043 0.1843
(4] —-0.0376 1.3769 0.0026 0.0694 0.0021 0.1487
[5] -0.0190 1.4204 0.0023 0.0177 0.0006 0.1048
[6] —-0.0090 1.0030 0.0090 0.0030 0.0005 0.0052
[7] -0.0118 1.1481 0.0008 0.0097 0.0001 0.0041
TaBLE 4: ABLUEs p*, A", biases, and MSEs for y and A from APE distribution when «a = 2.5.
Scheme u A" Bias (u*) Bias(1") MSE (u*) MSE (A")
[1] -0.1913 1.3600 0.0256 0.1536 0.1143 0.4822
2] ~0.1382 1.4843 0.0124 0.2085 0.0347 03672
3] ~0.0803 1.3727 0.0019 0.0037 0.0071 0.1754
4] ~0.0422 1.3733 0.0072 0.0755 0.0028 01559
(5] -0.0280 1.2874 0.0004 0.0233 0.0013 0.1297
(6] ~0.0150 0.9950 0.0004 0.0022 0.0003 0.0582
[

7] 0.0044 1.1136 0.0005 0.0009 0.0002 0.0439
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TaBLE 5: ABLUEs p*, A", biases, and MSEs for 4 and A from APE distribution when « = 3.5.
Scheme u A" Bias (p*) Bias (1) MSE (u*) MSE (1)
[1] —0.0484 1.2976 0.0615 0.2154 0.1817 0.7038
[2] -0.2212 1.2530 0.0394 0.1533 0.0439 0.3248
[3] —0.1096 1.3558 0.0054 0.0131 0.0105 0.1692
[4] -0.0761 1.4350 0.0135 0.0537 0.0030 0.1177
[5] —0.0105 1.4435 0.0039 0.0132 0.0016 0.0681
[6] 0.0484 0.9950 0.0010 0.0146 0.0005 0.0517
(7] 0.0009 1.1870 0.0011 0.0008 0.0004 0.0403
TaBLE 6: MLEs [i, X, biases, and MSEs for y and A from APE distribution when « = 1.5.
Scheme 7 1 Bias (fi) Bias (X) MSE (p1) MSE (7\)
[1] ~0.0822 1.3960 0.0140 0.0008 0.0195 0.0001
2] ~0.0836 1.0989 0.0110 0.0008 0.0121 0.0001
3] ~0.0931 1.1621 0.0116 0.0009 0.0135 0.0002
4] ~0.0100 1.0914 0.0110 0.0010 0.0119 0.0000
(5] ~0.0748 0.9860 0.0098 0.0007 0.0097 0.0000
(6] ~0.0560 1.0600 0.0030 0.0005 0.0090 0.0000
(7] ~0.0611 1.1480 0.0011 0.0000 0.0013 0.0000
TaBLE 7: MLEs [, X, biases, and MSEs for y and A from APE distribution when « = 2.5.
Scheme i ) Bias (1) Bias (1) MSE (@) MSE (1)
[1] ~0.0533 1.1493 0.0115 0.0005 0.0132 0.0001
2] ~0.1205 1.1430 0.0111 0.0012 0.0131 0.0002
3] -0.1896 1.2341 0.0123 0.0019 0.0152 0.0004
[4] ~0.1870 1.1838 0.0118 0.0018 0.0140 0.0003
[5] -0.1703 1.2174 0.0122 0.0017 0.0148 0.0002
[6] ~0.1670 1.1560 0.0020 0.0002 0.0046 0.0000
7] ~0.1140 1.1236 0.0011 0.0001 0.0012 0.0000
TaBLE 8: MLEs i, A, biases, and MSEs for  and A from APE distribution when a = 3.5.
Scheme i A Bias (i) Bias (1) MSE (j1) MSE (1)
[1] -0.1334 1.1840 0.0118 0.0013 0.0140 0.0002
2] -0.0930 1.0147 0.0101 0.0009 0.0102 0.0001
3] -0.1938 1.0048 0.0120 0.0019 0.0145 0.0003
4] ~0.2411 1.1920 0.0120 0.0024 0.0142 0.0005
(5] ~0.1666 1.0449 0.0110 0.0017 0.0109 0.0003
(6] ~0.2242 1.0345 0.0020 0.0002 0.0040 0.0000
(7] -0.1478 1.0500 0.0015 0.0001 0.0024 0.0000
i = 2.3655, estimating MLEs. An R code program was performed to find
~ (21)  the ABLUEs and MLEs. It will be interesting to study the
A =1.2571.

Using the above MLEs, the 95% confidence intervals for
the location y and scale A parameters are (0.9453,1.5688)
and (2.1225,2.6085), respectively. Comparing the results in
this paper to that in Mahdavi and Kundu [11], we see that
these results are so close to each other.

6. Conclusion

The MLEs and ABLUEs of the location and scale parameters
from APE distribution are derived and tabulated for some
selected sample size and shape parameter. The ABLUEs are
so closed to the MLEs which gives good initial guesses in

Type-I and Type-II hybrid censoring scheme from the APE
distribution in future And also Bayesian and non-Bayesian
inference under adaptive type-II progressive censored
sample from APE distribution.
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