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We develop the multiwavelet Galerkin method to solve the Volterra–Fredholm integral equations. To this end, we represent the
Volterra and Fredholm operators in multiwavelet bases. +en, we reduce the problem to a linear or nonlinear system of algebraic
equations. +e interesting results arise in the linear type where thresholding is employed to decrease the nonzero entries of the
coefficient matrix, and thus, this leads to reduction in computational efforts. +e convergence analysis is investigated, and
numerical experiments guarantee it. To show the applicability of the method, we compare it with other methods and it can be
shown that our results are better than others.

1. Introduction

A mathematical model of the spatiotemporal development
of an epidemic yields the following Volterra–Fredholm
integral equation (VFIE):

u(x) � f(x) + 
x

0
k1(x, s, u(s))ds

+ 
1

0
k2(x, s, u(s))ds, x ∈ Ω ≔ [0, 1],

(1)

where the given functions f: Ω⟶ R and k1: S × R⟶ R

with S ≔ (x, s): x, s ∈ Ω{ } are assumed to be continuous
functions. Furthermore, we consider k2 ≔ p(x, s)h(u(s)) to
be integrable, where h(x) is a nonlinear function and
p(x, s): S⟶ R is a continuous function. Besides, the given
functions are selected so that equation (1) has a unique
solution.

+e parabolic boundary value problems lead to these
types of integral equations and widely arise from various
physical and biological models. +e VFIE also appears in the
literature in mixed form as

u(x) � f(x) + 
x

0

1

0
k(t, s)u(s)ds dt, (2)

where f and k are analytic functions. Many authors studied
the mixed form of VFIE numerically. Among these, we can
mention collocation method [1], projection method [2],
spline collocation method [3], wavelet collocation method
[4], Adomian decomposition method [5], and so on [6–8].
Among these studies, we focus on a paper that uses the
multiwavelet Galerkin method to solve linear mixed VFIE as
mentioned in [9]. In [9], the wavelet transform matrix and
the operational matrix of integration are utilized to reduce
the problem of linear mixed VFIE to a sparse linear system of
algebraic equations. By searching among the sources, we can
find a small number of papers in the field of numerical and
analytical solutions to problem (1). In [10], the Lagrange
collocation method is employed to solve this problem.Wang
andWang [11] applied the Taylor collocation method to find
the numerical solution of the equation. Also, the conver-
gence analysis is investigated for the proposed method. +e
Taylor collocation method was applied by Karamete and
Sezer [12] to solve this equation as well as the high-order
linear Fredholm–Volterra integrodifferential equations [13].
+e Bell polynomials have been employed for solving this
equation [14].

+e motivation of our work is to develop the multi-
wavelet Galerkin method to solve (1). We split the problem
into two configurations, linear and nonlinear. After using
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the multiwavelet Galerkin method, both types reduce to the
system of the linear and nonlinear algebraic equations, re-
spectively. +e interesting results arise in the linear type
where thresholding is employed to decrease the nonzero
entries of the coefficient matrix. +is gives the sparse system.
+is property is very useful to reduce the computational cost.
We use Alpert’s multiwavelet bases constructed in [15]
following [16], and these bases have been used to solved
PDEs, ODEs, and integral equations [9, 17–19]. +ese bases
allow us to have high vanishing moments, compact support,
and properties such as orthogonality and interpolation [15].
+ese characteristics of Alpert’s multiwavelets lead to a
sparse representation of differential and integral operators
[16, 20].

+is paper is organized as follows: In Section 2, we briefly
introduce Alpert’s multiwavelet bases. In Section 3, the
Multiwavelets Galerkin method is used to solve this proble,
and the conditions for convergence of the proposed method
are discussed. Section 5 contains some numerical results to
confirm the validity and efficiency of the proposed method,
and Section 6 contains a few concluding remarks.

2. Alpert’s Multiwavelet Bases

Let J ∈ Z+ ∪ 0{ }. We consider the uniform finite dis-
cretizations Ω ≔ [0, 1] � ∪ b∈BXJ,b where the subintervals
XJ,b ≔ [xb, xb+1] are determined by the point xb ≔ (b/(2J))

with B ≔ 0, . . . , 2J − 1 . For k ∈R ≔ 0, 1, . . . , r − 1{ }, we
introduce the subspace Vr

J as a space of piecewise polyno-
mial bases of degree less than multiplicity parameter r that is
spanned by

V
r
J ≔ span ϕk

j,b ≔ D2jTbϕ
k
, b ∈Bj, k ∈R  ⊂ L

2
(Ω), r≥ 0,

(3)

where D and T are the dilation and translation operators,
respectively, and ϕk 

k∈R are the primal interpolating
scaling bases introduced by Alpert et al. [16]. Given nodes
τk k∈R, which are the roots of Legendre polynomial of
degree r, the interpolating scaling bases are defined as

ϕk
(t) �

���
2
ωk



Lk(2t − 1), t ∈ [0, 1],

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where Lk(t) k∈R are the Lagrange interpolating polyno-
mials at the point τk k∈R and ωk k∈R are the
Gauss–Legendre quadrature weights [16, 18]. +ese bases
form an orthonormal bases onΩwith respect to the L2-inner
product. Due to the definition of the space Vr

J, the spaces
Vr

j 
j∈Z+ ∪ 0{ }

have dimension N: � 2Jr and obviously are
nested:

V
r
0 ⊂ V

r
1 ⊂ · · · ⊂ V

r
J ⊂ · · · ⊂ L

2
(Ω). (5)

Hence, we consider the complement subspace Wr
J of Vr

J

in Vr
J+1 such that

V
r
J+1 � V

r
J ⊕W

r
J, W

r
J⊥V

r
J, (6)

where ⊕ denotes orthogonal sums. According to (6), the
space VJ may be inductively decomposed to

V
r
J � V

r
0 ⊕ ⊕

J− 1
j�0W

r
j . (7)

+e complement subspace Wr
J has dimension 2Jr and is

spanned by multiwavelet bases ψk k∈R, as

W
r
J � span ψk

J,b � W2JWbψ
k
: b ∈BJ, k ∈R . (8)

Because Alpert’s multiwavelets are completely intro-
duced in [16], we avoid this and refer the readers to
[15, 16, 19].

Every function p ∈ L2(Ω) can be represented in the form

p ≈ Vr
J(p) � 

b∈BJ


k∈R

p
k
J,bϕ

k
J,b,

(9)

wherePr
J is the orthogonal projection that maps L2(Ω) onto

the subspace Vr
J. To find the coefficients pk

J,b that are de-
termined by 〈p, ϕk

J,b〉 � 
XJ,b

f(x)ϕk
J,b(x)dx, we shall com-

pute the integrals. We apply the r-point Gauss–Legendre
quadrature by a suitable choice of the weights ωk and nodes
τk for k ∈R to avoid these integrals [16, 19], via

p
k
J,b ≈ 2

− (J/2)

���
ωk

2



p 2− J τk + 1
2

+ b  , k ∈R, b ∈BJ.

(10)

Convergence analysis of the projection Pr
J(p) is inves-

tigated for the r-times continuously on differentiable
function p ∈ Cr(Ω):

Pr
J(p) − p

����
����≤ 2− Jr 2

4r
r!

sup
x∈[0,1]

p
(r)

(x)


. (11)

For the full proof of this approximation and further
details, we refer the readers to [15]. +us, we can conclude
that Pr

J(p) converges to p with rate of convergence O(2− Jr).
Assume that the vector function Φr

J: � [Φr,J,0, . . . ,

Φr,J,2J− 1]
T with Φr,J,b: � [ϕ0J,b, . . . , ϕr− 1

J,b ] includes the scaling
functions and is called multiscaling function. Approxima-
tion (9) may be rewritten using the vector P that includes
entries Pbr+k+1: � pk

J,b as follows:

Φr
J(p) � P

TΦr
J, (12)

where P is an N-dimensional vector. +e building blocks of
these bases construction can be applied to approximate a
higher-dimensional function. To this end, one can introduce
the two-dimensional subspace Vr,2

J : � Vr
J × Vr

J ⊂ L2(Ω)2

that is spanned by

ϕk
J,bϕ

k′
J,b′ : b, b′ ∈BJ, k, k′ ∈R . (13)

+us, by this assumption, to derive an approximation of
the function p ∈ L2(Ω)2 by the projection operator Pr

J, we
have

p(x, y) ≈ Φr
J(p)(x, y) � ΦrT

J (x)PΦr
J(y), (14)
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where the components of the square matrix P of order N are
obtained by

Prb+(k+1),rb′+ k′+1( ) ≈ 2
− J

���
ωk

2

 ���
ωk′

2



p 2− J
τk + b( , 2− J

τk′ + b′(  ,

(15)

where τk � (τk + 1)/2. Consider the 2r-th partial derivatives
of p: Ω2⟶ R to be continuous. Utilizing this assumption,
the error of this approximation can be bounded as follows:

P
r
Jp − p

����
����≤Mmax

21− rJ

4r
r!

2 +
21− Jr

4r
r!

 , (16)

where Mmax is a constant.
Given orthogonal projection operator Qr

j � Pr
j+1 − Pr

j

that maps L2(Ω) onto Wr
j, the multiscale projection oper-

ator Mr
J can be represented as

M
r
J � Q

r
0 + 

J− 1

j�0
Q

r
j, (17)

and consequently, any function p ∈ L2(Ω) can be approx-
imated as a linear combination of multiwavelets and single-
scale interpolating scaling functions as

p ≈Mr
J(p) � 

r− 1

k�0
p

k
0,0ϕ

k
0,0 + 

J− 1

j�0


b∈Bj


k∈R

p
k
j,bψ

k
j,b, (18)

where

p
k
0,0 � 〈p, ϕk

0,0〉,

p
k
j,b � 〈p,ψk

j,b〉.
(19)

Note that we can compute the coefficients pk
0,0 by using

(10). But in many cases, multiwavelet coefficients from zero
up to higher-level J − 1 must be evaluated numerically. To
avoid this, we use multiwavelet transform matrix TJ, in-
troduced in [18, 19]. +is matrix connects multiwavelet
bases and multiscaling functions, via

Ψr
J � TJΦ

r
J, (20)

where Ψr
J: � [Φr,0,b,Ψr,0,b,Ψr,1,b, . . . ,Ψr,J− 1,b]T is a vector

with the same dimension Φr
J (here Ψr,j,b: � [ψ0

j,b, . . . ,

ψr− 1
j,b ]). +is representation helps to rewrite equation (18) as

to form

p ≈Mr
J(p) � P

T

JΨ
r
J, (21)

where we have the N-dimensional vector PJ whose entries
are pk

0,0 and pk
j,b and is given by employing the multiwavelet

transform matrix TJ as PJ � TJPJ.
+e multiwavelet coefficients (details) become small

when the underlying function is smooth (locally) with in-
creasing refinement levels. If the multiwavelet bases have Nr

ψ
vanishing moments [19, 21], then details decay at the rate of
2− JNr

ψ [17]. Because vanishing moments of Alpert’s multi-
wavelets are equal to r, consequently, one can obtain
pk

J,b ≈ O(2− Jr). +is allows us to truncate the full wavelet
transforms while preserving most of the necessary data.

+us, we can set to zero all details that satisfy a certain
constraint ε using thresholding operator Cε:

Cε
PJ  � PJ, (22)

and the elements of PJ are determined by

p
k
j,b �

p
k
j,b, (j, b, k) ∈ Dε,

0, else,

⎧⎨

⎩ b ∈Bj, j � 0, . . . , J − 1, k ∈R,

(23)

where Dε: � (j, b, k): |pk
j,b|> ε . Now, we can bound the

approximation error after thresholding [17] via

P
r
Jp − P

r
J,Dε

p
�����

�����L2(Ω)
≤Cthrε, (24)

wherePr
J,Dε

(p) is the projection operator after thresholding
with the threshold ε and Cthr > 0 is a constant independent of
Jandε.

3. Multiwavelet Galerkin Method

In order to obtain multiwavelet Galerkin solution of (1),
assume that solution can be approximated as an expansion
of the Alpert’s multiwavelets, i.e.,

u(x) ≈ Pr
J(u)(x) � U

TΨr
J(x), (25)

where the N dimension vector U of unknowns must be
specified. +is solution is selected such that it satisfies (1)
approximately. Also, it is obtained from the solution of the
minimization problem

u − P
r
J(u)

����
���� � minz∈L2(Ω)‖u − z‖. (26)

Since L2(Ω) is an inner product space with finite di-
mension, it can be shown that this minimization problem
has a unique solution [22].

Let us rewrite (1) in the operator form

(I − F)u � g, (27)

where g(x): � f(x) + V(u)(x) with V(u)(x): � 
x

0 k1
(x, s, u(s))ds. Furthermore, the operator F(u): � 

1
0 p

(x, s)h(u(s))ds is assumed to be compact on L2(Ω) to
L2(Ω) and k1 is a given continuous function. Due to these
assumptions, V(u)(x) is a continuous function and, con-
sequently, g is also continuous function. Due to (11), the
function g(x) can be approximated at a rate of at least 2− Jr:

g(x) ≈ Pr
J(g)(x) � F

TΦr
J(x) + K

T
1Φ

r
J(x)

� F
T
T

− 1
J Ψ

r
J(x) + K

T
1 T

− 1
J Ψ

r
J(x)

� F
TΨr

J(x) +
U

TA1Ψ
r
J(x), linear,

C1Ψ
r
J(x), nonlinear,

⎧⎨

⎩

� G
TΨr

J(x) � M
r
J(x)(x),

(28)

where A1 and C1 are N × N matrices and the rest are
N-dimensional vectors. Now, we introduce the residual in
the approximation of (1):
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rJ(x) � uJ(x) − M
r
J(g)(x) − M

r
J F

r
J (x), (29)

where uJ: � Mr
J(u) and

M
r
JF

r
J uJ  � M

r
J 

1

0
M

r
J k2 x, s, uJ(s)  ds 

� M
r
J 

1

0
M

r
J p(x, s)h uJ(s)  ds 

� 
1

0
H

TΨr
J(s)ΨrT

J (s)PΨr
J(x)ds � H

T
PΨr

J(x)

�
U

TΨ2Ψ
r
J(x), linear,

Ψ2Ψ
r
J(x), nonlinear.

⎧⎨

⎩

(30)

Symbolically,

rJ � M
r
J I − F

r
J uJ − g . (31)

To find uJ, it requires that the approximate solution uJ

satisfies

〈rJ, Ψr
J 

i
〉 � 0, i � 1, . . . , N. (32)

+is is multiwavelet Galerkin’s method and yields a
linear or nonlinear system that must be solved to obtain the
approximate solution. Note that Mr

J(z) � 0 if and only if
〈z, [Ψr

J]i〉 � 0. +us, we can rewrite (31) as

M
r
J rJ  � 0, (33)

or equivalently,

M
r
J I − F

r
J uJ � M

r
J(g). (34)

Note that Mr
J(uJ) � uJ whenever uJ ∈ Vr

J. Due to this,
equation (34) can be rewritten as

I − M
r
JF

r
J  uJ  � M

r
J(g). (35)

According to (35), we obtain the system of linear or
nonlinear equations. Due to the higher vanishing moments r

and increasing refinement level J, for the linear type of this
equation, we can discard coefficients by hard thresholding
introduced in the previous section. We can reduce the
computational efforts using proper methods for this type of
system such as the GMRES method. +e GMRES method is
introduced by Saad and Shultz [23] for solving sparse and
large linear systems. +e GMRES generates an approximate
solution whose residual norm is minimum by using a Krylov
subspace. In this paper, we use restarted GMRES Algorithm 2
[24]. To use this method, we must first define Arnoldi’s al-
gorithm. Arnoldi’ s procedure is an algorithm for building an
orthogonal basis of the Krylov subspace κm. +e N-th Krylov
subspace is defined as follows:

κm(Λ, w) � span w1,Λw1, . . . ,Λm− 1
w1 . (36)

Here, we assume that system (35) of the linear type to be
of form ΛU � D and Wm is a N × m matrix with column
vectors w1, . . . , wm. Also, Hm is a (m + 1 × m) Hessenberg

matrix whose nonzero entries hi,j are defined by
Algorithm 1.

(1) Compute r0 � D − ΛU0, β � ‖r0‖2 and w1 � r0/β
(2) Generate the Arnoldi basis and the matrix Hm using

the Arnoldi algorithm starting with w1

(3) Compute ym the minimizer of ‖βe1 − Hmy‖2 and
Um � U0 + Wmym

(4) If satisfied then stop, else set U0 � Um and go to 1

To investigate the convergence analysis, one can prove
that ‖Fr

J − Mr
JF

r
J‖ � O(2− Jr). +us, ‖Fr

J − Mr
JF

r
J‖⟶ 0

when J⟶∞ because F is a compact operator. Now, we
can raise the convergence theorem.

Theorem 1. Let F be a compact operator and I − F be
injective. Assume that the sequenceFr

J: L2(Ω)⟶ L2(Ω) is
collectively compact and pointwise convergent to F.

+en, (I − Fr
J)− 1 exists and is uniformly bounded. Also,

the solution of (27) and (31) satisfy the error estimate

u − uJ

����
����≤

I − F
r
J 

− 1�����

�����

1 − εJ0
I − F

r
J 

− 1�����

�����

u − M
r
Ju

����
���� + M

r
JF − M

r
JF

r
J u

�����

����� .

(37)

Proof. Because the sequence Fr
J converges pointwise to F

in L2(Ω) and is collectively compact, we conclude that

F
r
J − F F

r
J

�����

�����⟶ 0, as J⟶∞. (38)

For all sufficiently large J, we have

(I − F)
− 1

F
r
J − F F

r
J

�����

�����< 1, (39)

and as a consequence of this, I − Fr
J is reversible. Note that

the inverse operator (I − F) exists due to the Riesz theorem.
+e investigation is based on the approximation of I − Fr

J by
I − Mr

JF
r
J,

I − M
r
JF

r
J � I − F

r
J  + F

r
J − M

r
JF

r
J 

� I − F
r
J  I + I − F

r
J 

− 1
F

r
J − M

r
JF

r
J  .

(40)

To prove the existence of (I − Mr
JF

r
J)− 1, assume that

εJ0
≡ sup

J≥J0
F

r
J − M

r
JF

r
J

����
����<

1

I − F
r
J 

− 1�����

�����

. (41)

+us, (I + (I − Fr
J)− 1(Fr

J − Mr
JF

r
J))− 1 exists and is

uniformly bounded due to geometric series theorem, i.e.,

I + I − F
r
J 

− 1
F

r
J − M

r
JF

r
J  

− 1�������

�������
≤

1

1 − εJ0
I − F

r
J 

− 1�����

�����

.

(42)

Using (42), (I − Mr
JF

r
J) exists. Taking norm and using

(42), we obtain
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I − M
r
JF

r
J 

− 1�����

�����≤
I − F

r
J 

− 1�����

�����

1 − εJ0
I − F

r
J 

− 1�����

�����

. (43)

Applying the operatorMr
J to both sides of (27) and then

rearranging, we can obtain

I − M
r
JF

r
J u � M

r
Jg + u − M

r
Ju  + M

r
JF − M

r
JF

r
J u.

(44)

Subtracting (35) from (44), we obtain

I − M
r
JF

r
J  u − uJ  � u − M

r
Ju  + M

r
JF − M

r
JF

r
J u.

(45)

Taking norm and employing (43),

u − uJ

����
����≤

I − F
r
J 

− 1�����

�����

1 − εJ0
I − F

r
J 

− 1�����

�����

u − M
r
Ju

����
���� + M

r
JF − M

r
JF

r
J u

�����

����� .

(46)

+is is equivalent to (37). It is straightforward to show
that ‖(Mr

JF − Mr
JF

r
J)u‖⟶ 0 as J⟶∞. Assume that

uJ  be a sequence of continuous functions so that uJ⟶ u

as J⟶∞. Since the orthonormal projection Mr
J satisfies

‖Mr
J‖ � 1, we can obtain

u − M
r
Ju

����
����≤ u − uJ

����
���� + uJ − M

r
Ju

r
J

����
���� + M

r
J u − uJ 

�����

�����

≤ 2 u − u
r
J

����
���� + u

r
J − M

r
Ju

r
J

����
����.

(47)

+us, for each real number ε> 0, there exists a number J0
such that, for every number J0 ≤ J, one can write
‖u − uJ‖≤ (ε/4). +is then implies that

u − M
r
Ju

����
����≤

ε
2

+ u
r
J − M

r
Ju

r
J

����
����. (48)

+is implies that ‖u − Mr
Ju‖≤ ε, for sufficiently large

value of J and because ε is arbitrary, consequently,
Mr

Ju⟶ u as J⟶∞. □

4. Numerical Experiments

To verify the accuracy and efficiency of the proposed
method, we consider a series of numerical examples. In the
linear type of equation (1), we aim to generate a sparse
matrix to reduce the computational costs. We illustrate the
rate of sparsity Sε which is defined by [21,25]

Sε �
N0 − Nε

N0
× 100%, (49)

where ε is the threshold (small positive number) and Nε and
N0 are the number of elements remaining after thresholding
and the total number of elements, respectively.

Example 1. Consider the linear VFIE given in [11] as

u(x) � e
− x

− e
x
(x − 1) + 

x

0
e

x+s
u(s)ds − 

1

0
e

x+s
u(s)ds. (50)

+e exact solution is e− x [11].
+e effects of the multiplicity parameter r, the refine-

ment level J, and thresholding with different thresholds are
reported in Table 1 and Figure 1. +e results confirm the
theoretical claims and demonstrate the effectiveness of the
method. Note that the L2 error decreases as parameters r and
J increase due to the rate of convergence O(2− Jr). We
compare the error of the proposed method, the Lagrange
collocation method [10], Taylor collocation method [11],
and Taylor polynomial method [26] in Table 2. Due to
Table 2, our method is flexible than other methods, and
without changing the multiplicity parameter r, we can
improve the results. Figure 2 illustrate the effect of
thresholding with different threshold parameters ε on the
coefficient matrix. It can be seen that the number of matrix
elements decreases when the threshold parameter increases.

Example 2. Let us consider the following VFIE:

u(x) �
e
2x

− 1
2

cos(x) + e
x

+
1 − e

2

2
sin(x)

+ 
x

0
e

s cos(x)u(s)ds − 
1

0
e

s sin(x)u(s)ds.

(51)

In Table 3 and Figure 3, we show the effect of the pa-
rameters r, J, and ε on sparsity and L2-error. It is obvious
that increasing the parameters r and J reduces the error. A
comparison of the proposed method with other methods
such as Taylor method [26] and the Lagrange collocation
[10] is reported in Table 4. In Figure 4, we illustrate the effect
of thresholding on the coefficient matrix by taking different
threshold ε when r � 8 and J � 2.

Example 3. Let us consider nonlinear VFIE (1) with

u(x) � sin(x) + 1 − e
sin(1)

 x
3

−
x
2

− sin2(x)

4

− 
x

0
(x − s)u

2
(s)ds − 

1

0
x
3 cos(s)e

u(s)ds.

(52)

+e exact solution of this equation is u(x) � sin(x).
In Figure 5, we illustrate the effect of parameter r and J

on the L2-error and the error of approximation is plotted in
Figure 6 taking r � 7 and J � 2.

Example 4. Consider the nonlinear VFIE as

u(x) � f(x) + 
x

0
cos(x + s)u

2
(s)ds + 

1

0
sin(s − x)u

2
(s)ds,

(53)

with

f(x) �
(− 2 cos(2x) − sin(2x))e

2x

5
+
2e

2 sin(− 1 + x)

5

+
e
2 cos(− 1 + x)

5
+
cos(x)

5
+ e

x
−
sin(x)

5
.

(54)
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(1) Choose a vector w1, such that ‖w1‖2 � 1
(2) For j � 1, 2, . . . , m do
(3) Compute hi,j � (Λwj, wi) for i � 1, 2, . . . , j

(4) wj � (Λwj, wi) for i � 1, 2, . . . , j

(5) hj+1,j � ‖wj‖2
(6) If h2j+1,j � 0 then stop
(7) wj+1 � (wj/hj+1,j)

(8) End do

ALGORITHM 1: Arnoldi”s algorithm.
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Figure 1: Effects of the refinement level J and multiplicity parameter r for Example 1.

(1) Compute r0 � D − ΛU0, β � ‖r0‖2 and w1 � r0/β
(2) Generate the Arnoldi basis and the matrix Hm using the Arnoldi algorithm starting with w1
(3) Compute ym the minimizer of ‖βe1 − Hmy‖2 and Um � U0 + Wmym

(4) If satisfied then stop, else set U0 � Um and go to 1

ALGORITHM 2: Restarted (GMRES).
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Figure 2:+e effect of thresholdingwith threshold ε � 10− 5 (left), ε � 10− 3 (middle), and ε � 10− 1 (right) on the coefficientmatrix for Example 1.
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Table 1: Effects of parameters r, J, and ε on sparsity and L2-error for Example 1.

r J

Without
thresholding ε � 10− 5 ε � 10− 3 ε � 10− 1

Sε L2-error Sε L2-error Sε L2-error Sε L2-error

5 2 0 6.39e − 9 24.8 1.20e − 6 54 2.74e − 4 91 2.96e − 2
3 0 2.00e − 10 59.8 4.87e − 6 78.8 2.78e − 4 96.5 2.96e − 2

7 2 0 5.97e − 13 43 1.72e − 6 65.9 1.38e − 4 97.5 7.98e − 3
3 0 4.71e − 15 72.4 2.65e − 6 85.4 1.38e − 4 93.8 7.98e − 3

Table 2: Comparison of the error for Example 1.

r Presented method Taylor collocation Taylor polynomial method Lagrange collocation
2 1.55e − 3 7.87e − 2 3.41e − 2 7.87e − 2
5 6.39e − 9 6.23e − 5 3.68e − 4 6.23e − 5
8 4.63e − 15 1.89e − 8 1.24e − 5 1.77e − 7
9 4.01e − 16 2.35e − 8 3.46e − 7 7.21e − 6
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Figure 3: Effects of the refinement level J and multiplicity parameter r for Example 2.
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Figure 4: +e effect of thresholding with threshold ε � 10− 5 (left), ε � 10− 4 (middle), and ε � 10− 3 (right) on the coefficient matrix for
Example 2.
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Figure 5: Effects of the refinement level J and multiplicity parameter r for Example 3.
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Figure 6: Error of Example 3.

Table 3: Effects of parameters r, J, and ε on sparsity and L2-error for Example 2.

r J

Without
thresholding ε � 10− 6 ε � 10− 4 ε � 10− 2

Sε L2-error Sε L2-error Sε L2-error Sε L2-error

5 2 0 1.73e − 8 22.2 1.00e − 6 51.5 1.74e − 4 79.2 5.15e − 3
3 0 5.43e − 10 58.1 1.18e − 6 76.2 1.74e − 4 91.9 5.15e − 3

6 2 0 1.81e − 10 32.5 5.24e − 10 59.5 7.81e − 5 82.1 1.37e − 2
3 0 2.84e − 12 65.3 1.02e − 6 81.7 7.80e − 5 93.7 1.37e − 2

7 2 0 1.62e − 12 39.4 6.78e − 12 65.1 9.95e − 5 84.8 1.84e − 2
3 0 1.27e − 14 71.3 2.74e − 7 84.7 9.95e − 5 95 1.84e − 2
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+e exact solution is u(x) � ex.
Table 5 is reported to show the efficiency and accuracy of

the proposed method. We observe when the refinement level
J and multiplicity parameter r increase, the L2-errors de-
crease. Figure 7 shows the error of proposed method on
taking r � 6 and J � 2.

5. Conclusion

We have employed the multiwavelet Galerkin method to
solve the Volterra–Fredholm integral equations. To this end,
the Volterra and Fredholm operators are represented in
multiwavelet bases. Applying this method leads to a linear or
nonlinear system of algebraic equations. In the linear type,
we obtain a new sparse system using thresholding due to the
decay in the wavelet coefficients. +e convergence analysis is
investigated, and one can show that the rate of convergence
is O(2− Jr). +e numerical examples illustrate the efficiency
and accuracy of the method.
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