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In this paper, we introduce a generalized multivalued (α, L)-almost contraction in the b-metric space. Furthermore, we prove the
existence and uniqueness of the fixed point for a specific mapping. (e result presented in this paper extends some of the earlier
results in the existing literature. Moreover, some examples are given to illuminate the usability of the obtained results.

1. Introduction and Preliminaries

(e idea of b-metric was initiated from the works of
Bourbaki [1] and Bakhtin [2]. A generalized form of the
metric space is called a b-metric space. (e concept of the b-
metric space or metric type space was first introduced by
Czerwik [3] as a generalization of the metric space. He
provided an axiom which is weaker than the triangular
inequality and formally defined a b-metric space with a view
of generalizing the Banach contraction mapping principle.
Later on, Fagin and Stockmeyer [4] worked on some kind of
relaxation in the triangular inequality and called this new
distance measure as nonlinear elastic matching (NEM). A
similar type of relaxed triangle inequality was also used for
trade measure [5] and to measure ice floes [6]. All these
applications pushed us to introduce the concept of the b-
metric space so that the results obtained for such rich spaces
become more viable in different directions of applications.
Since then, several authors proved fixed-point results of
single-valued and multivalued operators in b-metric spaces
[7–10]. Recently, Kamran et al. [11] worked on the b-metric
space in which they discussed a generalization of the b-
metric space called the extended b-metric space and
established some fixed-point theorems for self-mappings
defined on such spaces.

Definition 1 (see [3]). Let X be a nonempty set. A function
d: X × X⟶ [0,∞] is said to be a b-metric if it satisfies the
following conditions:

(1) 0≤d(x, y) and d(x, y) � 0 if and only if x � y,
(2) d(x, y) � d(y, x), and
(3) d(x, z)≤ s[d(x, y) + d(y, z)] for some s≥ 1,

for all x, y, z ∈ X. (e pair (X, d) is called a b-metric
space with coefficient s.

We observe that every metric space is a b-metric space
with s � 1.(e class of b-metric spaces is larger than the class
of metric spaces, and the concept of the b-metric space
coincides with the concept of the metric space. (is is a
weaker concept than that of a metric space. Conditions (1)
and (2) are similar to the metric space, but (3) is a key feature
of this concept.(erefore, it is important to study how to use
(3) effectively. Each b-metric is not a continuous function.
To show this statement, the following example was presented
in [12].

Example 1. Let (X, d) be a metric space and σ d: X × X

⟶ R+ be defined by

σ d(x, y) � [d(x, y)]
p
, (1)
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for all x, y ∈ X, where p> 1 is a fixed real number. (en, σ d

is a b-metric with s � 2p− 1. Indeed, conditions (1) and (2) in
Definition 1 are satisfied, and thus, we only have to show that
condition (3) holds for σ d.

It is easy to see that if 1<p<∞, then the convexity of the
function f(x) � xp, where x≥ 0, implies

a + c

2
 

p

≤
1
2

a
p

+ c
p

( , (2)

and hence,

(a + c)
p ≤ 2p− 1

a
p

+ c
p

( . (3)

(erefore, for each x, y, z ∈ X, we get

σ d(x, y) � [d(x, y)]
p ≤ [d(x, z) + d(z, y)]

p

≤ 2p− 1
d(x, z)

p
+((z, y))

p
 ( 

� 2p− 1 σ d(x, z) + σ d(z, y) .

(4)

So, condition (3) in Definition 1 holds, and then σ d is a
b-metric space with coefficient s � 2p− 1.

Similarly, the concepts of b-convergent sequence, b-
Cauchy sequence, and complete b-metric space are defined
accordingly.

Definition 2 (see [11]). Let (X, d) be a b-metric space.

(1) A sequence xn  in X is called b-convergent if there
exists x ∈ X such that d(xn, x)⟶ 0 as n⟶∞. In
this case, we write limn⟶∞xn � x.

(2) A sequence xn  in X is called b-Cauchy if
d(xn, xm)⟶ 0 as n, m⟶∞.

(3) A b-metric space (X, d) is said to be a complete b-
metric space if every b-Cauchy sequence in X is b-
convergent.

1.1. Hausdorff Metric. (e concept of Hausdorff metric or
Hausdorff distance was first introduced by Hausdorff in his
book Grundzuge der Mengenlehre [13]. (e second name of
Hausdorff distance is Pompeiu–Hausdorff distance. (e
Hausdorff distance has many applications in the computer
field. (e use of Hausdorff distance is to find a given
template in an arbitrary target image in computer vision.(e
most important application of the Hausdorff metric in
computer graphics is to measure the difference between two
different representations of the same 3D object specifically
when generating the level of detail for efficient display of
complex 3D models.

Let (X, d) be a b-metric space and CB(X) denote the
family of all nonempty, closed, and bounded subsets of X.

For M, N ⊂ X and a ∈ X, the distance between a and N

is defined as

d(a, N) � inf d(a, b): b ∈ N{ }. (5)

(e diameter of M and N is defined as

δ(M, N) � sup d(a, b): a ∈M, b ∈ N{ },

H(M, N) � max sup
a∈M

d(a, N), sup
b∈N

d(b, M) ,
(6)

which is a Hausdorff metric on CB(X) induced by d. (en,
CB(X) is a b-metric space under the Hausdorff distance H.

If (X, d) is a complete b-metric space, then (CB(X), H)

is a complete b-metric space, too. If M and N have the same
closures, then H � 0.

1.2. (α, L)-Almost Contraction Mappings. Berinde [14] ex-
tended the notion of almost contraction from single-valued
mappings to multivalued mappings. (ere are many ex-
amples of contractive conditions which imply the almost
contractiveness condition, for instance, Mizoguchi and
Takahashi [15] used the concept of almost contraction in
their work.

Theorem 1 (see [16]). Let (X, d) be a complete metric space
and T: X⟶ CB(X) be a generalized multivalued
(α, L)-almost contraction, i.e., a mapping for which there
exists a function α: [0,∞]⟶ [0, 1] satisfying

limr⟶t+supα(r)< 1, (7)

for every t ∈ (0,∞), such that

H Tx, Ty ≤ α(d(x, y))d(x, y) + LN, (8)

where

N � min d x, Tx( , d y, Ty , d x, Ty , d y, Tx(  , (9)

for all x, y ∈ X and Tx, Ty ∈ CB(X). <en, T has a fixed
point.

Lemma 1 (see [4]). Let (X, d) be a complete b-metric space
with coefficient s and T: X⟶ K(X) be a mapping, where
K(X) is a nonempty compact subset of X. Assume that there
exists a function α: (0,∞)⟶ [0, 1] such that, for each
t ∈ (0,∞),

limr⟶t+supα(r)< 1,

H Tx, Ty ≤ α(d(x, y))d(x, y), ∀x, y ∈ X, x≠y.

(10)

<en, T has a fixed point.

Lemma 2 (see [15]). Let (X, d) be a complete b-metric space
and T: X⟶ CB(X) be a mapping. Assume that there exists
a function α: (0,∞)⟶ [0, 1] such that, for each t ∈ (0,

∞),

limr⟶t+supα(r)< 1,

H Tx, Ty ≤ α(d(x, y))d(x, y), ∀x, y ∈ X, x≠y.

(11)

<en, T has a fixed point.
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Lemma 3 (see [17]). Let (X, d) be a b-metric space. Let
A, B ⊂ X and q> 1. <en, for every x ∈ A, there exists y ∈ B

such that

d(x, y)≤ qH(A, B). (12)

2. GeneralizedMultivalued Almost Contraction

In this section, we present and prove our main results on the
existence of fixed points for (α, L)-almost contractions in the
b-metric space.(e list of following results is reestablished as
the extension of the multivalued almost contraction in the b-
metric space.

Lemma 4. Let (X, d) be a b-metric space and T: X⟶
C(X) be a mapping. <en, for every x ∈ X with d(x, Tx)> 0
and any b ∈ (0, 1), there exists y ∈ Tx (y≠ x) such that

b
s
d(x, y)≤ b d x, Tx( . (13)

Lemma 5. Let (X, d) be a b-metric space with s≥ 1 and
T: X⟶ C(X) be a mapping such that the following con-
ditions hold:

(1) <e function f: X⟶ R, f(x) � d(x, Tx), is lower
semicontinuous.

(2) <ere exist b ∈ (0, 1) and α: (0,∞)⟶ [0, 1] such
that, for all t ∈ (0,∞),

limr⟶t+supα(r)< 1. (14)

If for all x ∈ X, there exists y ∈ Ix
b � y ∈ Tx: b d(x,

y)≤ d(x, Tx)} satisfying

b
s
d y, Ty ≤ bα(d(x, y))d(x, y), (15)

then T has a fixed point.

Lemma 6. Let (X, d) be a complete b-metric space with
coefficient s≥ 1, and assume that there exist a constant
b ∈ (0, 1) and a set-valued α-contraction T: X⟶ CB(X),
i.e., a mapping for which there exists a constant α ∈ (0,∞)

such that

b
s
H Tx, Ty ≤ α(d(x, y)), ∀x, y ∈ X. (16)

<en, T has a fixed point.

2.1. (α, L)-Almost Contraction Mappings in the b-Metric
Space. Let (X, d) be a complete b-metric space with s≥ 1
and T: X⟶ CB(X) be a generalized multivalued (α,

L)-almost contraction, i.e., a mapping for which there exist a
function α: [0,∞]⟶ [0, 1] and a constant L> 0 and
b ∈ (0, 1) such that

b
s
H Tx, Ty ≤ α(d(x, y))d(x, y) + LN, (17)

where

N � min d x, Tx( , d y, Ty , d x, Ty , d y, Tx(  , (18)

for all x, y ∈ X and Tx, Ty ∈ CB(X).

Theorem 2. Let (X, d) be a b-metric space with s≥ 1 and
T: X⟶ C(X) satisfy the following conditions:

(1) <e function f: X⟶ R, f(x) � d(x, Tx), x ∈ X, is
lower semicontinuous.

(2) <ere exist L≥ 0, b ∈ (0, 1) and α: (0,∞)⟶ [0, b]

such that, for all t ∈ (0,∞),

limr⟶t+supα(r)< b. (19)

If for all x ∈ X, there exists y ∈ Ix
b � y ∈ Tx: b d(x,

y)≤d(x, Tx)} satisfying

b
s
d y, Ty ≤ α(d(x, y))d(x, y) + LN, (20)

where

N � min d x, Tx( , d y, Ty , d x, Ty , d y, Tx(  , (21)

for all x, y ∈ X, then T has a fixed point.

Proof. (emain idea of the proof begins with the concept of
the Banach contraction principle in which we take a Cauchy
sequence in a complete b-metric space. Every Cauchy se-
quence is convergent in a complete b-metric space, and the
converging point of that sequence is proved to be a fixed
point of contraction.

If there exists x ∈ X such that d(x, Tx) � 0, then x ∈ Tx,
i.e., x is a fixed point of T. Since the range of T is closed, for
each b ∈ (0, 1) and any x ∈ X with d(x, Tx)> 0, there exists
y ∈ Tx such that y ∈ Ix

b , that is,

b
s
d(x, y)≤ b d x, Tx( . (22)

So, we can assume that we have y ∈ Ix
b , y≠x; otherwise,

y � x ∈ Tx will be a fixed point of T, and the proof is done.
Let x1 ∈ X be arbitrary but fixed with d(x1, Tx1

)> 0. By
(16), there exists x2 ∈ Tx1

, x2 ≠ x1, satisfying the inequality

b
s
d x1, x2( ≤ b d x1, Tx1

 . (23)

By (22),

b
s
d x2, Tx2

 ≤ α d x1, x2( ( d x1, x2( , (24)

< b d x1, x2( . (25)

Since d(x2, Tx1
) � 0, by (23) and (24), we have

b d x1, Tx1
  − b

s
d x2, Tx2

 ≥ b
s
d x1, x2( 

− α d x1, x2( ( d x1, x2( 

� b
s

− α d x1, x2( (  d x1( , x2( > 0.

(26)

Now, for x2, there exists x3 ∈ Tx2
, x3 ≠x2, satisfying
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b
s
d x2, x3( ≤ b d x2, Tx2

 , (27)

b
s
d x3, Tx3

 ≤ α d x2, x3( ( d x2, x3( < b d x2, x3( . (28)

By (27) and (28), we get

b d x2, Tx2
  − b

s
d x3, Tx3

 

≥ b
s
d x2, x3(  − α d x2, x3( ( d x2, x3( 

� b
s

− α d x2, x3(  d x2, x3( > 0.

(29)

Using (27) and (28), we obtain

d x2, x3( ≤
b

b
s d x2, Tx2

 

≤
b

b
s α d x1, x2( ( d x1, x2( <d x1, x2( .

(30)

By induction, for xn, n> 1, obtained in the previous way,
there exists xn+1 ∈ Txn

, xn ≠ xn+1, such that

b
s
d xn, xn+1( ≤ b d xn, xn+1( , (31)

b
s
d xn+1, Txn+1

 ≤ α d xn, xn+1( ( d xn, xn+1( < b d xn, xn+1( .

(32)

By the above pattern, we get

b d xn, Txn
  − b

s
d xn+1, Txn+1

 

≥ b
s
d xn, xn+1(  − α d xn, xn+1( ( d xn, xn+1( 

� b
s

− α d xn, xn+1( (  d xn, xn+1( > 0,

(33)

and we know that, in a complete b-metric space, every
Cauchy sequence is convergent, and so,

d xn, xn+1( < d xn, xn−1( . (34)

From (33) and (34), we can see that d(xn, Txn
) and

d(xn, xn+1) are convergent and decreasing sequences, which
are positive numbers. From assumption (2) in the theorem,
it follows that there exists θ ∈ [0, b] such that

limn⟶∞supα d xn, xn+1( (  � θ. (35)

(en, for any b0 ∈ (0, b), there exists n0 ∈ N such that

α d xn, xn+1( ( < b0, ∀n> n0. (36)

By using (33) and by taking a � b − b0, we get

d xn, Txn
  − d xn+1, Txn+1

 ≥ a d xn, xn+1( , ∀n> n0.

(37)

By (31) and (32) for any n> n0, we get

d xn+1, Txn+1
 ≤ α d xn, xn+1( ( 

≤
α d xn, xn+1( ( 

b
d xn, Txn

 

≤
α d xn, xn+1( ( , . . . , α d x1, x2( ( 

b
n d x1, Tx1

 

�
α d xn, xn+1( ( , . . . , α d xn0+1

, xn0+2
  

b
n−n0

α d xn0
, xn0+1

  , . . . , α d x1, x2( ( 

b
n0

d x1, Tx1
 

<
b0
b

 

n− n0α d xn0
, xn0+1

  , . . . , α d x1, x2( ( 

b
n0

d x1, Tx1
 .

(38)

Since b0 < b, we have

limn⟶∞
b0
b

 

n− n0

� 0. (39)

(us,

limn⟶∞d xn, Txn
  � 0. (40)
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Now, we have to show that xn  is a Cauchy sequence.
For this, using condition (3) in Definition 1 and (37), for
n, p ∈ N, n, p> n0, we have

d xn, xn+p ≤ s d xn, xn+1(  + d xn+1, xn+p  

≤ s d xn, xn+1(  + s
2
d xn+1, xn+2(  + s

2
d xn+2, xn+p 

⋮

≤ s d xn, xn+1(  + s
2
d xn+1, xn+2( +, · · · , +s

p
d xn+p−1, xn+p 

≤ s
1
a

d xn, xn+1(  − d xn+1, xn+2(   + s
21
a

d xn+1, xn+2(  − d xn+2, xn+3(  +, . . . ,

+ s
p1
a

d xn+p−2, xn+p−1  − d xn+p−1, xn+p  

�
s

a
d xn, xn+1(  +

s(s − 1)

a
d xn+1, xn+2( +, · · · , +

s
n+p− 1

(s − 1)

a
d xn+p−1, xn+p ⟶

n
, p⟶∞ 0.

(41)

Hence, xn  is a Cauchy sequence. Since (X, d) is
complete, xn  is a convergent sequence in the b-metric
space (X, d). By using the definition of the convergent se-
quence, there exists x∗ ∈ X such that

limn⟶∞xn � x
∗
. (42)

As a result, we get the following:

0≤d x
∗
, Tx∗( ≤ limn⟶∞inf d xn, Txn

 

� limn⟶∞d xn, Txn
  � 0.

(43)

By the closeness property of Tx∗ , x∗ ∈ Tx∗ , which is the
definition of the fixed point, and so, x∗ is a fixed point.

To give the relation between our main result and works
of Berinde, Nadler, and Mizoguchi [4, 15, 18–20], the fol-
lowing examples are provided.

Example 2. Let X � 0, 1, 2, 4, 5, 7, 9{ } be a finite set, a b-
metric d be defined on set X by d(x, y) � (x − y)2 with
coefficient s � 2, and C(X) � 0, 2, 4, 5, 7, 9{ } be the closed set
of X. (e mapping T: X⟶ C(X) is piecewisely defined by

T(x) �
9 − x, if x ∈ 2, 4, 7, 9{ }

x + 4, if x ∈ 0, 1, 5{ }.
  (44)

(e values of x and y are 0 and 2, whereas b � 0.2. (e
function α is defined as α(t) � t/1 + t.

By taking the notion of (eorem 2 under consideration,
Example 2 is elaborated. To choose the value of y,

y ∈ I
x
b � y ∈ Tx: b d(x, y)≤d x, Tx(  . (45)

For x � 0, T(x) � 4, and so,

(0.2)d(0, 2)≤d(0, 4),

(0.2)(4)≤ 16,

0.8≤ 16.

(46)

(us, y � 2. Now, by substituting values, we get

b
S
d(y, Ty)≤ α(d(x, y))d(x, y) + LN, (47)

where

N � min d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx) . (48)

After substitution, we get

1≤ 3.6. (49)

(us, we get the desired result.
(e concept that “every metric space is a b-metric space

with s � 1” can be explained by the following example. (e
values of x, y, α, and b are also changed so that the concept of
the theorem can be cleared in a more effective way. In the
following example, the b-metric space is defined on an
infinite set which is a generalization of the previous example.

Example 3. Let X � R and a b-metric d on X be defined by
d(x, y) �

������
|x − y|


. Note that d(x, y) is a b-metric with

coefficient s � 1. (e closed set of X is taken to be R itself.
(e mapping T: X⟶ C(X) is defined as T(x) � x/2 and
α(t) � 1 + t/2. (e values of x, y, and b are 4, 3, and 0.1,
respectively. Since

x � 4, T(x) �
4
2

� 2,

y ∈ I
x
b � y ∈ Tx: b d(x, y)≤ d x, Tx(  ,

(50)

we have
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(0.1) d (4, 3)≤d(4, 2),

0.1≤ 1.4142.
(51)

(us, y � 3. By substituting values, we get

b
s
d(y, Ty)≤ α(d(x, y))d(x, y) + LN, (52)

where

N � min d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx) . (53)

After substitution, we obtain

0.12≤ 1. (54)

So, this is the desired result.
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