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In this article, we discuss the problem about the properties on solutions for several types of q-difference equations and obtain some
results on the exceptional values of transcendental meromorphic solutions f(z) with zero order, their q-differences
Δqf(z) � f(qz) − f(z), and divided differences Δqf(z)/f(z). In addition, we also investigated the condition on the existence of
rational solution for a class of q-difference equations. Our theorems are some extensions and supplement to those results given by
Liu and Zhang and Qi and Yang.

1. Introduction and Main Results

All the time, Painlevé equations have attracted much interest
due to the reduction of solution equations, which are
solvable by inverse scattering transformations, and they
often occur in many physical situations: plasma physics,
statistical mechanics, and nonlinear waves. .e study of
Painlevé equations has spanned more than one hundred
years (see [1–3]).

Around 2006, Halburd and Korhonen [4, 5] and Ron-
kainen [6] used Nevanlinna theory to discuss the following
equations:

f(z + 1) + f(z − 1) � R(z, f)

�
P(z, f)

Q(z, f)
,

f(z + 1)f(z − 1) � R(z, f)

�
P(z, f)

Q(z, f)
,

(1)

where R(z, f) is rational in f and meromorphic in z, re-
spectively, and they singled out the following difference
equations:

f(z + 1) + f(z − 1) �
az + b

f(z)
+ c, (2)

f(z + 1) + f(z − 1) �
(az + b)f(z) + c

1 − f(z)
2 , (3)

f(z + 1)f(z − 1) �
η(z)f(z)

2
− λ(z)f(z) + μ(z)

(f(z) − 1)(f(z) − υ(z))
, (4)

f(z + 1)f(z − 1) �
η(z)f(z)

2
− λ(z)f(z)

f(z) − 1
, (5)

f(z + 1)f(z − 1) �
η(z)(f(z) − λ(z))

(f(z) − 1)
, (6)

f(z + 1)f(z − 1) � h(z)f(z)
m

, (7)
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where η(z), λ(z), and υ(z) satisfy some conditions. In these
equations, equation (2) is called as the difference Painlevé I
equation, equation (3) is called as the difference Painlevé II
equation, and the last four equations are called as the dif-
ference Painlevé III equations.

In the last decade or so, there were a lot of papers fo-
cusing on the properties of solutions for difference Painlevé
I–IV equations (see [7–11]). For example, Chen and Shon
[12] in 2010 considered the difference Painlevé I equation (3)
and obtained the following theorem.

Theorem 1 (see [12], .eorem 4). Let a, b, c be constants,
where a, b are not both equal to zero. 2en, the following
holds:

(i) If a≠ 0, then (3) has no rational solution.
(ii) If a � 0 and b≠ 0, then (3) has a nonzero constant

solution w(z) � A, where A satisfies 2A2 − cA−

b � 0.

.e other rational solution w(z) satisfies w(z) � (P(z)/
Q(z)) + A, where P(z) and Q(z) are relatively prime
polynomials and satisfy degP< degQ.

In 2013 and 2018, Zhang and Yi [11] and Du et al. [13]
studied the difference Painlevé III equations with the con-
stant coefficients and obtained the result as follows.

Theorem 2 (see [11, 13]). Iff is a transcendental finite-order
meromorphic solution of

f(z + 1)f(z − 1)(f(z) − 1)
2

� f(z)
2

− λf(z) + μ, (8)

where λ and μ are constants, then the following holds:

(i) τ(f) � σ(f).
(ii) If λμ≠ 0, then λ(f) � σ(f).
(iii) For any η ∈ C/ 0{ }, τ(f(z + η)) � σ(f).
(iv) λ(1/Δf) � λ(1/(Δf/f)) � σ(f).

Ramani et al. [14] in 2003 investigated the existence of
transcendental solution of equation

(f(z + 1) + f(z))(f(z) + f(z − 1)) � R(z, f)

�
P(z, f)

Q(z, f)
,

(9)

which is called as difference Painlevé IV equations and
obtained the result as follows.

Theorem 3 (see [14]). If the second-order difference equation
(9) admits a nonrational meromorphic solution of finite
order, then degzP≤ 4 and degzQ≤ 2.

Of late, many mathematicians paid considerable atten-
tion to the value distribution of solutions for complex
q-difference equations, which are formed by replacing the
q-difference f(qz), q ∈ C/ 0, 1{ } with f(z + c) of mero-
morphic function in some expressions concerning complex
difference equations, by utilizing the logarithmic derivative

lemma on q-difference operators given by Barnett et al. [15]
in 2007 (see [16–26]). For example, Qi and Yang [27]
considered the following equation:

f(qz) + f
z

q
􏼠 􏼡 �

az + b

f(z)
+ c, (10)

which can be seen as q-difference analogues of (2) and
obtained the result as follows.

Theorem 4 (see [27], .eorem 1). Let f(z) be a tran-
scendental meromorphic solution with zero order of equation
(10) and a, b, c be three constants such that a, b cannot vanish
simultaneously. 2en, the following holds:

(i) f(z) has infinitely many poles.
(ii) If a≠ 0 and any d ∈ C, then f(z) − d has infinitely

many zeros.
(iii) If a � 0 and f(z) takes a finite value A finitely often,

then A is a solution of 2z2 − cz − b � 0.

In 2018, Liu and Zhang [28] further investigated the
following equation:

Y(ωz) + Y(z) + Y
z

ω
􏼒 􏼓 �

ξz + o

Y(z)
+ ], (11)

and obtained the result as follows.

Theorem 5 (see [28], .eorem 1). Let Y(z) be a tran-
scendental meromorphic solution with zero order of (11) and
ξ, o, ] be three constants such that ξ, o cannot vanish si-
multaneously. 2en, the following holds:

(i) Y(z) has infinitely many poles.
(ii) For any finite value B, if ξ � 0, then Y(z) − B has

infinitely many zeros.
(iii) If ξ � 0 and Y(z) − A has finite zeros, then A is a

solution of 3z2 − o − ]z � 0.

Motivated by the idea [27, 28], a natural question is what
is the result if we give q-difference analogues of (9). For this
question, our main aim of this article is further to investigate
some properties of meromorphic solutions for some
q-Painlevé difference IV equations. It seems that this topic
has never been treated before.

In what follows, it should be assumed that the readers are
familiar with the fundamental results and the standard
notations in the theory of Nevanlinna value distribution (see
Hayman [29], Yang [30], and Yi and Yang [31]). Let f be a
meromorphic function, and we denote σ(f), λ(f), and
λ(1/f) to be the order, the exponent of convergence of zeros,
and the exponent of convergence of poles of f(z), re-
spectively, and denote τ(f) to be the exponent of conver-
gence of fixed points of f(z), which is defined by

τ(f) � lim sup
r⟶+∞

logN(r, 1/(f(z) − z))

log r
. (12)
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In addition, we use S(r, f) denotes any quantity satis-
fying S(r, f) � o(T(r, f)) for all r on a set F of logarithmic
density 1, and the logarithmic density of a set F is defined by

lim sup
r⟶∞

1
log r

􏽚
[1,r]∩F

1
t
dt. (13)

Now, our main results are listed as follows.

Theorem 6. Let R(z) � A(z)/B(z) be an irreducible ra-
tional function, and let q(≠ 0) ∈ C and |q|≠ 1, and

[f(qz) + f(z)] f(z) + f
z

q
􏼠 􏼡􏼢 􏼣 � R(z)

�
A(z)

B(z)
,

(14)

where A(z), B(z) are polynomials with degzA(z) � a and
degzB(z) � b.

(i) Suppose that a≥ b and a − b are even numbers or
zero. If equation (14) has an irreducible rational
solution f(z) � μ(z)/](z), where μ(z), ](z) are
polynomials with degz μ(z) � μ and degz ](z) � ],
then the following holds:

μ − ] �
a − b

2
. (15)

(ii) Suppose that b≥ a and b − a are even numbers or zero.
If equation (14) has an irreducible rational solution
f(z) � μ(z)/](z), where μ(z), ](z) are polynomials
with degz μ(z) � μ and degz ](z) � ], then

] − μ �
b − a

2
. (16)

(iii) If |a − b| is an odd number, then equation (14) has
no rational solution.

Theorem 7. For q(≠ 0) ∈ C and |q|≠ 1, let f(z) be a
transcendental meromorphic solution with zero order of
equation

[f(qz) + f(z)] f(z) + f
z

q
􏼠 􏼡􏼠 􏼡 � af(z)

2
, (17)

where a(≠ 0, 4) is a constant. Let Δqf � f(qz) − f(z). 2en,
the following holds:

(i) Both f and Δqf have no nonzero finite Nevanlinna
exceptional value.

(ii) If q + (1/q)≠ a − 2, then f(ηz) and Δqf(ηz) have
infinitely many fixed points and
τ(f(ηz)) � τ(Δqf(ηz)) � σ(f) for any nonzero
constant η.

Theorem 8. For q(≠ 0) ∈ C and |q|≠ 1, and let f(z) be a
transcendental meromorphic solution with zero order of
equation

[f(qz) + f(z)] f(z) + f
z

q
􏼠 􏼡􏼢 􏼣 � d(z)f(z), (18)

where d(z) is a nonconstant rational function satisfying that
d(qz)/d(z) is not a constant. 2en, the following holds:

(i) Both f and Δqf/f have no Nevanlinna exceptional
value.

(ii) Δqf has infinitely many poles and zeros, and
λ(1/Δqf) � λ(Δqf) � σ(f).

(iii) Δqf/f has infinitely many fixed points and
τ(Δqf/f) � σ(f).

2. Proof of Theorem 6

Proof: assume that (14) has a rational solution
f(z) � μ(z)/v(z) and has poles z1, z2, . . . , zk. .en, f(z)

can be represented in the following form:

f(z) �
μ(z)

](z)
� 􏽘

k

j�1

cjλj

z − zj􏼐 􏼑
λj

+ · · · +
cj1

z − zj􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

+ a0 + a1z + · · · + asz
s
,

(19)

where cjλj
(≠ 0), . . . , cj1(j � 1, 2, . . . , k) and a0, a1, . . . , as

are constants; zj(j � 1, 2, . . . , k) are poles of f(z) with
multiplicity λj, respectively.

(i) Suppose that a> b and a − b are even numbers. .en,
in view of (14) and (19), it yields

μ(qz)

](qz)
+
μ(z)

](z)
􏼠 􏼡

μ(z)

](z)
+
μ(z/q)

](z/q)
􏼠 􏼡 �

A(z)

B(z)
. (20)

If degz μ(z) � μ< ] � degz](z), then for z⟶ ∞, it
follows

μ(qz)

](qz)
⟶ 0,

μ(z)

](z)
⟶ 0,

μ(z/q)

](z/q)
⟶ 0.

(21)

However, A(z)/B(z)⟶ ∞ as z⟶ ∞; thus, from
(20), we can get a contradiction easily.
If μ � ], then let z⟶ ∞, and it leads to

μ(qz)

](qz)
⟶ α,

μ(z)

](z)
⟶ α,

μ(z/q)

](z/q)
⟶ α,

(22)
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where α is a nonzero constant. .us, let z⟶ +∞; in
view of (20), we also get a contradiction. So, it follows
μ> ]. .us, assume that as ≠ 0, (s≥ 1), where s � μ − ].
As z⟶ ∞, it yields

f(z) � asz
s
(1 + o(1)),

f(qz) � asq
s
z

s
(1 + o(1)),

f
z

q
􏼠 􏼡 � asq

− s
z

s
(1 + o(1)),

A(z)

B(z)
� βz

a− b
(1 + o(1)),

(23)

where β(≠ 0) is a constant, and it follows now in view
of (20) that

2 + q
s

+ q
− s

( 􏼁a
2
s z

2s
(1 + o(1)) � βz

a− b
(1 + o(1)),

(24)

as z⟶ ∞. Since |q|≠ 1, then qs + 2 + q− s ≠ 0. Hence,
it follows from (24) that

μ − ] � s

�
a − b

2
.

(25)

Next, assume that a � b. As z⟶ ∞, it follows
A(z)

B(z)
� β(1 + o(1)), (26)

where β(≠ 0) is a constant. If μ< ], then by using the
same argument as above, we get a contradiction. If
μ≥ ], then we assume that as ≠ 0, (s≥ 1). By using the
same argument as above, we conclude

q
s

+ 2 + q
− s

􏼂 􏼃a
2
s z

2s
� β(1 + o(1)), (27)

as z⟶ ∞. .us, if μ> ], then in view of (27), we can
get a contradiction; if μ � ], then we have

μ − ] � 0

�
a − b

2
.

(28)

(ii) Suppose that b> a and b − a are even numbers..en,
in view of (14) and (19), we get (20).
If μ> ], then for z⟶ ∞, it leads to

μ(qz)

](qz)
⟶ ∞,

μ(z)

](z)
⟶ ∞,

μ(z/q)

](z/q)
⟶ ∞.

(29)

However, A(z)/B(z)⟶ 0 as z⟶ ∞; thus, from
(20), we can get a contradiction easily.
If μ � ], then let z⟶ ∞, it follows

μ(qz)

](qz)
⟶ α,

μ(z)

](z)
⟶ α,

μ(z/q)

](z/q)
⟶ α,

(30)

where α is a nonzero constant. .us, let z⟶ +∞; in
view of (20), we also get a contradiction..us, μ< ]. We
rewrite (14) as the following form:

B(z) μ(qz)μ(z)]
z

q
􏼠 􏼡](z) + μ(qz)μ

z

q
􏼠 􏼡](z)

2
􏼢

+ μ(z)
2](qz)]

z

q
􏼠 􏼡 + μ(z)μ

z

q
􏼠 􏼡](qz)](z)􏼣

� A(z)](z)
2](qz)]

z

q
􏼠 􏼡.

(31)

Denote

A(z) � ξaz
a

+ · · · ,

B(z) � δbz
b

+ · · · ,

μ(z) � cμz
μ

+ · · · ,

](z) � ζ]z
]

+ · · · ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(32)

where a≥ 1, b≥ 0, and μ≥ 0, ]≥ 1 are all nonnegative
integers. .us, in view of (31) and (32), we can deduce

q
μ− ]

+ 2 + q
]− μ

( 􏼁δbc
2
μζ

2
]z

2(μ+])+b
+ · · · � ξaζ

4
]z

4]+a
.

(33)

Since |q|≠ 1, then qμ− ] + 2 + q]− μ ≠ 0. .us, by com-
bining with this and (33), we have

2(μ + ]) + b � 4] + a, that is ] − μ �
b − a

2
, (34)

and ζ2]/c
2
μ � (δb/ξa)(qμ− ] + 2 + q]− μ).

(iii) If a> b, then |a − b| � a − b is an odd number.
Assume that f(z) � μ(z)/](z) is a rational solution
of (14). In view of the conclusion of.eorem 6 (i), it
follows μ − ] � (a − b)/2. .is means a contradic-
tion with the assumption that a − b is an odd
number. .us, (14) has no rational solution.

If a< b, then |a − b| � b − a is an odd number. Similar to
the above argument, we also conclude that (14) has no
rational solution.
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.erefore, this completes the proof of .eorem 6.

3. Proof of Theorem 7

We first introduce some notations and some basic results
about Nevanlinna theory, which can be used in Section 3 and
Section 4. Let f be a meromorphic function in C, the
Nevanlinna characteristic T(r, f), which encodes infor-
mation about the distribution of values of f on the disk
|z|≤ r, is defined by

T(r, f) � m(r, f) + N(r, f). (35)

.e proximity function m(r, f) is defined by

m(r, f) � m(r,∞, f)

�
1
2π

􏽚
2π

0
log+

f reiθ
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dθ,

(36)

where log+x � max 0, log x􏼈 􏼉 and

N(r, f) � N(r,∞, f)

� 􏽚
r

0

n(t, f) − n(0, f)

t
dt + n(0, f)log r,

(37)

where n(r, f) is the number of poles of f in the circle |z| � r,
counted according to multiplicities.

Let a ∈ C∪ ∞{ }, and the deficiency of a with respect to
f(z) is defined by

δ(a, f) � lim inf
r⟶+∞

m(r, (1/f − a))

T(r, f)

� 1 − lim sup
r⟶+∞

N(r, (1/f − a))

T(r, f)
.

(38)

If δ(a, f)> 0, then the complex number a is called the
Nevanlinna exceptional value. And the order σ(f), the
exponent of convergence of zeros λ(f), and the exponent of
convergence of poles λ(1/f) of f(z) are defined by

σ(f) � lim sup
r⟶+∞

log+
T(r, f)

log r
,

λ(f) � lim sup
r⟶+∞

log+
N(r, 1/f)

log r
,

λ
1
f

􏼠 􏼡 � lim sup
r⟶+∞

log+
N(r, f)

log r
.

(39)

Besides, we also use some properties of
T(r, f), m(r, f), andN(r, f) such as

T r,
1

f − a
􏼠 􏼡 � T(r, f) + O(1),

m r, 􏽙

p

j�1
fj

⎛⎝ ⎞⎠≤ 􏽘

p

j�1
m r, fj􏼐 􏼑, m r, 􏽘

p

j�1
fj

⎛⎝ ⎞⎠

≤ 􏽘

p

j�1
N r, fj􏼐 􏼑 + logp,

N r, 􏽙

p

j�1
fj

⎛⎝ ⎞⎠≤ 􏽘

p

j�1
N r, fj􏼐 􏼑, N r, 􏽘

p

j�1
fj

⎛⎝ ⎞⎠≤ 􏽘

p

j�1
N r, fj􏼐 􏼑,

T r, 􏽙

p

j�1
fj

⎛⎝ ⎞⎠≤ 􏽘

p

j�1
T r, fj􏼐 􏼑, T r, 􏽘

p

j�1
fj

⎛⎝ ⎞⎠

≤ 􏽘

p

j�1
T r, fj􏼐 􏼑 + logp,

(40)

where fj(z)(j � 1, 2, . . . , p) are p meromorphic functions
and a ∈ C and require some lemmas as follows.

Lemma 1 (see [15], .eorem 2). Let f be a nonconstant
zero-order meromorphic solution of P(z, f) � 0, where
P(z, f) is a q-difference polynomial in f(z). If P(z, a)≢ 0 for
slowly moving target a(z), then

m r,
1

f − a
􏼠 􏼡 � S(r, f), (41)

where S(r, f) denotes any quantity satisfying
S(r, f) � o(T(r, f)) for all r on a set F of logarithmic density
1.

Remark 1. For q ∈ C/ 0, 1{ }, a polynomial in f(z) and fi-
nitely many of its q-shifts f(qz), . . . , f(qnz) with mero-
morphic coefficients in the sense that their Nevanlinna
characteristic functions are o(T(r, f)) on a set F of loga-
rithmic density 1 and can be called as a q-difference poly-
nomial of f.

Lemma 2 (see [24], .eorems 1 and 3). Let f(z) be a
nonconstant zero-order meromorphic function and q ∈ C/ 0{ }.
2en,

T(r, f(qz)) � (1 + o(1))T(r, f(z)),

N(r, f(qz)) � (1 + o(1))N(r, f(z)),
(42)

on a set of lower logarithmic density 1.

Journal of Mathematics 5



2e proof of 2eorem 7: (i) suppose that f(z) is a tran-
scendental meromorphic solution of equation (17), then in
view of (17), let

P1(z, f) ≔ [f(qz) + f(z)] f(z) + f
z

q
􏼠 􏼡􏼢 􏼣 − af(z)

2 ≡ 0.

(43)

For any given constant d ∈ C/ 0{ } and with a view of
a≠ 4, it follows

P1(z, d) � 4d
2

− ad
2 ≠ 0. (44)

In view of P1(z, d)≢ 0 and by Lemma 1, we conclude
that m(r, (1/f − d)) � S(r, f). .is leads to

N r,
1

f − d
􏼠 􏼡 � T(r, f) + S(r, f), (45)

which implies δ(d, f) � 0. .us, f(z) has no nonzero finite
Nevanlinna exceptional value.

Since f(z) is of zero order and Δqf � f(qz) − f(z),
then by Lemma 2, it follows T(r,Δqf)≤ 2T(r, f) + S(r, f),
which means that Δqf if of zero order. In view of (17), it
follows

f q
2
z􏼐 􏼑 + f(qz)􏽨 􏽩[f(qz) + f(z)] � af(qz)

2
. (46)

With (17) subtraction, it leads to

[f(qz) + f(z)] f q
2
z􏼐 􏼑 + f(qz) − f(z) − f

z

q
􏼠 􏼡􏼢 􏼣

� a[f(qz) + f(z)][f(qz) − f(z)].

(47)

From (17), we see that f(qz) + f(z) ≡ 0. Otherwise, it
leads to f(z) ≡ 0, a contradiction. .us, the above equality
means

f q
2
z􏼐 􏼑 + f(qz) − f(z) − f

z

q
􏼠 􏼡 � a[f(qz) − f(z)],

(48)

that is,

Δqf(qz) +(2 − a)Δqf(z) + Δqf
z

q
􏼠 􏼡 � 0. (49)

Denote

P2 z,Δqf􏼐 􏼑 ≔ Δqf(qz) +(2 − a)Δqf(z)

+ Δqf
z

q
􏼠 􏼡 ≡ 0.

(50)

For any given constant d ∈ C/ 0{ }, then from (50), we
have P2(z, d) � (4 − a)d. Hence, with a view of a≠ 4, it
follows P2(z, d) ≡ 0. .us, by Lemma 1, we have
m(r, 1/Δqf − d) � S(r,Δqf), and this leads to

N r,
1
Δqf − d

􏼠 􏼡 � T r,Δqf􏼐 􏼑 + S r,Δqf􏼐 􏼑, (51)

which implies that δ(d,Δqf) � 0. .us, Δqf has no nonzero
finite Nevanlinna exceptional value:

(ii) Replacing z by ηz in (17), we have

[f(qηz) + f(ηz)] f(ηz) + f
ηz

q
􏼠 􏼡􏼢 􏼣 � af(ηz)

2
.

(52)

Let g1(z) � f(ηz), it yields

g1(qz) + g1(z)􏼂 􏼃 g1(z) + g1
z

q
􏼠 􏼡􏼢 􏼣 � ag1(z)

2
. (53)

Set

P3 z, g1( 􏼁 ≔ g1(qz) + g1(z)􏼂 􏼃

· g1(z) + g1
z

q
􏼠 􏼡􏼢 􏼣 − ag1(z)

2 ≡ 0.

(54)

.us, it follows P3(z, z) � (((q + 1)2/q) − a)z2, and with a
view of q + (1/q)≠ a − 2, we have P3(z, z) ≡ 0. By applying
Lemma 1, it yields m(r, 1/(g1(z) − z)) � S(r, g1). .us, in
view of Lemma 2, this leads to

N r,
1

f(ηz) − z
􏼠 􏼡 � N r,

1
g1(z) − z

􏼠 􏼡

� T r, g1(z)( 􏼁 + S r, g1( 􏼁

� T(r, f(ηz)) + S(r, f(ηz))

� T(r, f) + S(r, f),

(55)

which implies that f(ηz) has infinitely many fixed points
and τ(f(ηz)) � σ(f).

In view of (48), set g2(z) � Δqf(ηz) and

P4 z, g2( 􏼁 ≔ g2(qz) +(2 − a)g2(z) + g2
z

q
􏼠 􏼡 ≡ 0, (56)

then P4(z, z) � [q + (2 − a) + (1/q)]z. Since
q + (1/q)≠ a − 2, then P4(z, z) ≡ 0. By applying Lemma 1,
we have m(r, (1/(g2(z) − z))) � S(r, g2). .us, in view of
Lemma 2, this leads to

N r,
1

Δqf(ηz) − z
􏼠 􏼡 � N r,

1
g2(z) − z

􏼠 􏼡

� T r, g2(z)( 􏼁 + S r, g1( 􏼁

� T r,Δqf(ηz)􏼐 􏼑 + S(r, f(ηz)),

(57)

which implies that Δqf(ηz) has infinitely many fixed points
and τ(Δqf(ηz)) � σ(f).

.erefore, the proof of .eorem 7 is completed.
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4. Proof of Theorem 8

Lemma 3 (see [15], .eorem 1). Let f(z) be a nonconstant
zero-order meromorphic function and q ∈ C/ 0{ }. 2en,

m r,
f(qz)

f(z)
􏼠 􏼡 � S(r, f). (58)

Lemma 4 (see [17], .eorem 2.5). Let f be a transcendental
meromorphic solution of order zero of a q-difference equation
of the form

Uq(z, f)Pq(z, f) � Qq(z, f), (59)

where Uq(z, f), Pq(z, f), and Qq(z, f) are q-difference
polynomials such that the total degree degUq(z, f) � n in
f(z) and its q-shifts, whereas degQq(z, f)≤ n. Moreover, we
assume that Uq(z, f) contains just one term of maximal total
degree in f(z) and its q-shifts. 2en,

m r, Pq(z, f)􏼐 􏼑 � S(r, f). (60)

Proof of 2eorem 8:. (i) suppose that f(z) is a transcen-
dental meromorphic solution of equation (18). We firstly
prove that Δqf/f has no Nevanlinna exceptional value.
Equation (18) can be rewritten as

f(qz)

f(z)
+ 1􏼠 􏼡

f(z/q)

f(z)
+ 1􏼠 􏼡 �

d(z)

f(z)
. (61)

Set g3(z) � f(qz)/f(z). In view of (61) and Lemma 2, it
follows

T(r, f(z)) � T r,
d(z)

f(z)
􏼠 􏼡 + O(log r)≤T r,

f(qz)

f(z)
􏼠 􏼡

+ T r,
f(z/q)

f(z)
􏼠 􏼡 + O(log r)

� T r, g3(z)( 􏼁 + T r, g3
z

q
􏼠 􏼡􏼠 􏼡 + O(log r)

� 2T r, g3( 􏼁 + S r, g3( 􏼁

� 2T r,
Δqf

f
􏼠 􏼡 + S(r, f).

(62)

And with a view of T(r,Δqf/f)≤ 2T(r, f) + S(r, f), we
thus conclude that Δqf/f is transcendental and of order
zero, and d(z) is small with respect to g3(z).

Replacing z by qz in (18), it follows

f q
2
z􏼐 􏼑 + f(qz)􏽨 􏽩[f(qz) + f(z)] � d(qz)f(qz). (63)

By combining with (18), we have

f q
2
z􏼐 􏼑 + f(qz)

f(z) + f(z/q)
�

d(qz)f(qz)

d(z)f(z)
. (64)

Since g3(z) � f(qz)/f(z), then it yields

f(qz) � g3(z)f(z),

f q
2
z􏼐 􏼑 � g3(qz)f(qz)

� g3(z)g3(qz)f(z),

f
z

q
􏼠 􏼡 �

f(z)

g3(z/q)
.

(65)

Substituting (65) into (64), we obtain

g3(z)g3(qz)f(z) + g3(z)f(z)

f(z) + f(z)/g3(z/q)( 􏼁
�

d(qz)

d(z)
g3(z), (66)

that is,

g3
z

q
􏼠 􏼡 g3(qz) + 1( 􏼁 �

d(qz)

d(z)
g

z

q
􏼠 􏼡 + 1􏼠 􏼡. (67)

By applying Lemma 4 for (67), it follows
m(r, g3(z/q)) � S(r, g3). .is leads to

N r, g3
z

q
􏼠 􏼡􏼠 􏼡 � T r, g3( 􏼁 + S r, g3( 􏼁. (68)

.us, in view of Lemma 2, it yields

(1 + o(1))N r, g3( 􏼁 � N r, g3
z

q
􏼠 􏼡􏼠 􏼡

� T r, g3
z

q
􏼠 􏼡􏼠 􏼡 + S r, g3( 􏼁

� (1 + o(1))T r, g3( 􏼁 + S r, g3( 􏼁.

(69)

.is shows

N r,
Δqf

f
􏼠 􏼡 � N r, g3( 􏼁

� T r, g3( 􏼁 + S r, g3( 􏼁

� T r,
Δqf

f
􏼠 􏼡 + S r,

Δqf

f
􏼠 􏼡,

(70)

which implies δ(∞,Δqf/f) � 0.
Set

P5 z, g3( 􏼁 ≔ g3
z

q
􏼠 􏼡 g3(qz) + 1( 􏼁

−
d(qz)

d(z)
g

z

q
􏼠 􏼡 + 1􏼠 􏼡 ≡ 0.

(71)

For any constant ϱ ∈ C/ −2{ }, we have

Journal of Mathematics 7



P5(z, ϱ + 1) � (ϱ + 1)(ϱ + 1 + 1) −
d(qz)

d(z)
(ϱ + 1 + 1)

� (ϱ + 2) ϱ + 1 −
d(qz)

d(z)
􏼠 􏼡.

(72)

Since d(qz)/d(z) is not a constant, then P5(z, ϱ + 1)≢ 0.
By Lemma 1, it follows

m r,
1

Δqf/f􏼐 􏼑 − ϱ
⎛⎝ ⎞⎠ � m r,

1
g3 − ϱ − 1

􏼠 􏼡

� S r, g3( 􏼁 � S r,
Δqf

f
􏼠 􏼡.

(73)

.is means

N r,
1

Δqf/f􏼐 􏼑 − ϱ
⎛⎝ ⎞⎠ � T r,

Δqf

f
􏼠 􏼡 + S r,

Δqf

f
􏼠 􏼡,

(74)

which implies that δ(ϱ,Δqf/f) � 0 for any constant
ϱ ∈ C/ −2{ }.

In view of (18) and Lemma 3, we have

m r,
1

f(qz) + f(z)
􏼠 􏼡 � m r,

f(z) + f(z/q)

d(z)f(z)
􏼠 􏼡

≤m r,
1

d(z)
􏼠 􏼡 + m r,

f(z) + f(z/q)

f(z)
􏼠 􏼡

+ O(1)

≤ S(r, f).

(75)

.us, we can conclude from (18), (75), and Lemma 2 that

N r,
1

f(qz) + f(z)
􏼠 􏼡 � T r,

1
f(qz) + f(z)

􏼠 􏼡 + S(r, f)

� T r,
1

d(z)

f(z) + f(z/q)

f(z)
􏼠 􏼡 + S(r, f)

� T r,
f(z/q)

f(z)
􏼠 􏼡 + O(log r) + S(r, f)

� T r,
f(qz)

f(z)
􏼠 􏼡 + S(r, f)

� T r,
Δqf

f
􏼠 􏼡 + S(r, f).

(76)

On the contrary, we can see that the zero of (Δqf/f) + 2
is the zero of f(qz) + f(z), and the zero of f(qz) + f(z) is
also the zero of (Δqf/f) + 2. Indeed, if z0 is a zero of
(Δqf/f) + 2, that is, ((f(qz0) − f(z0))/f(z0)) + 2 � 0,

then it follows f(qz0) + f(z0) � 0, and this shows that z0 is
a zero of f(qz) + f(z); if z1 is a zero of f(qz) + f(z), that
is, f(qz1) + f(z1) � 0, then it follows (Δqf(qz1)/f(z1))+

2 � 0, and this shows that z1 is a zero of (Δqf/f) + 2. .us,
by combining with (76), we conclude

N r,
1

Δqf/f􏼐 􏼑 + 2
⎛⎝ ⎞⎠ � N r,

1
f(qz) + f(z)

􏼠 􏼡

� T r,
Δqf

f
􏼠 􏼡 + S r,

Δqf

f
􏼠 􏼡.

(77)

.is shows that δ(−2,Δqf/f) � 0; thus, by combining
with δ(∞,Δqf/f) � 0 and δ(ϱ,Δqf/f) � 0 for any
ϱ ∈ C/ −2{ }, we have δ(ϱ,Δqf/f) � 0 for any ϱ ∈ C. So,
Δqf/f has no Nevanlinna exceptional value.

Next, we prove that f(z) has no Nevanlinna exceptional
value.

Firstly, in view of (61) and Lemma 3, we have

m r,
1
f

􏼠 􏼡≤m r,
1

d(z)
􏼠 􏼡 + m r,

f(qz)

f(z)
􏼠 􏼡 + m r,

f(z/q)

f(z)
􏼠 􏼡

� S(r, f),

(78)

which implies

N r,
1
f

􏼠 􏼡 � T(r, f) + S(r, f). (79)

.is means δ(0, f) � 0.
Secondly, in view of (18), we denote

P6(z, f) ≔ [f(qz) + f(z)] f(z) + f
z

q
􏼠 􏼡􏼢 􏼣 − d(z)f(z) ≡ 0.

(80)

Since d(z) is a nonconstant function, then for any
constant ϱ ∈ C/ 0{ }, it yields

P6(z, ϱ) � 4ϱ2 − ϱ d(z)

� ϱ(4ϱ − d(z))≢ 0.
(81)

.us, from Lemma 1, we conclude m(r, 1/f − ϱ) �

S(r, f), which implies

N r,
1

f − ϱ
􏼠 􏼡 � T(r, f) + S(r, f). (82)

.is means that δ(ϱ, f) � 0 for any constant ϱ ∈ C/ 0{ }.
Finally, in view of (77), we have

m r,
1

Δqf/f􏼐 􏼑 + 2
⎛⎝ ⎞⎠ � S r,

Δqf

f
􏼠 􏼡

� S(r, f).

(83)

.us, from (18) and (83), it yields
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m r, f(z) + f
z

q
􏼠 􏼡􏼠 􏼡 � m r,

d(z)f(z)

f(qz) + f(z)
􏼠 􏼡

� m r,
1

(f(qz)/f(z)) + 1
􏼠 􏼡 + O(log r)

� m r,
1

Δqf/f􏼐 􏼑 + 2
⎛⎝ ⎞⎠ + O(log r)

� S(r, f).

(84)

Hence, by the above equality and in view of (18) and
Lemma 3, it leads to

m(r, f)≤m r, f(z) + f
z

q
􏼠 􏼡􏼠 􏼡 + m(r, f(qz) + f(z))

+ O(log r)

≤ 2m r, f(z) + f
z

q
􏼠 􏼡􏼠 􏼡 + m r,

f(qz) + f(z)

f(z) + f(z/q)
􏼠 􏼡

+ O(log r)

� S(r, f),

(85)

which implies

N(r, f) � T(r, f) + S(r, f). (86)

Hence, δ(∞, f) � 0. Together with δ(0, f) � 0 and
δ(ϱ, f) � 0 for any ϱ ∈ C/ 0{ }, we obtain that f(z) has no
Nevanlinna exceptional value.

(ii) Since f(qz) � Δqf(z) + f(z) and
f(z/q) � f(z) − Δqf(z/q), then by substituting
these into (18), it follows

2f(z) + Δqf(z)􏽨 􏽩 2f(z) − Δqf
z

q
􏼠 􏼡􏼢 􏼣 � d(z)f(z).

(87)

If z0 is a zero of f(z) and is not a pole of d(z), then in
view of (87), we conclude that z0 is a zero of Δqf(z) or
a zero of Δqf(z/q). .us, it follows from Lemma 2 that

N r,
1
f

􏼠 􏼡≤N r,
1
Δqf(z)

􏼠 􏼡 + N r,
1

Δqf(z/q)
􏼠 􏼡 + N(r, d)

� 2N r,
1
Δqf

􏼠 􏼡 + S(r, f).

(88)

.us, by combining with (79), it yields that Δq f(z) has
infinitely many zeros and λ(Δqf) � σ(f).

In view of (85) and Lemma 3, we can deduce

m r,Δqf􏼐 􏼑≤m(r, f) + m r,
Δqf

f
􏼠 􏼡 � S(r, f)

� S r,Δqf􏼐 􏼑,

(89)

which implies

N r,Δqf􏼐 􏼑 � T r,Δqf􏼐 􏼑 + S r,Δqf􏼐 􏼑

� T r,
1
Δqf

􏼠 􏼡 + S r,Δqf􏼐 􏼑.

(90)

.us, by combining with (88) and (79), we have that
Δqf(z) has infinitely many poles and
λ(1/Δqf) � σ(f). .is proves the conclusions of
.eorem 8 (ii).

(iii) In view of (71), it follows

P5(z, z + 1) �
z

q
+ 1􏼠 􏼡(qz + 1 + 1) −

d(qz)

d(z)

z

q
+ 1 + 1􏼠 􏼡

�
(z + q)(qz + 2)

q
−

d(qz)

d(z)

z + 2q

q
.

(91)

Since d(z) is a nonconstant rational function, then let
z⟶ ∞, and we have d(qz)/d(z)⟶ qκ, where
κ � degz d. But, for q≠ 0, it follows
((z + q)(qz + 2)/z + 2q)⟶ ∞ as z⟶ ∞. .us, we can
deduce P5(z, z + 1) ≡ 0. By Lemma 1, we conclude that

m r
1

Δqf/f􏼐 􏼑 − z
⎛⎝ ⎞⎠ � m r,

1
g3(z) − 1 − z

􏼠 􏼡

� S r, g3( 􏼁

� S r,
Δqf

f
􏼠 􏼡.

(92)

.is leads to

N r
1

Δqf/f􏼐 􏼑 − z
⎛⎝ ⎞⎠ � T r,

Δqf

f
􏼠 􏼡 + S r,

Δqf

f
􏼠 􏼡, (93)

which implies that Δqf/f has infinitely many fixed points
and τ(Δqf/f) � σ(f).

.erefore, this completes the proof of .eorem 8.
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equations,” Aequationes Mathematicae, vol. 63, no. 1-2,
pp. 110–135, 2002.

[17] I. Laine and C.-C. Yang, “Clunie theorems for difference and
q-difference polynomials,” Journal of the London Mathe-
matical Society, vol. 76, no. 3, pp. 556–566, 2007.

[18] K. Liu, “Entire solutions of Fermat type q-difference differ-
ential equations,” Electronic Journal of Differential Equations,
vol. 2013, no. 59, pp. 1–10, 2013.

[19] M. Ru, “.e recent progress in Nevanlinna theory,” Journal of
Jiangxi Normal University. Natural Sciences Edition, vol. 42,
pp. 1–11, 2018.

[20] H. Y. Xu, S. Y. Liu, and Q. P. Li, “Entire solutions for several
systems of nonlinear difference and partial differential-dif-
ference equations of Fermat-type,” Journal of Mathematical
Analysis and Applications, vol. 483, no. 2, Article ID 123641,
2020.

[21] H. Y. Xu, S. Y. Liu, and Q. P. Li, “.e existence and growth of
solutions for several systems of complex nonlinear difference
equations,” Mediterranean Journal of Mathematics, vol. 16,
no. 1, p. 8, 2019.

[22] H. Y. Xu, S. Y. Liu, and X. M. Zheng, “Some properties of
meromorphic solutions for q-difference equations,” Electronic
Journal of Differential Equations, vol. 2017, no. 175, pp. 1–12,
2017.

[23] Q. Y. Yuan, J. R. Long, and D. Z. Qin, “.e growth of solutions
of two certain types of q-difference differential equations,”
Journal of Jiangxi Normal University. Natural Sciences Edition,
vol. 44, pp. 6–11, 2020.

[24] J. Zhang and R. Korhonen, “On the Nevanlinna characteristic
of f (qz) and its applications,” Journal of Mathematical
Analysis and Applications, vol. 369, no. 2, pp. 537–544, 2010.

[25] X. M. Zheng and Z. X. Chen, “On properties of q-difference
equations,” Acta Mathematica Scientia, vol. 32, no. 2,
pp. 724–734, 2012.

[26] X.-M. Zheng and Z.-X. Chen, “Some properties of mero-
morphic solutions of q-difference equations,” Journal of
Mathematical Analysis and Applications, vol. 361, no. 2,
pp. 472–480, 2010.

[27] X. G. Qi and L. Z. Yang, “Properties of meromorphic solutions
of q-difference equations,” Electronic Journal of Differential
Equations, vol. 2015, no. 59, pp. 1–9, 2015.

[28] Y. Liu and Y. Zhang, “Some results of ϖ-Painlevé difference
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