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'e concept of frame multiresolution analysis (FMRA) on local fields of positive characteristic was given by Shah in his paper,
Frame Multiresolution Analysis on Local Fields published by Journal of Operators. 'e author has studied the concept of
minimum-energy wavelet frames on these prime characteristic fields. We continued the studies based on frame multiresolution
analysis andminimum-energy wavelet frames on local fields of positive characteristic. In this paper, we introduce the notion of the
construction of minimum-energy wavelet frames based on FMRA on local fields of positive characteristic. We provide a
constructive algorithm for the existence of the minimum-energy wavelet frame on the local field of positive characteristic. An
explicit construction of the frames and bases is given. In the end, we exhibit an example to illustrate our algorithm.

1. Introduction

LetK be a field and a topological space.'en,K is called a local
field if both K+ and K∗ are locally compact abelian groups,
where K+ and K∗ denote the additive and multiplicative
groups of K, respectively. If K is any field and is endowed with
the discrete topology, then K is a local field. Furthermore, if K

is connected, then K is either R or C. If K is not connected,
then it is totally disconnected. Hence, by a local field, wemean a
field K which is locally compact, nondiscrete, and totally
disconnected.'e p-adic fields are examples of local fields. For
more details, refer [1]. In the rest of this paper, we use the
symbols N,N0 and Z to denote the sets of natural and non-
negative integers and integers, respectively.

Let K be a local field. Let dx be the Haar measure on the
locally compact abelian group K+. If α ∈ K and α≠ 0, then
d(αx) is also a Haar measure. Let d(αx) � |α|dx. We call |α|

the absolute value of α. Moreover, the map x⟶ |x| has the
following properties: (a) |x| � 0 if and only if x � 0; (b)
|xy| � |x‖y| for all x, y ∈ K; and (c) |x + y|≤max |x|, |y|􏼈 􏼉

for all x, y ∈ K. Property (c) is called the ultrametric in-
equality. 'e set D � x ∈ K: |x|≤ 1{ } is called the ring of
integers in K. DefineB � x ∈ K: |x|< 1{ }.'e setB is called
the prime ideal in K. 'e prime ideal in K is the unique

maximal ideal inD, and thereforeB is principal ideal as well
as prime ideal. Since the local field K is totally disconnected,
there exists an element of B of maximal absolute value. Let
P be a fixed element of the maximum absolute value in B.
Such an element is called a prime element of K. 'erefore,
for such ideal B in D, we have B � 〈P〉 � PD. As it was
proved in [1], the set D is compact and open. Hence, B is
compact and open. 'erefore, the residue space D/B is
isomorphic to a finite field GF(q), where q � pk for some
prime p and k ∈ N.

Let D∗ � D∖B � x ∈ K: |x| � 1{ }. 'en, it can be
proved thatD∗ is a group of units inK∗, and if x≠ 0, then we
may write x � Pkx′, x′∈ D

∗. For a proof of this fact, refer
[1]. Moreover, each Bk � PkD � x ∈ K: |x|< q− k􏼈 􏼉 is a
compact subgroup of K+ and usually known as the fractional
ideals of K+. Let U � ai􏼈 􏼉

q− 1
i�0 be any fixed full set of coset

representatives ofB inD; then, every element x ∈ K can be
expressed uniquely as x � 􏽐

∞
ℓ�k cℓP

ℓ with cℓ ∈ U. Let χ be a
fixed character on K+ that is trivial onD but is nontrivial on
B− 1. 'erefore, χ is a constant on cosets of D, so if y ∈ Bk,
then χy(x) � χ(yx), x ∈ K. Suppose that χu is any
character on K+; then, clearly, the restriction χu|D is also a
character on D. 'erefore, if u(n): n ∈ N0􏼈 􏼉 is a complete
list of the distinct coset representative ofD in K+, then, as it
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was proved in [1], the set χu(n): n ∈ N0􏽮 􏽯 of distinct char-
acters on D is a complete orthonormal system on D.

'e Fourier transform 􏽢f of a function f ∈ L1(K)∩
L2(K) is defined by

􏽢f(ξ) � 􏽚
K

f(x)χξ(x)dx. (1)

It is noted that

􏽢f(ξ) � 􏽚
K

f(x)χξ(x)dx � 􏽚
K

f(x)χ(− ξx)dx. (2)

Furthermore, the properties of the Fourier transform on
local field K are much similar to those on the real line. In
particular, Fourier transform is unitary on L2(K).

We now impose a natural order on the sequence
u(n){ }
∞
n�0. We have D/B � GF(q), where GF(q) is a c-di-

mensional vector space over the field GF(p). We choose a set
1 � ζ0, ζ1, ζ2, . . . , ζc− 1􏼈 􏼉 ⊂ D∗ such that span ζj􏽮 􏽯

c− 1
j�0 � GF

(q). For n ∈ N0 satisfying

0≤ n< q, n � a0 + a1p + · · · + ac− 1p
c− 1

,

0≤ ak <p, k � 0, 1, . . . , c − 1,
(3)

we define

u(n) � a0 + a1ζ1 + · · · + ac− 1ζc− 1( 􏼁P
− 1

. (4)

Also, for n � b0 + b1q + b2q
2 + · · · + bsq

s, n ∈ N0, 0≤
bk < q, k � 0, 1, 2, . . . , s, we set

u(n) � u b0( 􏼁 + u b1( 􏼁P
− 1

+ · · · + u bs( 􏼁P
− s

. (5)

'is defines u(n) for all n ∈ N0. In general, it is not true
that u(m + n) � u(m) + u(n). However, if r, k ∈ N0 and 0≤
s< qk, then u(rqk + s) � u(r)P− k + u(s). Furthermore, it is
also easy to verify that u(n) � 0 if and only if n � 0 and
u(ℓ) + u(k): k ∈ N0􏼈 􏼉 � u(k): k ∈ N0􏼈 􏼉 for a fixed ℓ ∈ N0.
Hereafter, we use the notation χn � χu(n), n≥ 0.

Let the local field K be of characteristic t> 0 and
ζ0, ζ1, ζ2, . . . , ζc− 1 be as above. We define a character χ on K

as follows:

χ ζμP
− j

􏼐 􏼑 �
exp

2πi

j
􏼠 􏼡, μ � 0 and j � 1,

1, μ � 1, . . . , c − 1 or j≠ 1.

⎧⎪⎪⎨

⎪⎪⎩
(6)

In 2015, Shah [2] introduced the concept of frame
multiresolution analysis (FMRA) on local fields, which can
be sought as an extension of multiresolution analysis (MRA)
on local fields of positive characteristic. First of all, let us
recall the definition of FMRA as given by Shah. Let K be a
local field of positive characteristic p> 0 and P be a prime
element of K. A frame multiresolution analysis (FMRA) of
L2(K) is a sequence of closed subspaces Vj: j ∈ Z􏽮 􏽯 of
L2(K) satisfying the following properties:

(a) Vj ⊂ Vj+1, for all j ∈ Z
(b) ∪

j∈Z
Vj is dense in L2(K)

(c) ∩
j∈Z

Vj � 0{ }

(d) f(·) ∈ Vj if and only if f(P− 1·) ∈ Vj+1, for all
j ∈ Z

(e) 'ere is a function φ ∈ V0 such that φ(· − u(k)): k􏼈

∈ N0} forms a frame in V0

'e function φ is called a frame refinable function. It is
noted that the shifts of φ form a tight frame in the above
FMRA. Replacing “a tight frame” in the above by “an or-
thonormal or a Riesz base” will arrive on the definition of a
MRA on local fields of positive characteristic.

A finite familyΨ: � ψ1,ψ2, . . . ,ψL􏼈 􏼉 generates a wavelet
frame for L2(K) if there exist positive numbers
0<A≤B<∞ such that, for all f ∈ L2(K),

A‖f
2
2

���� ≤ 􏽘
L

ℓ�1
􏽘
j∈Z

􏽘
k∈N0

〈f,ψℓ
j,k〉

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
≤B‖f

2
2

���� , (7)

where ψℓ
j,k � qj/2ψℓ(P− j · − u(k)). 'e largest constant A

and the smallest constant B satisfying the above are called
the lower and upper wavelet frame bound, respectively. A
wavelet frame is a tight wavelet frame if A and B are chosen
so that A � B, and then the set Ψ: � ψ1,ψ2, . . . ,ψL􏼈 􏼉 is
called a set of generators for the corresponding tight wavelet
frame. Furthermore, the wavelet frame is called a Parseval
wavelet frame if A � B � 1, i.e.,

􏽘

L

ℓ�1
􏽘
j∈Z

􏽘
k∈N0

〈f,ψℓ
j,k〉

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� |f|
2
2, for allf ∈ L

2
(K), (8)

and in this case, every function f ∈ L2(K) can be written as

f(x) � 􏽘
L

ℓ�1
􏽘
j∈Z

􏽘
k∈N0

〈f,ψℓ
j,k〉ψ

ℓ
j,k(x). (9)

A tight wavelet frame Ψ is called a FMRA tight frame on
local fields with frame bound 1 if Ψ ⊂ V1. Here, in this
article, we are concerned with a minimum-energy wavelet
frame which is more restrictive than a FMRA tight frame on
local fields of positive characteristic. Here, we recall the
definition of minimum-energy wavelet frames on local fields
of positive characteristic [3].

Definition 1. Let φ ∈ L2(K) satisfy 􏽢φ ∈ L∞, 􏽢φ be continuous
at 0, and 􏽢φ(0) � 1. Suppose that φ generates the nested
closed subspaces Vj: j ∈ Z􏽮 􏽯. 'en, a finite family
Ψ � ψ1,ψ2, . . . ,ψL􏼈 􏼉 ⊂ V1 is called a minimum-energy
wavelet frame associated with φ if

􏽘
k∈N0

〈f,φ1,k〉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

� 􏽘
k∈N0

〈f,φ0,k〉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ 􏽘
L

ℓ�1
􏽐

k∈N0

〈f,ψℓ
0,k〉

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
, for allf ∈ L

2
(K), (10)
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where φj,k(·) � qj/2φ(P− 1 · − u(k)). By the Parseval identity,
minimum-energy wavelet frame Ψmust be a tight frame for

L2(K) with the frame bound being equal to 1. At the same
time, the above equation is equivalent to

􏽘
k∈N0

〈f,φ1,k〉φ1,k � 􏽘
k∈N0

〈f,φ0,k〉φ0,k + 􏽘
L

ℓ�1
􏽐

k∈N0

〈f,ψℓ
0,k〉ψ

ℓ
0,k, for allf ∈ L

2
(K). (11)

Motivated and inspired by various constructions of
minimum-energy wavelet frames [4–10] and classical
wavelet frames on finite fields [11–13], we, in this paper,
discuss some constructions of minimum-energy wavelet
frames which are based on the frame multiresolution
analysis on local fields of positive characteristic.'is paper is
organized in the following manner. In Section 2, we present
some preliminaries for the FMRA and the minimum-energy
wavelet frames on local fields of positive characteristic. In
Section 3, we present the main results. Here, we provide a
constructive algorithm for the existence of the minimum-
energy wavelet frame on the local field of positive charac-
teristic. We also construct an example to illustrate our
algorithm.

2. Notations and Preliminaries

Here, we present some preliminaries for the FMRA and the
minimum-energy wavelet frames on local fields of positive
characteristic.

From the definition of FMRA on local fields, we know
that V0 ⊂ V1 � span φ(P− 1 · − u(k)): k ∈ N0􏽮 􏽯. Since φ(·) ∈
V0, there exists a sequence hk􏼈 􏼉k∈N0

∈ l2(N0) such that

φ(x) �
�
q

√
􏽘

k∈N0

hkφ P
− 1

x − u(k)􏼐 􏼑.
(12)

'e Fourier transform of (12) yields

􏽢φ(ξ) � m0(Pξ)􏽢φ(Pξ), (13)

where

m0(ξ) �
1
�
q

√ 􏽘
k∈N0

hkχk(ξ), (14)

is an integral periodic function in L2(D), where D �

x ∈ K: |x|≤ 1{ } is the ring of integers in K and is often called
the refinement symbol of φ. Observe that χk(0) � 􏽢φ(0) � 1.
'erefore, by letting ξ � 0 in (13) and (14), we obtain
􏽐k∈N0

hk � 1.
Consider Ψ � ψ1,ψ2, . . . ,ψL􏼈 􏼉 ⊂ V1, with

ψℓ
(x) �

�
q

√
􏽘

k∈N0

h
ℓ
kφ P

− 1
x − u(k)􏼐 􏼑, ℓ � 1, 2, . . . , L.

(15)

Equation (15) can be written in the frequency domain as
􏽢ψℓ

(ξ) � mℓ(Pξ)􏽢φ(Pξ), (16)

where

mℓ(ξ) �
1
�
q

√ 􏽘
k∈N0

h
ℓ
kχk(ξ), ℓ � 1, 2, . . . , L, (17)

are the integral periodic function in L2(D) and are called the
framelet symbols or wavelet masks.

With mℓ(ξ), ℓ � 0, 1, . . . , L, as framelet symbols, we
formulate the q × (L + 1) matrix M(ξ) as

M(ξ) �

m0(ξ + Pu(0)) m1(ξ + Pu(0)) · · · mL(ξ + Pu(0))

m0(ξ + Pu(1)) m1(ξ + Pu(1)) · · · mL(ξ + Pu(1))

⋮ ⋮ ⋱ ⋮

m0(ξ + Pu(q − 1)) m1(ξ + Pu(q − 1)) · · · mL(ξ + Pu(q − 1))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (18)

Shah and Debnath [3] proved that if Ψ � ψ1,ψ2, . . . ,􏼈

ψL} ⊂ V1 forms a minimum-energy wavelet frame in L2(K),
then the mask matrixM(ξ) should satisfy certain conditions
as follows.

Lemma 1. Suppose that the refinable function φ and the
framelet symbols mℓ(ξ), ℓ � 0, 1, . . . , L, satisfy (13)–(17). If 􏽢φ
is continuous at 0 and φ(x) generates a sequence of nested
closed subspaces Vj: j ∈ Z􏽮 􏽯, then the following statements
are equivalent:

(1) Ψ is a minimum-energy frame associated with φ.

(2) M(ξ)M∗(ξ) � Iq, Iq is an identity matrix of order q

(19).
(3) αr,s � 􏽐k∈N0

hr− qkhs− qk + 􏽐
L
ℓ�1 hℓ

r− qkhℓ
s− qk􏼚 􏼛 − qδr,s � 0,

∀ r, s ∈ N0.

Lemma 1 gives the necessary and sufficient condition
for the existence of the minimum-energy wavelet frames
associated with refinable function φ. However, it is not a
good choice to use this theorem to construct the mini-
mum-energy wavelet frames. For convenience, Shah and
Debnath [3] presented some conditions in terms of the
framelet symbols.
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Lemma 2. Let φ ∈ L2(K) be the refinable function with
refinement mask m0(ξ) such that 􏽢φ is continuous at 0 and
􏽢φ(0) � 1. If Ψ � ψ1,ψ2, . . . ,ψL􏼈 􏼉 is the minimum-energy
wavelet frame associated with φ, then

􏽘

q− 1

r�0
m0(Pξ + Pu(r))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ 1, for all ξ ∈ K. (19)

In this paper, we start with the orthogonal vectors to
obtain an explicit construction for the minimum-energy
wavelet frame on local fields of positive characteristic.

3. Main Results

From Lemma 1, we know that if we want to obtain a
minimum-energy wavelet frame on local fields of positive
characteristic, we should find L functions whose masks
satisfy (19). Note the correlation of the rows of M(ξ); we
should remove this feature first. For this, we introduce the
polyphase decomposition technique. Similar to [3], we write

m0(ξ) �
1
�
q

√ χu(0)(ξ)f1(ξ) + χu(1)(ξ)f2(ξ) + · · · + χu(q− 1)(ξ)fq(ξ)􏽮 􏽯,

mℓ(ξ) �
1
�
q

√ χu(0)(ξ)g
ℓ1

(ξ) + χu(1)(ξ)g
ℓ2

(ξ) + · · · + χu(q− 1)(ξ)g
ℓq

(ξ)􏽮 􏽯,

(20)

where fr(ξ) and gℓr, r � 1, 2, . . . , q, are the polyphase de-
compositions of m0(ξ) and mℓ(ξ), respectively, and all these
functions are 1/q− periodic. Let

P(ξ) �

f1(ξ) g
11

(ξ) · · · g
ℓ1

(ξ)

f2(ξ) g
12

(ξ) · · · g
ℓ2

(ξ)

⋮ ⋮ ⋱ ⋮

fq− 1(ξ) g
1q− 1

(ξ) · · · g
ℓq− 1

(ξ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

S(ξ) �

χu(0) χu(1) · · · χu(q− 1)

χu(0) χPu(1)+u(1) · · · χPu(1)+u(q− 1)

⋮ ⋮ ⋱ ⋮

χu(0) χPu(q− 1)+u(1) · · · χPu(q− 1)+u(q− 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(21)

'en, we can easily see that M(ξ) � (1/ �
q

√
)S(ξ)P(ξ),

and (19) is equivalent to

P(ξ)P(ξ)
∗

� Iq. (22)

'e difference of (19) and (25) is that the rows of (25) are
irrelevant to one another. Since |m0(ξ + Pu(0))|2 +

|m0(ξ + Pu(1))|2 � |f1(ξ + Pu(0))|2 + |f2(ξ + Pu(0))|2,
we have |f1(ξ + Pu(0))|2 + |f2(ξ + Pu(0))|2 ≤ 1.

Riesz lemma tells us that there can exist a function f3
(ξ + Pu(0)) such that |f1(ξ + Pu(0))|2 + |f2(ξ + Pu(0))|2

+ |f3(ξ + Pu(0))|2 � 1. When |f1(ξ + Pu(0))|2 + |f2
(ξ + Pu(0))|2 � 1, then f3(ξ + Pu(0)) � 0, which is the
special case of the orthonormal wavelet base on local fields of
positive characteristic. With f3(ξ + Pu(0)) in hand, we can
have a vector, in fact, a unit column vector, ζ0 � (f1(ξ +

Pu(0)), f2(ξ + Pu(0)), f3(ξ + Pu(0)))T. Now, we expect
the existence of twomore unit column vectors ζ1 and ζ2 such
that

ζT
0 · ζ1 � ζT

0 · ζ2 � ζT
1 · ζ2 � 0. (23)

In fact, ζ1 and ζ2 form an orthonormal fundamental
system of solutions of the linear equation ζT

0 · x � 0. By

straightforward calculation, an orthonormal fundamental
system of solutions is

ζ1 � −
f3

Δ
, 0,

f1

Δ
􏼠 􏼡

T

,

ζ2 � −
f1f2

Δ
,Δ, −

f2f3

Δ
􏼠 􏼡

T

.

(24)

Here, Δ2 � |f1|
2 + |f3|

2 � 1 − |f2|
2. Here, we notice that

if we choose P(ξ) as the first two rows of the following
matrix

ζ0, ζ1, ζ2( 􏼁 �

f1 −
f3

Δ
−

f1f2

Δ

f2 0 Δ

f3
f1

Δ
−

f2f3

Δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

then P(ξ) is a unitary matrix which implies that the cor-
responding matrix M(ξ) is a mask matrix. Moreover, the
minimum-energy wavelet frame matrixM(ξ) on local fields
has the shape

P(ξ) �

f1 −
f3

Δ
−

f1f2

Δ

f2 0 Δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
N(ξ), (26)

where N(ξ) is a square matrix which is also unitary.
Given a refinement function φ(x), the refinement mask

m0(ξ + Pu(0)) should satisfy m0(ξ + Pu(0)) + m0(ξ+

Pu(1)) + m0(ξ + Pu(2)) � 1, which is the same as to the
first column of (26). So, we can select the orthonormal
wavelet masks as those of (26). So, all the orthonormal
wavelet masks are of the shape
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ζ0, ζ1, ζ2( 􏼁 �

f1 −
f3

Δ
−

f1f2

Δ

f2 0 Δ

f3
f1

Δ
−

f2f3

Δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 0

0 N(ξ)

⎛⎝ ⎞⎠. (27)

4. Example

Let us consider the case of the Haar wavelet. 'e refinement
function of the Haar wavelet on local fields will be given by
φ(x) � χD(x), and its refinement mask will be
m0(ξ) � (1/q)(1 + χ(ξ)). It can be observed that m(ξ)

satisfies |m0(ξ + Pu(0))|2 + |m0(ξ + Pu(1))|2 � 1, and the
corresponding polyphase decompositions are
f1 � f2 � 1/ �

q
√ . Here, we notice that the polyphase de-

compositions of the orthonormal wavelet masks mℓ(ξ) are
gℓ 1(ξ) � − 1/ �

q
√ and gℓ 2(ξ) � 1/ �

q
√ . Hence, the wavelet

masks are given by mℓ(ξ) � − (1/ �
q

√
)(1 − χℓ(ξ)).
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