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Let G be a finite, simple, and undirected graph with vertex set V (G) and edge set E (G). A super edge-magic labeling of G is a bijection
f:V(G)UE(G) — {L,2,...,|V(G)| + |E(G)|} such that f (V(G)) ={L1,2,...,|[V(G)|} and f (u) + f (uv) + f (v) is a constant for
every edge uv € E(G). The super edge-magic labeling f of G is called consecutively super edge-magic if G is a bipartite graph with partite
sets A and B such that f(A) ={1,2,...,]Al} and f(B) = {|Al + L,|A| +2,...,|V(G)|}. A graph that admits (consecutively) super
edge-magic labeling is called a (consecutively) super edge-magic graph. The super edge-magic deficiency of G, denoted by y, (G), is
either the minimum nonnegative integer # such that G UnK is super edge-magic or +co if there exists no such #n. The consecutively
super edge-magic deficiency of a graph G is defined by a similar way. In this paper, we investigate the (consecutively) super edge-magic

deficiency of subdivision of double stars. We show that, some of them have zero (consecutively) super edge-magic deficiency.

1. Introduction

Besides having an interesting theoretical study, graph la-
belings can be applied in various fields of computer science
such as coding theory, cryptography, circuit design, database
management system, design of algorithms, and communi-
cation networks [1-5].

All graphs considered here are finite, simple, and un-
directed graphs. We denote the vertex and edge sets of a
graph G by V (G) and E (G), respectively, where p = |V (G)|
and g = |E(G)|. For most terminology and notation in graph
theory used in this paper, we follow Chartrand et al. [6].

Kotzig and Rosa [7] in 1970 introduced the concept of an
edge-magic graph. A graph G is called edge-magic if there is a
bijection f: V(G)UE(G) — {1,2,...,p+q} such that
f(x)+ f(xy)+ f(y) =k is a constant for every edge
xy € E(G).In such a case, f is called an edge-magic labeling
of G and k is called the magic constant of f. Meanwhile,
Enomoto et al. [8] in 1998 introduced the terminology of a

super edge-magic graph. An edge-magic graph G with an
edge-magic labeling f is called super edge-magic (SEM) if
f(V(G) ={1,2,...,p}. In this case, f is called a SEM
labeling of G. The following lemma, proved by Figueroa-
Centeno et al. [9], provides sufficient and necessary con-
ditions for a SEM graph.

Lemma 1 (see [9]). A graph G is SEM if and only if there
exists a bijection f: V(G) — {1,2,..., p} such that the set
of all edge-sums S = {f (x) + f(y): xy € E(G)} consists of q
consecutive integers. In this case, f extends to be a SEM
labeling of G with magic constant k = p + g + min (S).

Enomoto et al. [8] provided a sufficient condition for
nonexistence of a SEM labeling of a graph.

Lemma 2 (see [8]). If G is a SEM graph, then q<2p — 3.

They also proposed the following conjecture.
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Conjecture 1 (see [8]). Every tree is SEM.

A SEM labeling can be considered as a particular case of
an (a,d)-super edge antimagic labeling for d =0. An
(a,d)-super edge antimagic labeling of a graph G is a bi-
jection f: V(G)UE(G) — {1,2,...,p+q} such that

{f o+ fFey)+f
(y): xy € E(GQ)}={a,a+d,a+2d,...,a+ (q -1)d},
where a>0 and d>0, and f(V(G)) ={1,2,...,p}. The

recent results of this labeling can be seen in [10, 11]. In [11],
Liu et al. computed the bounds of a of super edge-antimagic
labelings of subdivided caterpillars. They also presented a
partial support of Conjecture 1 by proving that some classes
of subdivided caterpillars are SEM.

As same as SEM graph, Muntaner-Batle [12] in 2001 in-
troduced the concept of a special SEM bipartite graph. In 2007,
Oshima [13] called such a graph as a consecutively SEM graph. A
bipartite graph G with partite sets A and B is called consecutively
SEM if there exists a SEM labeling f of G with the property that
f(A)=1{1,2,...,|Al} and f(B) ={|Al+1, |[A]+2,...,p}.

Kotzig and Rosa [7] proved that, for every graph G there
exists a nonnegative integer n such that GUnK, is an edge-
magic graph. This fact encourages the concept of edge-magic
deficiency of a graph. The edge-magic deficiency of a graph G,
u(G), is defined as the minimum nonnegative integer n such
that GUnK, is an edge-magic graph. This concept motivated
Figueroa-Centeno et al. [14] to introduce the concept of super
edge-magic deficiency of a graph. The super edge-magic defi-
ciency (SEMD) of a graph G, u,(G), is defined as either the
minimum nonnegative n such that GUnK, is a SEM graph or
+00 if there exists no such n. Moreover, Ichishima et al. [15]
defined a similar notion for consecutively SEM labeling. The
consecutively SEMD of a graph G, u, (G), is defined to be either
the smallest nonnegative integer n with the property that
G UnK, is consecutively SEM or +00 if there exists no such .

V(G

m;s;n)
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Hence, a (consecutively) SEM graph is a graph has zero
(consecutively) SEMD. As an immediate consequence of these
definitions, ¢ (G) <y, (G) <. (G) holds for every graph G.

Motivated by Conjecture 1, many researchers have in-
vestigated the SEM labeling of some families of trees. The
SEM labeling of subdivision of stars K, ; was studied by
Ngurah et al. [16]. Hussain et al. [17] studied the SEM la-
beling of banana trees. Ahmad et al. [18] investigated the
existence of SEM labeling of subdivision of banana trees.
Javaid et al. [19] found SEM labeling of subdivision of stars
K, and w-trees. In [20], Ali et al. investigated the SEM
labeling on w-trees. Next, Ali et al. [21] studied the SEM
labeling of subdivision of stars K, for n>5. However,
Conjecture 1 is still open. Meanwhile, in [15], Ichishima et al.
presented some results on consecutively SEMD of forets
with two components, where its components are (non)
isomorphic stars and union of paths and stars. In this paper,
we study the (consecutively) SEMD of subdivision of double
stars. We find the upper bound of (consecutively) SEMD of
particular subdivision of double stars. We also prove that
subdivision of double stars with a large order has zero
(consecutively) SEMD.

2. The Results

A double star DS (m, n) is a tree obtained from two disjoint
stars K| ,, and K ,, by joining the center vertices through an
edge. For r;, tj21,1< i<m, 1< j<n, ands>0,asubdivision
of a double starDT (r|,15,...,7,; Sit sty ..., 1,) is a graph
obtained from a double star DS (m,n) by inserting r; — 1
vertices to each edge of K ,,, s vertices to the edge which link
the centre vertex of two stars, and t; — 1 vertices to each edge
of Ky .. Thus, DT (r|, 7y, ...,7,; 8tk . 5t,) = G (s 18
a graph of order 2 +s+ ", r; + Y t).

Let vertex and edge sets of G ,,.,.,,) be defined as follows:

) ={x.x 1<i<m, 1<a<r}ufy: 1<l<s}u
Azzj 1<j<n 1<b<t ),

E(G(mzs;n)) :{xxi,l,xi’ax-ml: 1<i<m,1<a<r; - 1} U{xytu

Ay 1<l<s - l}U{ysz}U{zzj)l,zj,sz)hﬂz l<js<n 1<bs<t; - 1}.

In this paper, we assume that s > 0 is odd. We denote the
partite sets of G,,,.;.,) as follows:

Xia

Zjp: 1<j<nb= 1(mod2)},

X, X4
l

{
{
{
L {
{
{
{
|

Xjgo 1<ism,a= 1(mod2)}u
2,2y 1<j<nb= O(modz)},
:ISiSm,azl(modZ)}U
ypl= 1(m0d2)}U{z]->b: 1<j<nb= l(modZ)},

X, X, 1<i<m,a= O(modZ)}U

c1<i<m,a= O(modZ)}U
y;: 1=0((mod?2))}u {z, zjp1<j<nb= O(modZ)},

(1)
fors =0,
forodds>1,
(2)
fors =0,
forodds>1.
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First, we investigate the upper bound of (consecutively) Define a labeling f: V(G) — {1,2,...,p}, where
SEMD of G ,,0.)- p=(2"3.3+3)y+2m3.3-1, as follows:
. _ 1 m—2 m—2
Theorem 1. Let y>2 be an even integer. If r) =1, =t; =y, fx)= 2 [(2 + 5))’ +2 ]’
t,=ty=y-1, and r;=2"3(y+1), 3<i<m, then (3)
s (G 0:3) = e (G o) < ™2 =1 (y+ 1)+ 1 for any 1/ ome -
mes f@=3 @ 7y 2" 2]

Proof. Let G =G5 U 2" -1)(y+1)+1]K, be a for Ish< (2" =D (y+1)+1,
graph with the vertex set V(G) = V(G ,.0.3) U{w,: 1<
h< (2"% = 1)(y+1) + 1} and edge set E(G) = E(G ,,0.3))-

flw)=(2"2+4)y+h+2"7 -2,

(1
3 (y—a+1), ifu = x, ,andaisodd,
1
3 [(2'"72 +5)y—a+2miz], ifu=x,,anda#yiseven,
(2" 343)y+2"0 31, ifu=ux,,
1
5(y+a+ 1) ifu = x,,andaisodd,
1
3 [(2"‘72 + S)y +a+ 2"172], if u = x,,and aiseven,
1, .
3 [(2’_2 + 1)(y +1)— a], ifu=x;, 3<i<mandaisodd,
Lo m2 | iz m-2 | Ai-2] . . (4)
f(u) =1 5[(2 +2 +5)y—a+2 +2 ], ifu=x,;, 3<i<mandaiseven,
1 _
5[(2’” 2+1)(y+1)+b], if u =z, ,andbis odd,
1
3 [(2"'_1 + S)y +b+2" ! 2], if u =z, and bis even,
1
E[(Zm_2+3)y—b+2m 2+1], if u = z,, and bis odd,
1
3 [(2’”_1 + 7)y —b+2™! 2], if u = z,;, and bis even,
1
E[(Zm_2+3)y+b+2m_2+1], if u = z;, and bis odd,
1
3 [(2'”_1 + 7)y +b+2" ! - 2], if u = z;;, and bis even.
It can be checked that the set of all edge-sums is As an illustration of the proof of Theorem 1, see
8 P
S={c,c+1,...,c+q-1},wherec = (2" 3 +2)(y+1)and  Figure 1. O

q= (2™ 2 +4)y+2m 2 -2, Hence, by Lemma 1, f extends

to a SEM labeling of G with magic constant k=

(2m2.3+49)y+2™%.3-1. Therefore, for any m>3, Theorem 2. Let y>3 be an odd integer. If r\ =7, =t, =

e (Gloz) < 27 =D (y+1) + 1. ty=t; =y and r; =277y, 3<i<m, then pu (G ,.03) = U
Furthermore, let A" and B’ be partite sets of G, where (G (o) < (272 = 1)y + 2 for any m>3. '

A'=A and B =BuU{w, 1<h< (2™ -1)(y+1)+1} '

Since f(A")={1,2,...,d}and f(B')={d +1,d+2,...,p}

where d = (2% +2)y+2"°, G is a consecutively SEM  Proof. Let H = G,05 U [(2" >~ 1)y + 2]K, be a graph

graph. Hence, . (G(p3)< (2" =1 (y+ 1)+ 1, for any  with the vertex setV(H) =V (G ps3)U{w,: 1<

mz=3. h< (2™ 3 - 1)y + 2} and edge set E(H) = EV(G(m;Oﬁ)).
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FiGUREe 1: The (consecutively) SEM labeling of DT (4,4,5,10;0;4,3,3) U6K].

Define a labeling f: V(H) — {1,2,...,p}, where
p=(2"3-3+3)y+4, as follows:
The label of isolated vertices is

and the label of the remaining vertices is as follows:

f(wy) =(2m_3 +2)y+4,
flwn) =5 [(27 +5)y+7)
f(wy) :(2’"*2 +4)y+ h+1,

for3»shs(2m73 - 1)y+2,
(5)

fx) = % (22 +5)y+7),
f(z)=%[(2m_l+7)y+7],
% (y—a+2), ifu = x, ,andaisodd,
S sy -a7) if = x,,anda#y - 1iseven,
(2" 343)y+4, ifu=x,,
% (p+a+2), ifu = x, , andaisodd,
(2" 2 +5)y+a+7], ifu = x,,andaiseven,
(272 +1)y-a+4], ifu =x;,, 3<i<mandaisodd, (6)
fwy={5[2"+27+5)y-a+7|, ifu=x, 3<i<mandaiseven,

=
[\S)
3
(3]
+
—
=
+
fayl
+
Nl

—_ = =
[\ N [\
3 3 3
[3S) —_ (3]
+ + +
W N (O8]
= = =
+ | !
S fayl S
+ + +
AV P A

—
(3]
3
[
+
N
=
+
S
+
L

N = N —= N—= N—= = N|—= N—= N|= N|—=
—
N

3
—_
+
ul
=
+
S
+
N
—

ifu =2z, andbisodd,
ifu =z, andbis even,
ifu = z,;, and bis odd,
ifu = z,,andbiseven,
ifu =z, and bis odd,

if u = z;, and bis even.
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It can be verified that the set of all edge-sums is S =
{c.e+1,...,c+q—1}, where c= (2" 3 +2)p+7 and q =
(2™% + 4)y + 1. Hence, by Lemma 1, f extends to a SEM
labeling of H with magic constant k = (223 +9)y + 12.
Therefore, for any m >3, y (G ,03) < (2" = 1)y + 2.

Moreover, let A" and B be partite sets of H, where A" =
Aand B' = BU{w: 1<h< (2™% = 1)y + 2}. Since f(A") =
{1,2,...,d} and f(B')={d+1,d+2,...,p}, where d=
(2™ 3 +2)y+3, H is a consecutively SEM graph. Hence,
te (G no:3)) < (273 = 1)y + 2 for any m > 3. O

Based on Theorems 1 and 2, we propose the following
open problem.

Open Problem 1. Find an upper bound of (consecutively)
SEMD of G,,,.¢.3) for the remaining cases. Furthermore, find

a better upper bound of (consecutively) SEMD of G ,,,.3 for
the same cases as in Theorems 1 and 2.

f) =3 Gres),
f(z)=4y+2,

-

1
E(y—a+2),

%(y+a+2),

Fuw) =1
S Gy-1+4)
%(7y—l+5),
Lay—b+s
E(Y— +5),

It can be examined that the set of all edge sums is
S={2y+4,2y+5,...,6y +4}. Hence, by Lemma 1,
f extends to a SEM labeling of G, ;) with magic

1
5(5y—a+5),

1
5(5y+a+5),

|5 By =b+a)

Next, we show that the graphs G, ,, have zero (con-
secutively) SEMD.

Theorem 3. Let y>1 be an odd integer. If ry =1, =s =1, =
ty=yand t; =272 (y+ 1), 3<j<n, then p (G ) = te
(G(a5m) = 0 for every n>1 and odd s> 1.

Proof. Based on the sufficient conditions, G,,., has order

forn=1,
} (7)

4y +2,
P= (2" +4)y+2"2+1, fornz2.

We consider the proof into two cases depending on the
value of n.

(i) Case 1: n=1.

Define a labeling f: V(G 1)) — {1,2,...,p} as
follows:

ifu = x,,andaisodd,
ifu = x, ,andaiseven,

ifu = x,,andaisodd,

(8)

ifu = x,,and ais even,
ifu = y;andlis odd,
ifu = yyandliseven,

ifu =z, andbisodd,

ifu=z,andbiseven.

constant k = 10y + 7. Therefore, for every odd s> 1,
Us (G(Z:s;l)) =0.
(ii) Case 2: n>2.



Define a labeling f: V(G(551)) — {1,2,...
follows:

,p} as

[(2”_2 + 5)(y + 1)],

f(z) =(2”_3 + 4))/ +2"3 42,

r % (y—a+2),

% [(2”’2 + 5)(y+ 1) —a],

% (y+a+2),

S s e +al,

% By-1+4),

ey -1 2748,
J () =1 )

5 (4y—b+ 5),

% (272 +8)y-b+2""+4],

1

5 (4y+b+5),

% [(2”_2 + 8)y+ b+2"? +4],

% [(21"2 +4)y— b+277% 4 5],

% (272 +2772+8)y-b+2" % + 2772 +4],

We can examine that the set of all edge-sums is
S={c,c+1,...,c+p—-2}, where c= (2" % +2)y+2"3 +4.
Hence, by Lemma 1, f extends to a SEM labeling of G ,.,.,,
with magic constant k= (2"2-5+10)y+2"3.5+5. There-
fore, for every n>2 and odd s>1, (G y,,) =0.

Furthermore, since for any n>1, f(A) ={1,2,...,d}

and f(B)={d+1,d+2,...,p}, where
(2y+2, ifn=1,
1 .
[ (277 +2)y+2" +2, ifn23,

Journal of Mathematics

ifu=x,,andaisodd,
ifu=x,,andaiseven,
ifu = x,,andaisodd,
ifu = x,,andaiseven,

ifu = y;andlisodd,
9)

ifu = y;andliseven,

ifu =2z, andbisodd,

ifu =z, andbis even,

ifu =z,,andbisodd,
ifu=z,,andbiseven,
ifu=z;,3<j<nandbisodd,

ifu=z;,3<j<nandbiseven.

then G, is a consecutively SEM graph. Hence,
te (G g5)) = 0 for every n>1 and odd s> 1. O

Figure 2 shows the vertex labelings of the graph G,
and G ;3.4 given in the proof of Theorem 3.

Theorem 4. Let y>2 be an even integer. If r| =t =,
rp=s=t=y-Lty=y+2andt; =24 (y+4),4<j<n
then u (G (3,5.)) = phe (G(2.5m)) = 0 foranyn>2 and odd s> 1.

Proof. Based on the properties of the theorem, the order of
G am 18

5 -1, forn =2,
= 11
P (2"_3 + S)y +2"1 =3, forn>3. (1)



Journal of Mathematics

12 21 11 20 10

FIGURE 2: The (consecutively) SEM labelings of DT (5,5;5;5) and DT (3, 3;3; 3, 3, 4, 8).

Thus, there are two following cases to prove the theorem
depending on the value of n.

(i) Case 1: n = 2.

f) =5,
f@=5y-1,

-

1

E (a + 1),
1

5 (5y + a),

%(2y+a+l),

%(7y+a),

%(2y—l+l),
fu) =4 .

5(7)’_1),

1

z(3y+b+1),
1(8 +b-2)
2 ’

%(5y—b+l),

1
|5 10y -b-2),

It can be checked that the set of all edge-sums is
S ={(1/2) (5y +4), (1/2) (59 +6), ..., 6y + 4}.
Hence, by Lemma 1, f extends to a SEM labeling of

Define a labeling f: V(G 5,) — {1,2,...,p} as
follows:

ifu = x,,andaisodd,
ifu = x, ,andaiseven,
ifu = x,,andaisodd,
ifu = x, ,and ais even,
(12)
ifu =y andlisodd,
ifu = y,andliseven,
if u =z, andbisodd,
ifu =z, ,andbiseven.

ifu = z,,andbis odd,

ifu =z, andbiseven.

G (3 With magic constant k= (1/2)(25y - 2).
Therefore, for any odd s>1, (G 5,)) = 0.

(ii) Case 2: n>3.



Define a labeling f: V(G(552) — {1,2,...,p} as
follows:

fe)=-[2"+7)y+2" " -2),

| =

(2" +10)y+2"" - 4],

| —

f(2) =
'%(a+1),

(2" +5)y+a+2""-2],

N =

1
5(2y+a+1),

(2" +7)y+a+2""-2],

NS

%(2)/—“1),

% (2" +7)y-1+2" " -2],

%(3y+b+1),
fu) =1

! [(2”*3 +8)y+b+2"" —4],

\S]

%(5y—b+1),

L3 410 —b+2" 4],
3 Y

%(5y+b+1),

[(2”73 + 10)y+ b+2"! —4],

| =

(2 +5)y-b+2 1)

N —

| =

We can check that the set of all edge-sums is S =
fe,e+1,..,c+p-2}, where c¢=(1/2)[(2"° +5)p+
21+ 2]. Hence, by Lemma 1, f extends to a SEM labeling
of G (,.;.,,) with magic constant k = 2p + ¢ — 1. Therefore, for
any n>3 and odd s> 1, (G (,,) = 0.

Moreover, since for any n>2, f (A) ={1,2,...,d}, and
fB)={d+1,d+2,...,p}, where

(2" +27 +10)y—b+ 2"+ 2771 - 4],

Journal of Mathematics

ifu=x,,andaisodd,
ifu=x,,andaiseven,
ifu =x,,andaisodd,
ifu = x,,andaiseven,
ifu = y,andlisodd,
ifu = y,andliseven,
ifu =z, andbisodd,
ifu =z, andbis even,
ifu = z,,andbisodd,
ifu = z,, and bis even,
ifu =z, and bis odd,
if u = z3, and bis even,
ifu=z;,,4<j<nandbisodd,

ifu=z;,,4<j<nandbiseven.

%(5)}), ifn=2,
3p+1, ifn=3,
% (2" +5)y+2"" -2], ifnz4,

(13)

(14)
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then G, is a consecutively SEM graph. Hence,
te(G(a5)) = 0 for any n>2 and odd s> 1. O

The open problem related to Theorems 3 and 4 is as
follows.

Open Problem 2. Decide if the graphs G, have zero
(consecutively) SEMD for the remaining cases.

Lastly, we show that subdivision of double stars G ,,.,.,,)
has zero (consecutively) SEMD, as the following theorems.

f@=51@"+ 1)y +3)
fz)=2"y+2,

(1

E(y—a+2),

Lo m

5[(2 +1)y—a+5],
l( +a+2)

2 rraTe

l m

E[(Z +1)y+a+5],

(27" +1)y-a+4],

| =

J(u) =1

N =

1
5(3)’_1"'4),
1 m

5[(2 +3)y-1+5],

(2"y-b+5),

N =

[ 2"y -b+3,

[(2’”+2"’1 + 1)y—a+5],

Theorem 5. Let y>1 be an odd integer. If r| =1, =s =1,
r =27y, t=ty=s+ Y1, and t;=277(t +1),
3<j<n, then p(Gpsm) = the (Gpsmy) =0 for arbitrary
m=3,n>1, and odd s> 1.

Proof
(i) Case 1: n=1.
Define a labeling f: V(G ,,..;)) — {1,2,..., p}, where
p =2"y+2 as follows:
ifu=x,,andaisodd,
ifu = x, ,and aiseven,
ifu = x,,andaisodd,
ifu = x,,andaiseven,
(15)
ifu=x;, 3<i<mandaisodd,
ifu=x,_ ,3<i<mandaiseven,

ia>

ifu = y;andlisodd,

ifu = y;andliseven,

ifu=2z,andbisodd,

ifu =2z, andbiseven.
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(ii) Case 2: n>2. Define a labeling f: V(G ,.5) — {1,2,..., p}, where
p=(2722m 1 —1)+2™)y+2"% + 1, as follows:

F@ =5[22 =) v 2 )y e 2 4 5],

f(z) = % (222" = 1)+ 2™ )y + 272 4 4],
% (y-a+2), ifu=x,,andaisodd,
% [(2"72(2’”71 - 1) +2"+ l)y —a+2"+ 5], if u = x, ,and aiseven,
% (y+a+2), ifu = x,,andais odd,
% [(2"_2(2"'_l - 1) +2"+ l)y +a+2" 4 5], if u = x,,and aiseven,
%[(2i_1+1)y—a+4], ifu=x;, 3<i<mandaisodd,
] ' (16)
3 [(2"72(2'"71 - 1) +2" 427y l)y—a +2 % 5], ifu=x;, 3<i<mandaiseven,

f ) =1
%(3),_14.4), ifu = y,andlisodd,
% [(2"2(2" ' —1)+2"+3)y 142"+ 5], if u = y;andlis odd,
%[ "y -b+5], ifu =2z, ,andbisodd,
% [(2"72(27"71 - 1) + 2'"“))/ —b+2" 4 4], ifu =2z ,andbiseven.
%[2’"y+b+5], ifu = z,,andbisodd,
% [(2”_2(2'”_1 - 1) + 2”’“))/ +b+2" %+ 4], ifu = z,,andbiseven,

and for 3<j<n,
%[(2’"(21’3+1)—2f*2)y—b+2f*2+5], if bis odd,
=) = (17)

[(zn—z(zm—l _ 1) i ZM(21—3 4 2) _ zf‘z)y b2 2402 4], if biseven.

N[ —
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It can be verified that, for n> 1, the set of all edge-sums is
S={cc+1,...,c+ p—2}, where

2"y + 4, forn =1,
LT )2y e 2" w4, fornz
(18)

Hence, by Lemma 1, f extends to a SEM labeling of
G (5, With magic constants k = 2p + ¢ — 1. Therefore, for
arbitrary m >3, n>1, and odd s> 1, 4 (G,,.)) = 0.

Moreover, since for any n>1, f(A) ={1,2,...,d} and

f(B)={d+1,d+2,...,p}, where
2m_1y+2, ifn=1,
1 m—1 1
d= 5[(2 .3_1)y+5], ifn=2,

[zm—l(zn—S N 1) _ 2n—3]y+2”‘3 +2, ifn>3,
(19)

fx)= %(2'“—1 +5)y,
f(z) =(2m’1 + 3)y -1,

’l(a+1),

[(2"'71 + 3)y + a],

N = N

1
5(2y+a+1),

[(2”1’1 + 5))/ + a],

| —

(272 +2)p-a+1]

| =

| —

S () =4 .
E(ZY_Z+1)’

(2" +5)y-1],

N —

[(2”‘_2 + Z)y +b+ 1],

NS

SR

[(2'”_1 + 3)y— b+ 1],

| —

(2" +6)y-b-2],

NS

[(2’”_1 +27% 4 S)y - a],

(2% 3+5)y+b-2],

11

then G, is a consecutively SEM graph. Hence,
te (G (smy) = 0 for arbitrarym>3,n>1,andodd s>1. [

Theorem 6. Let y=2(mod4). If r\ =y, r,=s=y-1,
r;=273%, 3<i<sm, t;=(1/2)Q™ +1)y, t,=t; -1,
ty=t,+2, and t;=27*(t;+2), 4<j<n,  then
Us (G esny) = U (Gsy) =0 for any m=3, n>2, and
s = 1(mod4).

Proof
(i) Case 1: n=2.

Define a labeling f: V(G ,..,)) — {1,2,..., p}, where
p=(2"1+3)y -1, as follows:
ifu = x, ,andaisodd,
ifu = x,,andaiseven,
ifu = x,,and ais odd,
ifu=x,,andaiseven,
ifu=x;, 3<i<mandaisodd,

(20)

ifu=x;, 3<i<mandaiseven,

ias
ifu = y,andlisodd,
ifu = y;andliseven,
ifu=2z,andbisodd,
ifu =z, and bis even,
ifu =z,;,andbisodd,

ifu=z,,andbiseven.
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(ii) Case 2: n>3.
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Define a labeling f: V(G ,.5) — {1,2,.. ., p}, where

p=("*2m 2+ 1)+ 2™ +3)p+2"3.3 -3, as follows:

fx)= % [(2"*“(2"“*2 +1)+2" 4 S)y +273 .3 2],

f(z) = % (22" 2+ 1)+ 2" +6)y+2" % 3-4],
% (a+1) ifu=x,,andaisodd,
% [(2"_4(2m_2 + 1) +2" 1y 3)y +a+2"7.3 2] ifu=x,,andaiseven,
—(2y+a+1) ifu = x,,andaisodd,
% [(2"_4(2'”_2 + 1) +2" Ny S)y +a+2"7.3- 2] ifu = x,,andaiseven,
%[(2i72+2)y—a+1] ifu=x;,3<i<m,andaisodd,
% [(2"_4(2’"_2 + 1) +2m ey S)y —a+2"7.3- 2], ifu=x;, 3<i<mandaiseven,

(21)

%(2y—l+1) ifu = y;andlis odd,

fw=12
3 [(2"_4(2m_2 + 1) +2" g S)y —1+2"7 .3 2] ifu = y;andliseven,
%[(2m72+2)y+b+1], ifu =z, andbisodd,
% [(2"_4(2m_2 + 1) +2" 34 S)y +b+2"7 .3 4] ifu =z, and biseven,
%[(2m_1+3)y—b+1], if u = z,, and bis odd,
% [(2”74(2”“72 + 1) +2" + 6))/ ~b+2"7 .3 4], if u = z,, and bis even,
%[(2'"_1+3)y+b+1], if u = z;;, and bis odd,
% [(2”’4(2”“’2 + 1) +2"+ 6)y +b+2"7 .3 4], if u = 23, and bis even,

and for 4<j<n,
% (2" 22 +2)+ 2 +3)y-b+277 31, if bis odd,
fzn) =1 ] | | | (22)
5 (22" 2+ 1)+ 2" (2 +4)+ 2/ v 6)y - b+ 2" 342777 3-4], ifbiseven.
We can examine that, for n > 2, the set of all edge-sums is
S={cc+1,..., c+ p -2}, where
(2" +3)y+4], forn =2,

N = N =

[(zn—4(2m—2+1)+2"1—1+3)y+2”_3.3+2], forn>3.
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Hence, by Lemma 1, f extends to a SEM labeling of

13

Furthermore, since for any n>2, f(A)={1,2,...,d},

G (misn) with magic constants k = 2p + ¢ — 1. Therefore, for and f(B) = {d +1,d+2,... ,p}, where
any m>3, n>2, and s = 1(mod4), y; (G ,..)) = 0.
( 1 m—1 .f
3 [(2 + 3))/], itn=2,
_ 1 m—2 .
d_<Z[(2 547y +2), if n =3, (24)
1 m—2( An—4 n—4 n-3 .
~§[(2 (27 42)+2" 4 3)p 42" 3-2], ifnx4,

then G, is a consecutively SEM graph. Hence,
te (G smy) = 0 for any m>3, n>2, and s = 1(mod4).
To clarify the proof of Theorem 6, see Figure 3. O

Theorem 7. Lety = 0(mod4) be a positive integer. If ry =y,
ry=s=y-1 r, =27y, 3<ism, t; =t; = (1/2) (2" *+
Vy, ty=t,-2 and t;=2"*(t;+2), 4<j<n, then

f@ =52 +5)y-2]

f)y=(2""+3)y-2

E (a+1),
(2" +3)y+a-2],
2y +a+1),
(2" +5)y+a-2],

[(2"72 + Z)y -a+ 1],

1

=
[\S)
3

Flu) =
2y -1+1),

—

2"t s)y-1-2],

2m— 2

—_

+2)y+b+l],

—

2" 34 5)y+b-4],

—

2" 3)y-b-1],

[(2" +6)y-b-4],

D= N = N = N = N= N= N= N = = N= N = N =

+2i_2+5)y—a—2],

s (G isiny) = U (Gsy) = 0 for every m=3, n>2, and
s = 3(mod4).

Proof

(i) Case 1: n=2.

Define a labeling f: V(G,..,)) — {1,2,..., p}, where
p=(2"1+3)y -2, as follows:
ifu = x, ,andaisodd,
ifu = x, ,and aiseven,
ifu=x,,andaisodd,
ifu = x,,and aiseven,
ifu=x;, 3<i<mandaisodd,
(25)

ifu=x,;, 3<i<mandaiseven,
ifu = y;andlisodd,

ifu = y;andliseven,

ifu =z, andbisodd,

ifu=1z ,andbiseven,
ifu=2z,,andbisodd,

ifu = z,, and biseven.
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(ii) Case 2: n>3.

Journal of Mathematics

Define a labeling f: V(G ,.5) — {1,2,.. ., p}, where
p=(2"42m 2+ 1)+ 2™ 1 +3)y + 272 — 4, as follows:

F@ =3[ ) v 2 sy 2 4],

f2)=(2

Fu) =

N =

M) 2" 43y 42" -3,
' % (a+1),
% (22" 2+ 1) +2" P+ 3)y+a+ 2" - 4],

1
5(2y+a+1),

% (22" 2+ 1) +2" ' +5)y+a+2" 2 - 4],

% (272 +2)y-a+1],

% (22" 2+ 1) +2" P+ 27 4 5)p—a+ 2" -
%(2y—l+ 1,

% (242" 2+ 1)+ 2" P4 5)y -1+ 2" - 4],

% (272 +2)y+b+1],

% (22" 2+ 1) +2" 2 345)y+b+2" " - 6],
% (2"t +3)y-b-1],

% (242" 2 +1)+2" +6)y-b+ 2" -6,
ARy T

(22" +1)+2" +6)y +b+2"% - 6],

ifu = x, ,andaisodd,

ifu = x, ,and ais even,

ifu=x,,andaisodd,

ifu=x,,andaiseven,

ifu=x;, 3<i<mandaisodd,

ifu=x;, 3<i<mandaiseven,

(26)

ifu = y;andlis odd,

ifu = y;andlis even,

ifu =z, andbis odd,

ifu=z,andbiseven,

ifu=z,,andbisodd,

ifu = z,,and bis even,

ifu=z;,andbisodd,

ifu=z,,andbiseven,
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FIGURE 3: The (consecutively) SEM labelings of DT (2,1,2,4,8;1;9,8) and DT(2,1,2,4,8;1;9,8, 10, 12).

and for 4<j<n,

N =

f (Zj,b) =

N —

It can be verified that, for n> 2, the set of all edge-sums is

S={c,c+1,...,c+ p-2}, where
% (2" +3)y+2], forn =2,
c=
% (22" 2+ 1) +2" P+ 3)y+2"?], fornz3.
(28)

Hence, by Lemma 1, f extends to a SEM labeling of
G (sn:5;n) With magic constants k = 2p + ¢ — 1. Therefore, for
every m>3, n>2, and s = 3(mod4), p (G y.5.2)) = 0.

Moreover, since for any n>2, f(A) ={1,2,...,d} and
f(B)={d+1,d+2,...,p}, where

Sl ep-2) n=2

d =1 ;11[(2”1*2-5+7)y—4], ifn=3,
%[(2’”‘2(2”‘4+2)+2”‘4+3)y+2”‘2—4], ifn>4,

(29)

then G, is a consecutively SEM graph. Hence,

te (G (smy) = 0 foreverym>3,n>2,and s = 3(mod4). O

According to Theorems 5-7, we present the following
open problems.

(27227 +2) + 27  +3)y-b+ 272 - 3],

if bis odd,

(27)

[(zn—4(2m—2 N 1) + 2"‘-2(21'-4 n 4) $2 4y 6)y _b4+ 2y 6], if bis even.

Open Problems 3. Find (consecutively) SEMD of the graphs
G (s for the remaining cases.
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