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'e study focuses on the chaotic behavior of a three-dimensional Hopfield neural network with time delay. We find the aspecific
coefficient matrix and the initial value condition of the system and use MATLAB software to draw its graph.'e result shows that
their shape is very similar to the figure of Roslerʼs chaotic system. Furthermore, we analyzed the divergence, the eigenvalue of the
Jacobian matrix for the equilibrium point, and the Lyapunov exponent of the system.'ese properties prove that the system does
have chaotic behavior. 'is result not only confirms that there is chaos in the neural networks but also that the chaotic
characteristics of the system are very similar to those of Roslerʼs chaotic system under certain conditions. 'is discovery provides
useful information that can be applied to other aspects of chaotic Hopfield neural networks, such as chaotic synchronization and
control.

1. Introduction

Chaotic systems are nonlinear dynamical systems working
in a stochastic process that is neither periodic nor con-
vergent but are highly dependent on the initial value. Par-
ticularly, sensitivity to initial conditions implies that any
small perturbations in the current trajectory of a dynamic
system results in significant differences in future behavior.
Chaos exists widely in natural and social fields such as
chemistry, physics, mathematics, and biology. 'e research
upsurge for chaos theory began in the early 1970s but the
origins of the new discipline can be traced back to the last
century. Poincare, a French mathematician and physicist,
was the first known scholar to discover chaos. In 1880,
Poincare first studied the possibility of chaos [1]. He studied
the three-body problem and became the first person to
discover the deterministic system of chaos which showed an
acyclic behavior dependent on initial conditions. 'is made
long-term prediction impossible, thereby laying the foun-
dation for modern chaos theory. Further contributions by
Birkhoff, Cartwright and Littlewood, Levinson, and Kol-
mogorov, among others, came up later [2].

By 1963, Lorenz, an American meteorologist, discovered
a three-dimensional chaotic system which he later called the
Lorenz chaotic system while, when studying weather models
[3]. 'e revolutionary work on chaos was discovered from a
three-dimensional chaotic system by an American meteo-
rologist, Edward Lorenz, in 1963 while studying weather
models. Since then, in-depth studies on chaos theory has
been done in science and engineering fields. 'e theory has
important applications in information processing, high
performance circuit, secure communication, and other is-
sues [4–10].

Many classical paradigms have emerged since the dis-
covery of Lorenz chaotic systems, such as the famous Rossler
chaotic system [11], Lü system [12], Chen system [13], and
Caiʼs circuit chaotic system [14], among others. 'e Rossler
system is the most famous chaotic system having simple
asymmetric attractor substructure extracted from the Lorenz
attractor by the German physical chemist, Rossler. It plays a
vital role in signal processing [15], secure communication
[16], and other issues.

In the past decade, the chaos of neural networks has been
extensively researched. For example, Yang et al. analyzed the
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transient chaos in a chaos bifurcation problem of a class of
simple chaotic Hopfield neural networks. [17]. Zou et al.
observed chaotic attractors of nonautonomous cellular
neural networks by using antisymbol templates [18], and
they found interesting fractal structures. In a study by Das
et al., rich dynamic characteristics were revealed based on
analysis of artificial neural networks composed of three
neurons and they drew bifurcation and three-dimensional
phase diagrams of the model [19]. In addition, Zhang et al.
presented an example of a two-dimensional chaotic neural
network [20]. A proposal by Sampath et al. showed a class of
chaotic system with cubic term whereby they analyzed its
basic properties [21].

Based on previous ideas and work of Sampath et al., in
this paper, we focus on the chaotic behavior of a three-
dimensional Hopfield neural network with time delay. We
presented a neural network model with specific coefficients.
To understand the graphical characteristics of this model, we
used MATLAB to draw its phase diagram. 'e result shows
that their shape is very similar to the figure of Roslerʼs
chaotic system. 'en, we analyzed the divergence, the ei-
genvalue of the Jacobian matrix for the equilibrium point,
and the Lyapunov exponent of the system. 'ese properties
prove that the system does have chaotic behavior. 'is re-
search is a refreshing discovery.

2. AThree-DimensionalDelayChaoticHopfield
Neural Network

We considered the following three-dimensional delay
Hopfield neural network:

_x(t) � Ax(t) + Bf(x(t)) + Cf(x(t − τ)), (1)

where x(t) � (x1(t), x2(t), x3(t)) denotes the state varia-
ble, f(x(t)) � (f(x1(t)), f(x2(t)), f(x3(t))) denotes the
activation function, and τdenote the transmission delays and
we set τ � 1, f(xi(t)) � tanhxi(t)(i � 1, 2, 3), and

A �

− 1 0 0

0 − 1 0

0 0 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

B �

0 b12 0

0 0 b23

b31 0 b33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

C �

0 0 0

0 0 0

c31 0 c33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(2)

When we take the following parameter values, system (1)
presents a Lossler chaotic attractor:

b12 � 30,

b23 � 90,

b31 � 0.01,

b33 �
�
3

√
,

c31 � 0.04,

c33 � − 1.23,

(3)

with initial conditions being

x1(0) � 30,

x2(0) � 11,

x3(0) � 0.12.

(4)

Figure 1 displays the three-dimensional view of chaotic
neural network system (1) when MATLAB for numerical
simulation was used, having one attractor, while Figures 2–4
show the two-dimensional view (projection) of the systemʼs
three-dimensional view attractor on three coordinate planes.
Figure 5 shows the system (1) state variable
(x1(t), x2(t), x3(t)), respectively, against time t.

3. Properties of Chaotic Systems in Three-
Dimensional Delayed Neural Networks

In this section, we analyzed the basic properties of chaotic
systems (1), such as dissipativity, the stability of the equi-
librium point, the Lyapunov exponent, and the
Kaplan–Yorke dimension.

3.1. Dissipativity. We present the system in another vector
form as follows:

_x � f(x) �

f1 x1, x2, x3( 􏼁

f2 x1, x2, x3( 􏼁

f3 x1, x2, x3( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (5)

where

f1 x1, x2, x3( 􏼁 � − x1 + b12 ∗ tanhx2,

f2 x1, x2, x3( 􏼁 � − x2 + b23 ∗ tanhx3,

f3 x1, x2, x3( 􏼁 � − x3 + b31 ∗ tanhx1 + b33 ∗ tanhx3 + c31 ∗ tanhx1(t − τ) + c33 ∗ tanhx3(t − τ).

(6)
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'e parameter value in the chaotic case was named as

b12 � 30,

b23 � 90,

b31 � 0.01,

b33 �
�
3

√
,

c31 � 0.04,

c33 � − 1.23.

(7)

Let ∀Ω ⊂ R3 with smooth boundary, and let V (t) rep-
resent the volume of Ω (t), and according to Liouvilleʼs
theorem, we obtain

dV

dt
� 􏽚
Ω(t)

(∇ · f)dx1dx2dx3. (8)

It is easy to know what the divergence of system (1) is as
follows:

∇ · f �
zf1

zx1
+

zf2

zx2
+

zf3

zx3
� − 3 + b33 1 − f x3( 􏼁

2
􏼐 􏼑

� − 3 +
�
3

√
1 − tanhx3( 􏼁

2
􏼐 􏼑≤ − 3 +

�
3

√
< 0.

(9)

Substituting (9) into (8), we obtain
dV(t)

dt
� 􏽚
Ω(t)

(∇ · f)dx1dx2dx3 ≤􏽚
Ω(t)

(− 3 +
�
3

√
)dx1dx2dx3

� (− 3 +
�
3

√
)V(t).

(10)

Since V(t)> 0, then
1

V(t)

dV(t)

dt
≤ (− 3 +

�
3

√
). (11)

Integrating both sides of inequality (11) from 0 to t, we
obtain

V(t)≤V(0)e
− (3−

�
3

√
)t

. (12)

It is easy to identify from equation (12) that
limt⟶0V(t) � 0. 'is result indicated that the system (1) is
dissipative.

'us, the limit set of the system is ultimately limited to a
specific limit set of zero volume, and the asymptotic motion
of chaotic system (1) is adsorbed to a strange attractor of the
system.
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Figure 1: Attractor of chaotic neural network system (1).
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Figure 2: Two-dimensional projection of the chaotic neural net-
work system on x1x2-coordinate plane.
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Figure 3: Two-dimensional projection of the chaotic neural net-
work system on x1x3-coordinate plane.
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Figure 4: Two-dimensional projection of the chaotic neural net-
work system on x2x3-coordinate plane.
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Figure 5: Trajectory components of system (1) (x1(t), x2(t), x3(t)), respectively, against time for the parameters b12 � 30, b23 � 90,
b31 � 0.01, b33 �

�
3

√
, c31� 0.04, and c33 � − 1.23 when the initial state(x1(0), x2(0), x3(0)) � (30, 11, 0.12).
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3.2. Stability of the Equilibrium Point. By solving the fol-
lowing equations (where b12 � 30; b23 � 90; b31 � 0.01;
b33 �

�
3

√
; c31 � 0.04; c33 � − 1.23), chaotic system (1) has one

equilibrium point, that is, the origin (0, 0, 0):

− x
∗
1 + b12 ∗ tanhx

∗
2 � 0,

− x
∗
2 + b23 ∗ tanhx

∗
3 � 0,

− x
∗
3 + b31 + c31( 􏼁∗ tanhx

∗
1 + b33 + c33( 􏼁∗ tanhx

∗
3 � 0.

(13)

From the above equation, we obtain the Jacobian matrix
of system (1):

− 1 b12 ∗ 1 − tanh2x2􏼐 􏼑 0

0 − 1 b23 ∗ 1 − tanh2x3􏼐 􏼑

b31 + c31( 􏼁∗ 1 − tanh2x1􏼐 􏼑 0 − 1 + b33 + c33( 􏼁∗ 1 − tanh2x3􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

'erefore, we can obtain the Jacobian matrix of system
(1) at the equilibrium point as follows:

J �

− 1 30 0

0 − 1 90

0.05 0 − 1 +(
�
3

√
− 1.23)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (15)

Calculating the eigenvalue of the matrix J, we have

λ1 � 4.3028,

λ2,3 � − 3.4004 ± 4.4380i.
(16)

'e equilibrium point was considered a saddle point
focus. It can be seen that the equilibrium point of system (1)
is unstable.

3.3. Lyapunov Exponents and Kaplan–Yorke Dimension.
'e Lyapunov exponent is an important parameter to
measure a chaotic system. It is usually used to describe the
characteristics of the motion of a system. Its positive values
and negative values along a certain direction indicate the
average divergence or convergence speed of the adjacent
orbitals in the attractor for a long time. When Lyapunov
exponent is less than 0, it indicates that the phase volume will
shrink, the motion state of the system will tend to be stable,
and the system is not sensitive to the initial state. When the
Lyapunov exponent is greater than 0, it indicates that the
phase volume will expand and the adjacent two orbitals will
gradually separate and have more and more differences, so
that the motion state of the system will finally enter into a
chaotic state. When Lyapunov exponent is equal to 0, the
system is in critical stable situation. If the system is in a
chaotic state, there must be a Lyapunov exponent greater
than zero. 'erefore, judging the magnitude, positive and
negative of the Lyapunov exponent become a criterion for
whether the system enters chaos [22–25].

To analyze the chaotic behavior of system (1) by using the
Lyapunov exponents, for parameter value (3) and initial

condition (4), by usingMATLAB, we obtained the Lyapunov
exponents of the system (1) as follows:

λ1 � 0.15,

λ2 � 0,

λ3 � − 9.009.

(17)

From this, system (1) has three Lyapunov exponents:
positive, negative, and zero. 'e maximum Lyapunov ex-
ponent of system (1) is λ1 � 0.15. 'is makes the initial
conditions unpredictable to the long-term behavior of the
system. System (1) should therefore present a chaotic
phenomenon which is consistent with the numerical
simulation.

'e Kaplan–Yorke dimension (KYD) was obtained
using the Lyapunov index of system (1) as in the following
equation:

DKY � k +
􏽐

k
i λi

λk+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (18)

where k is an integer and k+ 1 is the number of Lyapunov
exponents.'e number of Lyapunov exponents of system (1)
is equal to the number of state variables, that is, 3. When
equation (1) presents chaotic behavior, k� 2 and λk+1 � λ3 is
the third Lyapunov exponent (in descending order).
'erefore, from equation (18), the KYD of system (1) is

DKY � 2 +
λ1 + λ2
λ3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� 2.01665. (19)

4. Conclusion

In summary, we draw a graph of a neural network model
with a specific coefficient matrix and analyze the properties
of the system, such as equilibrium point, divergence, and
Lyapunov exponent. 'is result proves that the neural
network not only has chaos but also has similar chaotic
characteristics with Roslerʼs chaotic system under some
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specific parameters, although their equations are different.
'is discovery provides useful information that can be
applied to other aspects of chaotic Hopfield neural networks,
such as chaotic synchronization and control.
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