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&is paper is devoted to a study of the concept of edge-group choosability of graphs. We say that G is edge-k-group choosable if its
line graph is k-group choosable. In this paper, we study an edge-group choosability version of Vizing conjecture for planar graphs
without 5-cycles and for planar graphs without noninduced 5-cycles (2010 Mathematics Subject Classification: 05C15, 05C20).

1. Introduction

We consider only simple graphs in this paper unless otherwise
stated. For a graph G, we denote its vertex set, edge set,
minimum degree, and maximum degree by V(G), E(G),
δ(G), and Δ(G), respectively. A plane graph is a particular
drawing of a planar graph in the Euclidean plane. We denote
the set of faces of a plane graph G by F(G). For a plane graph
G and f ∈ F(G), we write f � u1 u2 · · · un  if
u1, u2, . . . , un are the vertices on the boundary walk of f

enumerated clockwise. &e degree of a face is the number of
edges on the boundary walk. Let dG(x), or simply d(x),
denote the degree of a vertex (or face) x in G. A vertex (or
face) of degree k is called a k-vertex (or k-face). For v ∈ V(G),
NG(v) is the set of all vertices of G that are adjacent to v in G.
We denote the line graph of a graph G by ℓ(G).

A k-coloring of a graph G is a mapping ϕ from V(G) to
the set of colors 1, 2, . . . , k{ } such that ϕ(x)≠ ϕ(y) for every
edge xy. A graph G is k-colorable if it has a k-coloring. &e
chromatic number χ(G) is the smallest integer k such that G

is k-colorable. A mapping L is said to be a list assignment for
G if it supplies a list L(v) of possible colors to each vertex v. A
k-list assignment of G is a list assignment L with |L(v)| � k

for each vertex v ∈ V(G). If G has some k-coloring ϕ such
that ϕ(v) ∈ L(v) for each vertex v, then G is L-colorable or ϕ
is an L-coloring of G. We say that G is k-choosable if it is
L-colorable for every k-list assignment L. &e choice number
or list chromatic number χl(G) is the smallest k such that G is

k-choosable. For edge-colorings of G, we can define anal-
ogous notions such as edge-k-colorability, edge-k-choos-
ability, the chromatic index χ′(G), and the choice index
χl
′(G). Clearly, we have χ′(G) � χ(ℓ(G)) and
χl
′(G) � χl(ℓ(G)). &e notion of list coloring of graphs has
been introduced by Erdős et al. [1] and Vizing [2]. &e
following conjecture, which first appeared in [3], is well-
known as the List Edge Coloring Conjecture.

Conjecture 1. If G is a multigraph, then χl
′(G) � χ′(G).

Although Conjecture 1 has been proved for a few special
cases such as bipartite multigraphs, complete graphs of odd
order, multicircuits, graphs with Δ(G)≥ 12 that can be
embedded in a surface of nonnegative characteristic, and
outerplanar graphs, it is regarded as very difficult. Vizing
proposed the following weaker conjecture (see [4]).

Conjecture 2. Every graph G is edge-(Δ(G) + 1)-choosable.

Assume A is an Abelian group, and F(G, A) denotes the
set of all functions f: E(G)⟶ A. Consider an arbitrary
orientation of G. &e graph G is A-colorable if, for every
f ∈ F(G, A), there is a vertex coloring c: V(G)⟶ A such
that c(x) − c(y)≠f(xy) for each directed edge from x to y.
&e group chromatic number of G, χg(G), is the minimum k

such that G is A-colorable for any Abelian group A of order

Hindawi
Journal of Mathematics
Volume 2020, Article ID 4639260, 4 pages
https://doi.org/10.1155/2020/4639260

mailto:amirkhamseh114@gmail.com
https://orcid.org/0000-0001-5077-634X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4639260


at least k. &e notion of group coloring of graphs was first
introduced by Jaeger et al. [5].

&e concept of group choosabilitywas introduced by Král
and Nejedlý in [6], and some first results in this area were
obtained in [7, 8]. Let A be an Abelian group of order at least
k and L: V(G)⟶ 2A be a list assignment of G. For
f ∈ F(G, A), an (A, L, f)-coloring under an orientation D of
G is an L-coloring c: V(G)⟶ A such that
c(x) − c(y)≠f(xy) for every edge e � xy, where e is di-
rected from x to y. If for each f ∈ F(G, A), there exists an
(A, L, f)-coloring for G, and then we say that G is
(A, L)-colorable. &e graph G is k-group choosable if G is
(A, L)-colorable for each Abelian group A of order at least k

and any k-list assignment L: V(G)⟶ A

k
 . &e mini-

mum k for which G is k-group choosable is called the group
choice number of G and is denoted by χgl(G). It is clear that
the concept of group choosability is independent of the
orientation on G. Graph G is called edge-k-group choosable if
its line graph is k-group choosable.&e group-choice index of
G, χgl
′(G), is the smallest k such that G is edge-k-group

choosable, i.e., χgl
′(G) � χgl(ℓ(G)). It is easily seen that an

even cycle is not edge-2-group choosable. &is example
shows that χgl

′(G) is not generally equal to χ′(G). But we can
extend the Vizing conjecture as follows.

Conjecture 3. If G is a multigraph, then χgl
′(G)≤Δ(G) + 1.

Since Δ(G)≤ χ′(G)≤Δ(G) + 1, as a sufficient condition,
we have the following weaker conjecture.

Conjecture 4. If G is a multigraph, then χgl
′(G)≤ χ′(G) + 1.

Some early results concerning edge-group choosability
of graphs were presented by the authors in a series of lectures
in Annual Iranian Mathematical Conferences (see [9–11]).
Conjecture 3 has been proved for graphs with maximum
degree Δ≤ 3 [9], planar graphs with maximum degree Δ≥ 11
[9], planar graphs without 4-cycles with maximum degree
Δ≥ 5 [11], outerplanar graphs [12], simple series-parallel
graphs [12], (Kc

2∧(K1 ∪K2))-minor-free graphs [12], and
planar graphs with maximum degree Δ(G) � 4 that has no
cycles of length from 4 to 14 [10]. For further reference, we
add here some related details.

Theorem 1 (see [9]). Let l be a natural number, v be a vertex
of degree at most 2 of G, and e be an edge incident to v. If
χgl
′(G − e)≤Δ(G) + l, then χgl

′(G)≤Δ(G) + l.

Theorem 2 (see [9]). Let G be a graph with
χgl
′(G − e)< χgl

′(G), for each e ∈ E(G). /en,
δ(ℓ(G))≥ χgl

′(G) − 1.

Theorem 3 (see [9]). Let G be a graph with maximum degree
Δ(G). If Δ(G)≤ 3, then χgl

′(G)≤Δ(G) + 1, and if Δ(G) � 4,
then χgl

′(G)≤ 6.

Theorem 4 (see [7])

(a) Let Pn and Cn denote a path and a cycle of length n,
respectively. /en, χgl(Pn) � 2 and χgl(Cn) � 3.

(b) For any connected simple graph G, we have
χgl(G)≤Δ(G) + 1, with equality holds if and only if G

is either a cycle or a complete graph.

Immediately from &eorem 4, we see that
χgl
′(Pn) � Δ(Pn) � 2 and χgl

′(Cn) � Δ(Cn) + 1 � 3. In this
paper, we show that any planar graph G without 5-cycles
with maximum degree Δ is edge-(Δ + 2)-group choosable. If
in addition Δ(G)≥ 6, we can show that G is edge-
(Δ + 1)-group choosable. &is proves in advance that
Conjecture 3 and, consequently, Conjecture 4 holds for this
class of planar graphs. Moreover, we show that if G is a
planar graph without noninduced 5-cycles, then
χgl
′(G)≤max 7,Δ + 2{ }.

2. Main Results

First we need a lemma, which we will discuss below. It is a
structural lemma for plane graphs without 5-cycles.

Lemma 1 (see [13]). If a plane graph G with δ(G)≥ 3 has no
five cycles, then there exists an edge xy of G such that d(x) �

3 and d(y)≤ 5.

Note that G is a minimal counterexample to a theorem if
G is a counterexample, that is, G satisfies the hypotheses but
not the conclusion of the theorem, and there is no coun-
terexample G′ satisfying either |V(G′)|< |V(G)| or
|V(G′)| � |V(G)| and |E(G′)|< |E(G)|.

Theorem 5. If G is a planar graph without 5-cycles with
maximum degree Δ, then G is edge-(Δ + 2)-group choosable.

Proof. We saw in &eorem 4 that if Pn and Cn denote a
path and a cycle of length n, respectively, then χgl(Pn) � 2
and χgl(Cn) � 3. Moreover, for any connected simple graph
G, we have χgl(G)≤Δ(G) + 1, with equality holds if and only
ifG is either a cycle or a complete graph. Immediately, we see
that χgl

′(Pn) � Δ(Pn) � 2 and χgl
′(Cn) � Δ(Cn) + 1 � 3.

Hence, if Δ(G)≤ 3, then χgl
′(G)≤Δ(G) + 1, and if Δ(G) � 4,

then χgl
′(G)≤ 6. Here, we used the observation that, for a

connected graph G, if Δ(G) � 1, then G � P2; if Δ(G) � 2,
then G � Pn or G � Cn; if Δ(G)≤ 3, then Δ(ℓ(G))≤ 4; and if
Δ(G)≤ 4, then Δ(ℓ(G))≤ 6. Now, let G be a minimal
counterexample to &eorem 5 for some Abelian group A

with |A|≥Δ(G) + 2, a (Δ(G) + 2)-list assignment
L: V(ℓ(G))⟶ A

Δ(G) + 2  and f ∈ F(ℓ(G), A). &en, G

is connected, δ(G)≥ 3, and Δ(G)≥ 5. By Lemma 1, there
exists a vertex e ∈ V(ℓ(G)) with dℓ(G)(e)≤ 6. Suppose that
G′ � G − e. &en, ℓ(G′) � ℓ(G) − e, and since
χgl
′(G′)≤Δ + 2, there exists an (A, L, f)-coloring

c: V(ℓ(G′))⟶ A. For each e′ ∈ Nℓ(G)(e) we can consider,
without loss of generality, ee′ to be directed from e to e′.
&en, since |L(e)| � Δ + 2≥ 7 and dℓ(G)(e)≤ 6,
|L(e) − c(e′) + f(ee′): e′ ∈ Nℓ(G)(e) |≥ 1. In other words,
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there is at least one color available to color e. &us, we can
color all edges of G. &is contradiction completes the proof
of theorem.

&e above proof shows that the only critical case is Δ � 5.
If remove it, we can prove a stronger result.

Theorem 6. If G is a planar graph with maximum degree
Δ≥ 6 and without 5-cycles, then χgl

′(G)≤Δ + 1.

Proof. Let G be a minimal counterexample to this the-
orem for some Abelian group A with |A|≥Δ(G) + 1, a

(Δ(G) + 1)-list assignment L: V(ℓ(G))⟶ A

Δ(G) + 1 

and f ∈ F(ℓ(G), A). &en, δ(G)≥ 3. By Lemma 1, there
exists a vertex e ∈ V(ℓ(G)) with dℓ(G)(e)≤ 6. Suppose that
G′ � G − e. &en, ℓ(G′) � ℓ(G) − e, and since
χgl
′(G′)≤Δ + 1, there exists an (A, L, f)-coloring

c: V(ℓ(G′))⟶ A. For each e′ ∈ Nℓ(G)(e), we can consider,
without loss of generality, ee′ to be directed from e to e′.
&en, since |L(e)| � Δ + 1≥ 7 and dℓ(G)(e)≤ 6,
|L(e) − c(e′) + f(ee′): e′ ∈ Nℓ(G)(e) |≥ 1. In other words,
there is at least one color available to color e. &us, we can
color all edges of G. &is contradiction completes the proof
of theorem.

&e structure of planar graphs without noninduced 5-
cycles is given in the following lemma.

Lemma 2 (see [14]). Let G be a planar graph without
noninduced 5-cycles. /en, G contains one of the following
configurations:

(1) An edge uv with d(u) + d(v)≤max 8,Δ(G) + 2{ }

(2) An even cycle C: v1, v2, . . . , v2n with d(v1) � d(v3) �

· · · � d(v2n−1) � 3 and
d(v2) � d(v4) � · · · � d(v2n) � Δ(G)

Theorem 7. If G is a planar graph without noninduced 5-
cycles, then

χgl
′(G)≤max 7,Δ + 2{ }. (1)

Proof. Using Lemma 2, the proof is straightforward and is
similar to the proof of&eorem 5. We leave the details to the
reader.

If a planar graph G without noninduced 5-cycles in
addition contains no even cycles, we can replace Δ + 2 by
Δ + 1 in &eorem 7.

Theorem 8. If G is a planar graph without noninduced 5-
cycles and without even cycle C: v1, v2, . . . , v2n with d(v1) �

d(v3) � · · · � d(v2n−1) � 3 and d(v2) � d(v4) �

· · · � d(v2n) � Δ(G), then χgl
′(G)≤max 7,Δ + 1{ }.

Proof. Let k � max 7,Δ + 1{ } and G be a minimal counter-
example to this theorem for some Abelian group A with

|A|≥ k, a k-list assignment L: V(ℓ(G))⟶ A

k
  and

f ∈ F(ℓ(G), A). By &eorem 1 and Lemma 2, there exists a
vertex e ∈ V(ℓ(G)) with dℓ(G)(e)≤Δ. Suppose that
G′ � G − e. &en, ℓ(G′) � ℓ(G) − e, and since
χgl
′(G′)≤Δ + 1, there exists an (A, L, f)-coloring

c: V(ℓ(G′))⟶ A. For each e′ ∈ Nℓ(G)(e), we can consider,
without loss of generality, ee′ to be directed from e to e′.
&en, since |L(e)|≥Δ + 1 and dℓ(G)(e)≤Δ,
|L(e) − c(e′) + f(ee′): e′ ∈ Nℓ(G)(e) |≥ 1. In other words,
there is at least one color available to color e. &us, we can
color all edges of G. &is contradiction completes the proof
of theorem.
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