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In this paper, we generalize the concept of strong and reciprocal convexity. Some basic properties and results will be presented for
the new class of strongly reciprocally p-convex functions. Furthermore, we will discuss the Hermite—Hadamard-type, Jensen-type,
and Fejér-type inequalities for the strongly reciprocally p-convex functions.

1. Introduction

e importance of convex functions and convex sets cannot
be ignored, especially in nonlinear programing [1-5] and
optimization theory [6], see, for instance, [7-14]. General-
ization in the convexity is always appreciable. Also, many
generalizations and extensions have been made in the theory
of inequalities as well as in convexity. Several inequalities
have been studied and established for the convexity of
functions, and many generalizations, applications, and re-

nements take place, see [7, 9, 13, 15-18], for further study.
In the theory of inequalities, the famous inequality,
Hermite—Hadamard inequality was established by Jaques
Hadamard [19]. If : L R is a convex function, then
L C 1 c 0C 0 G
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holds for all ¢;,¢c, L with¢; .
In [10], Lipot Fejér established the weighted version of
the Hermite—Hadamard inequality.

Ifo: L R is a convex function, then the inequality
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holds for all ¢;,c, L with¢; ¢, and w: L R is inte-
grable, nonnegative, and symmetric about ¢; ¢, /2.
For more details on the Fejér inequality, see
[8,9,11,20-22]. e main motivation of this article is based
on [18].
Mathematically, Jensen-type inequality is stated as if o is
a convex function de ned on L R, then
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holds for all n R, x1,%,,...,x, L and uy,uy,...,p4, 0O
with y;  u, u, 1

is inequality has applications in probability and
statistics.

e article is organized as follows: Section 2 is devoted to
preliminaries and basic results, whereas in the last section,
we will develop the main results for strongly reciprocally
p-convex functions.

2. Preliminaries

is section concerns preliminaries and basic results for the
strongly reciprocally p-convex functions.

Definition 1 (p-convex set; see [23]). An interval L is called
the p-convex set if rcf 1 rcb Y L for all
c,co Land r 0,1, where p 2u 1 or p dic,
d v 1,¢ 2w 1,andu,v,wv N.
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Definition 2 (p-convex function; see [24]). A function
oL R is called p-convex function if

1
o rdd 1 rd P ro ¢ 1 roc,

forall ¢;,c, Landr 0,1, where L isthe p-convex set.
Definition 3 (strongly convex function; see [14]). Let u be a
positive number. A function ¢: L R is called a strongly

convex function if
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forall ¢;,c, Landr 0,1.

Definition 4 (strongly p-convex function; see [25]). Let u be
a positive number. A function ¢: L R is called strongly
p-convex function if

v
o red 1 rd P rocg 1 roc, ur

forall ¢;,c, Landr 0,1.

Definition 5 (harmonic convex function; see [22]). Let L

c;,¢; R be an interval. A function o: L R is har-

monic convex if
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forall ¢;,c, Landr 0,1.
Definition 6 (harmonic p-convex function; see [26]). A
function o: L Ris called a harmonic p-convex function
if
pp Up
ciC
aa@%A i ro 1 roc,
rey, 1 re

forall ¢;,c, Landr 0,1.

Definition 7 (strongly reciprocally convex function; see
[18]). LetL Randyu 0, .Afunctiono: L Ris said
to be strongly reciprocally convex with modulus x on L if the
inequality

€162
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2
L Ly
a )
holds for all ¢;,c, Landr 0,1.

Now, we are ready to introduce a new class of convexity
named as strongly reciprocally p-convex function.
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Definition 8 (strongly reciprocally p-convex function). A
function g: L R is called strongly reciprocally p-convex
with modulus g on L if the inequality

Up

pyp
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holds, for all x,y L  ¢;,¢, andr 0,1,

Remark 1

(1) If weinsert p 1 in inequality (10), then we retrace
the strong and reciprocal convexity [18]

(2) If we insert y 0 in inequality (10), then we retrace
the harmonic p-convexity [26]

(3) Ifweinsert p 1landu 0O in inequality (10), then
we retrace the harmonic convexity [22]

e following proposition expresses the algebraic
property of strongly reciprocally p-convex functions.

Proposition 1. Leto,¢: L R be two strongly reciprocally
p-convex functions; then, the following statements hold:
(i)o ¢ L R is strongly reciprocally p-convex

(ii) For any A 0, Ao: L R is strongly reciprocally
p-convex corresponding to Ay p

Proof
(i) Choosev  xPyPl rxP 1 r y? P :then by
the de nition of ¢ and ¢, we obtain
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where y 0.
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(ii) Let A 0; then, by de nition, we obtain

1 A% x 1

rAoc x 1

where gy Agand u 0.
e next lemma establishes the connection between the
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Lemma 1. Let 0. L
ciprocally p-convex iff the function ¢: L

R be a function; o is strongly re-
R, defined by

strong and reciprocal p-convexity and harmonic ¢ x o x  u/x*’, is harmonically p-convex.
p-convexity.
Proof. Let o be strongly reciprocally p-convex; then, we have
Up 1Up 2
o Xy v s Iyt s, T ryt,
rxP 1 ryP rxb 1 ryP xP yP
2 2
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is shows that ¢ is a harmonic p-convex function.
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Conversely, if ¢ is harmonically p-convex, then

PR e RS ) G T G NS L
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is implies that o is a strongly reciprocally p-convex
function for all x,y Landr 0,1.

3. Main Results

In this section, Hermite—Hadamard-, Fejér-, and Jensen-

generalization of the Hermite—Hadamard inequality for
strongly reciprocally p-convex functions.

Theorem 1 (Hermite-Hadamard-type inequality). Let
L R/f0y be an interval on the real line. If 0. L Risa
strongly reciprocally p-convex function with modulus u 0

type inequalities are investigated. e nexttheoremgivesthe  and x L ¢y, ¢, , then
pp Up p p 2 p_p p p 2
-8 iclczp! g “ czp ;1! iclczp @ g xl dx 0G0 H czp 51! ,
Cl C2 12 61C2 CZ Cl X p 2 6 Cl C2
forall c;,c; L withey co. Let x Akl v 1 rdd VP oand y clebr
red 1 rc& Y7 and by integrating w.r.t r over [0, 1],

Proof. We start by the de nition; set r

1/2 in inequality
(10), and we have

1Up

the above inequality yields

PP
2xly 1 8 E o x e oy g L ! L LI
xP  yP 2 2 4 yP xP
1 p Up
z o8 29%, gy,
o o &
1 p.p Up 1 p.p Up p P21
EZ o8 1% 1 8ar z o8 €1 1 8dr “ o Cl! Z 1 2rdr
20 rdd 1 rd o rdd 1 rd 4 JLd
1 PP Up P c 1 p.p Up
cle cic 20 x cle
zZ o8 5 172 p! 8 O pPac a 1dx Z o8 5 172 P! Bdr,
o rd 1 rg & ax b o re; 1 orq
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and then inequality (17) is reduced to

a 2c1c2P! 5 0 1;pc1c2 A0 X i ‘Lo e : 1A
b ¢ ¢ ax? 12 €16
ochch VP kb2 pcbch 20 x
A 12, § H 2 a, @_Pa92 a5, dx,
d 12 JdF & ax Pl
which is the left side of the inequality. Integrating w.r.t r over [0, 1], the above inequality yields
For the right side of inequality (15),setx c¢;andy ¢,
in (10); we have
pp l/p
a 9% 4 B 1
o H ro ¢ roc r
rc‘i7 1 r cg ! 2 #
2
1 r i! i! 1
4 G
1 cPeb Up 1 ko
Z o8 172 1 84y Z o o c 2_1yv Zr1 rdr
o rdf 1 rd 2 Lo # cfed 0
1/p 2
7 o8 qd 4 ey, TG TGy K G Ay
o rdd 1 rd 2 6 b
Since Remark 2
p.p Up p.p ¢ . . . .
Zl o %! B, Pa2 0 xl dx, () For p  1in (15), Hermite—Hadamard inequality for
o reg 1 rg & d ax? strongly reciprocally convex functions is obtained
[18].
. (2) If we allow y 0 in inequalities (15), we obtain
then we obtain the Hermite—Hadamard-type inequalities for har-
pcfd g x g 0o u & 2 monically convex functions [22].
Z ——dx I ', _ , R
bl e 2 6 For further details on Hermite—Hadamard inequities, see
[27-30].
Theorem 2 (Fejér-type inequality). Assume 0. L Risa
From (18) and (22), we get (15). strongly reciprocally p-convex function with modulus y on L;
then,
2
ocPck VP o o 2dcd o b xP Tw x
oB Pclczp! 87 dx “ Zz 12 13pf dx
aq o 2cfeh @ x
€2
o x;ulx dx
G X
PP pp P PP
@ ¢ xXwx Q @ 2cic ¢ ¢ XX wx
a gc 0¢ 2 dx -t Y dx bz Ltz 1 2 dx
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holds for ¢i,c5 L with ¢y ¢y and x L c¢y,¢y , where 2Py Up ox oy u 1
w: L R is a nonnegative integrable function that satisfies o2 —Z v 8 = 7T 5
xP yP 2 4 yp
p.r l/p pp l/p
wh ﬂ! 3 .8 1)C+CZ!
xP g ¢ xP

forall x,y L;suppose x  cfchl red 1

rcy
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p lp

andy  cfcj/ r§ 1 of UP intheaboveinequality;
Proof. Since o: L Ris a strongly reciprocally p-convex  then, we obtain
function, then by de nition for » ~ 1/2 in (10), we have
pp Up p.p Up PP Up p p P p 2
-8 2cicy 1 B 1 8,6 9% , '3 .8 cicy ¢ B K TS 1 r Gy T4 1 rc .
d & 2 red 1 ord red 1 ord 4 dcd dcd
Since w is nonnegative and symmetric, we have
p.r 1/p pp l/p
8 9%, g@8__9% , '3
&b re 1 rcd”
1 2 1 2
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la 9% 4 8 8 9% . 8,8 ___9% , 3
2 red 1 rdb red 1 rdf red 1 rdb
2 1
U rcg 1 r cfl rcf 1 r c‘;l a c‘fcf . PB
— H T w 2 .
4 cfeh b red 1 rd
e above inequality is integrated with respect to r over
[0, 1], and then putting x ¢l ref 1 rcf VP
we obtain
i
pchcd a 2cFch u g, oW X
500 551 Z 5T dx
C2 Cl Cl CZ g X
2
pcleh o xw x J up @ 2fc) of o % d
PP p1 4 PP PP B 1 w x dx.
G ¢ o X 4cy ¢ cics a x
After simpli cation, the above inequality becomes
2
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For the right-hand side of (23), setx ¢, and y ¢, in
(10); we have

pp Up pp Vp
oA €1 1 3,8 c1 1 B
rcf 1 r cg rc’f 1 r 612?
P Up 2 P 1/p
cic 1 1 cic
ro ¢ 1 rog wh Pliz! 8 prl r 1 —ur 8 172 1 8
rc 1 rd b b ref 1 rc
1 2 1 2 1 2
Integrating with respect to r over [0, 1] and then putting
x Akl v 1 rcb VP we obtain
pC}fcg Q0 x W X pcfcfcg 2 cg xP w x up c cg xf P cf w x
5 51 dx 50¢ 0c¢ Z 5T dx -——Z T dx.
¢ € a X & a x T S x
After simpli cation, we have
20 X W X c1 €2 Cg Xp w X Y €2 C‘g Xp XP Cf w X
1 dx » I 0 C (o) de P Z 35 1 dx.
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From (32) and (27), we get (23). supporting at X, satisfying w 1/x ¢ 1/x and

wx ox, x L en foreveryi f1,2,...,ng we
Remark 3. Ifweset p 1 in (23), the Fejér-type inequality ~ Nave

for strongly reciprocally convex functions is obtained. 1 1 1 1 2 17 1
Jensen-type inequality for the aforementioned inequality o ;! w ;! u 5! w1 a ;! =
is described in the next theorem. ! ! Xi i
1
Theorem 3. (Jensen-type inequality). If 0. L R is a re- 73
ciprocally strongly p-convex function with modulus p, then
1p 2 . . . .
"ol " 1 ¢ 1 Multiplying both sides by r; and summing up to n, we
dOXr— & Xrio =1 uXr, =51 =1 '
i1 xf; i1 Xi i1 xf xP have
n n 2 n
Xr;o i! uXr; ip _i! aXr; ip _—11,! ai.
holds for all 1/xf , 1/x§ oo Uxb L Tt sty O i1 X i1 ox o xP i1 XX x

with ry 1, .1, 1 and  1/x* ry U/xt
r, Uxh oo, Uxb o
Since P!, r; 1/xf  1/xF 0, we have

Proof. Fix 1xt, Uxb,..., Uxh L and ryry,.. 2

v 1 ¥ 1 ¢ 1 1
r, Osuchthatr;, r, ... r, 1 o= Xro =1 uXr, > =,
Put 1z r Ux r, Ux} r, 1Uxh , and X i1 X i1 X% X
suppose a function w: L R of the form which completes the proof.
1 1 1 2 1 1 B
Vi be wo e 7%

Remark 4. In inequality (34), xing p landu 0 yields
the Jensen-type inequality for the harmonic convex function



[22]. See [31-34] for more details on Jensen-type
inequalities.
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