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In this paper, some characterizations are given in terms of the boundary value and Poisson extension for the Dirichlet-type space
D(μ). ,e multipliers of D(μ) and Hankel-type operators from D(μ) to L2(PμdA) are also investigated.

1. Introduction

LetD be the unit disk of complex planeC. For 0<p<∞, the
Hardy space, denoted by Hp, is the space consists of all
f ∈ H(D) such that

‖f‖
p

Hp � sup
0<r<1

1
2π


2π

0
f re

iθ
 




p
dθ<∞. (1)

Here, H(D) is the space of analytic functions on D.
Let zD denote the boundary of D and dA denote the

normalized Lebesgue measure onD. Let μ be a positive Borel
measure on zD. An f ∈ H(D) is said to belong to the space
D(μ), called the Dirichlet-type space, if


D

f′(z)



2
Pμ(z)dA(z)<∞, (2)

where

Pμ(z) � 
2π

0

1 − |z|
2

e
it

− z



2
dμ(t)

2π
. (3)

,e space D(μ) was introduced by Richter in [1] for
studying analytic two isometrics. It was shown in [1] that
D(μ) ⊂ H2. ,e norm on D(μ) is defined as follows:

‖f‖
2
D(μ) � ‖f‖

2
H2 + 

D
f′(z)



2
Pμ(z)dA(z). (4)

,e space D(μ) is a Hilbert space with

〈f, g〉D(μ) � 〈f, g〉H2 + 
D

f′(z)g′(z)Pμ(z)dA(z), (5)

D(μ) � H2 when μ � 0. If dμ � dm, then D(μ) coincides
with the Dirichlet space D. By (Proposition 2.2 in [1]), we
have


zD

Dζ(f)dμ(ζ) � 
D

f′(z)



2
Pμ(z)dA(z). (6)

Here,

Dζ(f) �
1
2π


2π

0

f eit(  − f(ζ)

eit − ζ





2

dt. (7)

Let f ∈ L2(zD). We say that f ∈ L2(μ) if


zD


2π

0

f e
iθ

  − f(ζ)



2

e
iθ

− ζ



2 dθ dμ(ζ)<∞. (8)

,e norm of the space L2(μ) is given by
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‖f‖
2
L2(μ) � ‖f‖

2
L2(zD) + 

zD

2π

0

f e
iθ

  − f(ζ)



2

e
iθ

− ζ



2 dθdμ(ζ).

(9)

,e space D(μ) has been investigated by many authors.
In [2], Richter and Sundberg studied the cyclic vectors of
D(μ). Shimorin studied the reproducing kernels and
extremal functions ofD(μ) in [3], see [4–6], for the study of
Carleson measure for D(μ). ,e study of composition
operators and Toeplitz operators on D(μ) can be found in
[7, 8], respectively, see [9–11], for more study of the space
D(μ).

In this paper, we provided some characterizations for the
space D(μ) by the boundary value and Poisson extension.
Moreover, we study the multipliers ofD(μ) and the Hankel-
type operator from D(μ) to L2(PμdA).

In this paper, we always assume that μ is a positive Borel
measure on zD and C is a positive constant that may differ
from one occurrence to the other. ,e notation F≲G means
that there exists a C such that F≤CG. ,e notation F≍G

indicates that G≲F and also F≲G.

2. Characterizations of the Space D(μ)

Let f ∈ L1(zD). ,e Poisson extension of f, denoted by f, is

f(z) � 
2π

0
f e

it
 

1 − |z|
2

e
it

− z



2
dt

2π
, z ∈ D. (10)

It is well known that f is a harmonic function on D.
Let C1(D) denote the space of all functions on D with

continuous partial derivatives. For f ∈ C1(D), the gradient
of f is defined by

∇f �
zf

zx
,
zf

zy
 . (11)

First, we state some lemmas.

Lemma 1 (see [6, 8]). Let f ∈ L2(zD). 0en,


zD

Dζ(f)dμ(ζ)<∞, (12)

if and only if


D

|∇f(z)|
2
Pμ(z)dA(z)<∞. (13)

Remark 1. Let f ∈ L2(zD) and F ∈ C1(D) such that
limr⟶1F(reiθ) � f(eiθ)(a.e.) for eiθ ∈ zD. ,en,


zD

Dζ(f)dμ(ζ)≲‖f‖
2
L2(zD) + 

D
|∇F(z)|

2
Pμ(z)dA(z).

(14)

For f ∈ H2, let fb denote the boundary value of f.

Corollary 1. Let f ∈ H2. 0en, f ∈ D(μ) if and only if
fb ∈ L2(μ).

Proof. Since f ∈ H2, then f � fb. ,e desired result follows
from Lemma 1. □

Lemma 2. Let f ∈ L2(zD). 0en, the following statements
are equivalent:

(a) 
zD

Dζ(f)dμ(ζ)<∞.
(b) 

D
|∇f(z)|2Pμ(z)dA(z)<∞.

(c) limr⟶1− 
D

(


|f|2(z) − |f(z)|2)dμr(z)<∞, where

dμr(z) � 
zD

r
2 1 − r

2
 

|ζ − rz|
dμ(ζ)dA(z). (15)

Proof. (a)⟺(b) ,is implication follows by Lemma
1. □

Proof. (b)⟺(c) For z ∈ D, r ∈ (0, 1), set

Pμr
(z) � 

zD

r
2 1 − |z|

2
 

|ζ − rz|
2 dμ(ζ). (16)

From [11], we see that Pμr
(z) is subharmonic with

lim
r⟶1−

Pμr
(z) � Pμ(z). (17)

By Green’s formula, we obtain

Pμr
(z) �

2
π


D

(
z
2

zwz w
Pμr

(w) )log
1 − wz

w − z




dA(w)

≍
D


zD

r
2 1 − r

2
 

|ζ − rw|
dμ(ζ)log

1 − wz

w − z




dA(w).

(18)

According to (17) and (18) and Hardy-Littlewood’s
identity (see page 238 in [12]), we have
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D

|∇f( z )|
2
Pμ( z )dA( z ) � lim

r⟶1−

D

|∇f( z )|
2
Pμr

( z )dA( z )

≍ lim
r⟶1−


D

|∇f( z )|
2


D


zD

r
2
( 1 − r

2
)

|ζ − rw|
dμ( ζ )log

1 − wz

w − z




dA( w ) dA( z )

� lim
r⟶1−


D


D

|∇f( z )|
2log

1 − wz

w − z




dA( z ) 

zD

r
2
( 1 − r

2
)

|ζ − rw|
dμ( ζ )dA( w )

� lim
r⟶1−


D


|f|

2
( w ) − |f( w )|

2
 dμr( w ).

(19)

,e proof is complete. □

Theorem 1. Let f ∈ H2. 0en, the following statements are
equivalent:

(a) f ∈ D(μ).
(b) limr⟶1− 

D
|f − f(z)|2(z)dμr(z)<∞.

(c) 
zD

Dζ(|f|)dμ(ζ)<∞ and

lim
r⟶1−


D

|f|
2
(z) − |f(z)|

2
 dμr(z)<∞. (20)

(d) 
zD

Dζ(|f|)dμ(ζ)<∞ and there exists a harmonic
function g such that |f|≤g on D and

lim
r⟶1−


D

g
2
(z) − |f(z)|

2
 dμr(z)<∞. (21)

Proof. (a)⇔(b) ,is implication follows by Lemma 2 and


|f|

2
(z) − |f(z)|

2
� |f − f(z)|

2
(z). (22)

(a)⇒(c) If f ∈ D(μ), then 
zD

Dζ(|f|)dμ(ζ)<∞. Since

(|f|(z))
2

� 
zD

|f(ζ)|
1 − |z|2

|ζ − z|2
|dζ|

2π
 

2

≤
zD

|f(ζ)|
21 − |z|

2

|ζ − z|
2

|dζ|

2π


zD

1 − |z|
2

|ζ − z|
2

|dζ|

2π

�


|f|
2
(z).

(23)

We get (c) from Lemma 2 and Corollary 1.
(c)⇒(d) Inequality (20) implies

lim
r⟶1−


D


(|f|( z ))

2
− |f( z )|

2
 dμr( z )<∞. (24)

Let g � |f|. ,en, g2 ≤ 
(|f|)2. ,us,

lim
r⟶1−


D

(g(z))
2

− |f(z)|
2

 dμr(z)<∞. (25)

(d)⇒(a) By Lemma 2,

lim
r⟶1−


D


|f|

2
(z) − (|f|(z))

2
 dμr(z)<∞. (26)

Assume that g is a harmonic function such that |f|≤g.
Note that |f| is the least harmonic function equal to or
greater than |f| (see [12]); hence, |f|≤g. By Lemmas 1 and 2
and Corollary 1, f ∈ D(μ). ,e proof is complete. □

3. Multipliers of D(μ)

Let I ⊂ zD. ,e Carleson box S(I) is

S(I) � rζ ∈ D: 1 − |I|< r< 1; ζ ∈ I{ }. (27)

Assume that ] is a positive Borel measure on D. If
supI⊂zD(](S(I))/|I|)<∞, then we say that ] is a Carleson
measure.

If there exists a constant C> 0 (see [4, 5])


D

|f(z)|
2d](z)≤C‖f‖

2
D(μ), for allf ∈ D(μ), (28)

then we call that ] is a μ-Carleson measure.
Let g ∈ L∞(zD) and f ∈ L2(μ). g is called the pointwise

multipliers of L2(μ) if gf ∈ L2(μ). We denote the space of all
pointwise multipliers of L2(μ) by M(L2(μ)).

Lemma 3. Let ] be a positive Borel measure onD. 0en, ] is a
μ-Carleson measure if and only if


D

|g(z)|
2d](z)≲‖g‖

2
L2(μ), (29)

for all g ∈ L2(μ).

Proof. First, we assume that ] is a μ-Carleson measure.
Suppose that g ∈ L2(μ). Without loss of generality, let g be a
real-valued function. Suppose that g is the harmonic con-
jugate of g. Set f � g + ig. ,en, |∇f(z)|≍|f′(z)| by the
Cauchy–Riemann equation. From Lemma 2.3 in [7] and
Lemma 1, we obtain
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D

|g(z)|
2d](z)≤

D
|f(z)|

2d](z)

≲‖f‖
2
D(μ)

� ‖f‖
2
H2 + 

D
f′(z)



2
Pμ(z)dA(z)

≍|f(0)|
2

+ 
D

|∇g(z)|
2
Pμ(z)dA(z)

≲‖g‖
2
L2(μ).

(30)

Conversely, for f ∈ D(μ), by Corollary 1, fb ∈ L2(μ)

and f � fb. ,en,


D

|f(z)|
2d](z)≲ fb

����
����
2
L2(μ)
≲‖f‖

2
D(μ), (31)

which implies that ] is a μ-Carleson measure. □

Theorem 2. g ∈M(L2(μ)) if and only if g ∈ L∞(zD) and
|∇g|2PμdA is a μ-Carleson measure.

Proof. Assume that g ∈ L∞(zD) and |∇g|2PμdA is a
μ-Carleson measure. Let f ∈ L2(μ). By Remark 1, we obtain

‖fg‖
2
L2(μ)≲‖fg‖

2
L2(zD) + 

D
|∇(fg)(z)|

2
Pμ(z)dA(z)

≤ ‖fg‖
2
L2(zD) + 

D
|g(z)|

2
|∇f(z)|

2
Pμ(z)dA(z)

+ 
D

|f(z)|
2
|∇g(z)|

2
Pμ(z)dA(z).

(32)

By Lemma 1 and Corollary 1, we obtain


D

|g(z)|
2
|∇f(z)|

2
Pμ(z)dA(z)≤C‖g‖

2
L∞(D)‖f‖

2
L2(μ).

(33)

In addition, since |∇g|2PμdA is a μ-Carleson measure, by
Lemma 3, we have


D

|f(z)|
2
|∇g(z)|

2
Pμ(z)dA(z)≤C‖f‖

2
L2(μ). (34)

Combining (32)–(34), we obtain that g ∈M(L2(μ)).
Conversely, assume that g ∈M(L2(μ)). ,en, by ,e-

orem 2.7 in [6], we see that g ∈ L∞(zD). For f ∈ D(μ), by
the Closed Graph ,eorem, Lemma 1, and Corollary 1, we
obtain


D

|∇(fg)(z)|
2
Pμ(z)dA(z)≤C‖fg‖

2
L2(μ) ≤C‖f‖

2
L2(μ)

≤C‖f‖
2
D(μ).

(35)

Next, we show that |∇g|2PμdA is a μ-Carleson measure.
From the fact that |∇f|≍|f′(z)|, we obtain


D

|g(z)|
2
|∇f(z)|

2
Pμ(z)dA(z)≤C

D
|∇f(z)|

2
Pμ(z)dA(z)

≍C
D

f′(z)



2
Pμ(z)dA(z)

≤C‖f‖
2
D(μ).

(36)

,en, by (35) and (36),


D

|f(z)|
2
|∇g(z)|

2
Pμ(z)dA(z)≤C

D
|∇(fg)(z)|

2
+|g(z)|

2
|∇f(z)|

2
 Pμ(z)dA(z)

≤C‖f‖
2
D(μ),

(37)

which implies that |∇g|2PμdA is a μ-Carleson measure.
By ,eorem 2, we obtain the following result. □

Corollary 2. Let f ∈ H2. 0en, f ∈M(D(μ)) if and only if
fb ∈M(L2(μ)).

4. Hankel-Type Operators on D(μ)

LetP denote the set of all polynomials onD. From [1, 2], we
see that P is dense in D(μ). Let

Pf(z) � 
D

f(w)

(1 − wz)
2 dA(w). (38)

From,eorem 1.10 in [13], we see that P: L2(D)⟶ A2

is a bounded projection. Here, A2 is the Bergman space
which consists of all f ∈ H(D) such that

D

|f(z)|2dA(z)<∞. For f ∈ A2, we define a Hankel-type
operator hf on P by

hf(g) � P(fg), g ∈ P. (39)

Lemma 4 (see Theorem 2.3 in [10]). Let τ, σ > − 1. 0en,
f ∈ D(μ) if and only if


D


D

|f(z) − f(w)|
2

|1 − zw|
4+σ+τ Pμ(z)dAσ(z)dAτ(w)<∞, (40)

where dAσ(z) � (1 − |z|2)σdA(z).

Lemma 5 (see Theorem 3.4 in [10]). Let T be the operator
defined by

Tg(z) � 
D

|g(w)|

|1 − wz|
2 dA(w), g ∈ L

2
(D). (41)

0en, T: L2(PμdA)⟶ L2(PμdA) is bounded.
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Theorem 3. Let g ∈ L2(D) such that |g|2PμdA is a μ-Car-
leson measure. 0en, |Tg|2PμdA is a μ-Carleson measure.

Proof. Suppose that |g|2PμdA is a μ-Carleson measure.
,en, by Lemma 5,


D

|T(fg)(z)|
2
Pμ(z)dA(z) ≤C

D
|f(z)g(z)|

2
Pμ(z)dA(z)

≤C‖f‖
2
D(μ),

(42)

for all f ∈ D(μ). So, it is enough to show that


D

|f(z)Tg(z) − T(fg)(z)|
2
Pμ(z)dA(z)≤C‖f‖

2
D(μ),

(43)

for every f ∈ D(μ).
By Hölder’s inequality, we have

|f(z)Tg(z) − T(fg)(z)|
2 ≤ 

D

|f(z) − f(w)|

|1 − wz|2
|g(w)|dA(w) 

2

≲
D

|g(w)|
2dA(w)

D

|f(z) − f(w)|
2

|1 − wz|
4 dA(w)

� ‖g‖
2
L2(D)

D

|f(z) − f(w)|
2

|1 − wz|
4 dA(w).

(44)

Consequently, by Lemma 4, we obtain


D

|f(z)Tg(z) − T(fg)(z)|
2
Pμ(z)dA(z)

≤ ‖g‖
2
L2(D)

D

D

|f(z) − f(w)|
2

|1 − wz|
4 dA(w)Pμ(z)dA(z)

≤ ‖g‖
2
L2(D)‖f‖

2
D(μ).

(45)

,e desired result follows. □

Theorem 4. Let u ∈ A2. 0en, the operator
hu: D(μ)⟶ L2(PμdA) is bounded if and only if |u|2PμdA is
a μ-Carlson measure.

Proof. Suppose that |u|2PμdA is a μ-Carlson measure. Let
g ∈ D(μ). ,en, ug ∈ L2(PμdA). By Lemma 4, we get that
hu(g) ∈ L2(PμdA) and

hu(g)
����

����
L2 PμdA( 

≤ ‖T(ug)‖
L2 PμdA( 

≤C‖ug‖
L2 PμdA( 

≤C‖g‖D(μ).
(46)

So, hu: D(μ)⟶ L2(PμdA) is bounded.
Conversely, assume that hu: D(μ)⟶ L2(PμdA) is

bounded. We need to prove that

‖ug‖
L2 PμdA( 

≤C‖g‖D(μ), for any g ∈ D(μ). (47)

By Hölder’s inequality we have


D

u(w)(g(z) − g(w))

(1 − wz)2
dA(w)





2

≤
D

|u(w)|
2dA(w)

D

|g(z) − g(w)|
2

|1 − wz|
4 dA(w)

� ‖u‖
2
A2

D

|g(z) − g(w)|
2

|1 − wz|
4 dA(w).

(48)

Since

u(z)g(z) − hu(g)(z) � 
D

u(w)(g(z) − g(w))

(1 − wz)
2 dA(w),

(49)

by Lemma 4 and the fact that hu: D(μ)⟶ L2(PμdA) is
bounded, we obtain

‖ug‖
2
L2 PμdA( 

≤ ‖u‖
2
A2

D

D

|g(z) − g(w)|
2

|1 − wz|
4 dA(w)Pμ(z)dA(z)

+ hu

����
����
2
‖g‖

2
D(μ)

≲ ‖u‖
2
A2 + hu

����
����
2

 ‖g‖
2
D(μ).

(50)
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,e proof is complete. □
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