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*is paper is dealt with the following system of difference equations xn+1 � (an/xn) + (bn/yn), yn+1 � (cn/xn) + (dn/yn), where
n ∈ N0 � N∪ 0{ }, the initial values x0 andy0 are the positive real numbers, and the sequences (an)n≥ 0, (bn)n≥ 0, (cn)n≥ 0, and
(dn)n≥ 0 are two-periodic and positive. *e system is an extension of a system where every positive solution is two-periodic or
converges to a two-periodic solution. Here, the long-term behavior of positive solutions of the system is examined by using a new
method to solve the system.

1. Introduction

Studying concrete nonlinear difference equations and sys-
tems has attracted a great recent interest. Many studies have
been published on this topic in the last twenty years (see, e.g.,
[1–15]). Particularly, there has been a renewed interest in
solvable nonlinear difference equations and systems for
fifteen years (see, e.g., [5, 16–21], and the related references
therein). Solvable difference equations are not interesting for
themselves only, but they can be also applied in other areas
of mathematics, as well as other areas of science (see, e.g.,
[22, 23]).

One of the first examples of solvable nonlinear difference
equations is presented in note [24] where Brand solves the
nonlinear difference equation:

xn+1 �
axn + b

cxn + d
, n ∈ N0, (1)

where the initial value x0 is a real number and the pa-
rameters a, b, c, and d are the real numbers with the re-
strictions c≠ 0 and a d − bc≠ 0 and studies long-term
behavior of solutions of the equation. *e note presents a
transformation which transforms the nonlinear equation

into a linear one. *e idea has been used many times in
showing solvability of some difference equations, as well as
of some systems of difference equations (see, e.g.,
[5, 18, 20, 21, 25, 26]). Another example of solvable non-
linear difference equations is the following system of non-
linear difference equation:

xn+1 �
a

xn

+
b

yn

, yn+1 �
c

xn

+
d

yn

, n ∈ N0, (2)

where the initial values x0 and y0 are the positive real
numbers and the parameters a, b, c, and d are the positive
real numbers. System (2) can be transformed into an
equation of form (1) by dividing the first equation of (2) by
its second one. So, the results on equation (1) can be used to
obtain the results on system (2). System (2) was studied for
the first time in [17] by using the method described above.
Also, in [17], it is shown that every positive solution of the
system (2) is two-periodic or converges to a two-periodic
solution. For more results on system (2), see [19, 22, 27].

System (2) can be extended by interchanging the pa-
rameters a, b, c, and d with the sequences (an)n≥ 0, (bn)n≥ 0,
(cn)n≥ 0, and (dn)n≥ 0. More concretely, another extension of
(2) is the following system of difference equations:
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xn+1 �
an

xn

+
bn

yn

, yn+1 �
cn

xn

+
dn

yn

, n ∈ N0, (3)

where the initial values x0 andy0 are the positive real
numbers and (an)n≥ 0, (bn)n≥ 0, (cn)n≥ 0, and (dn)n≥ 0 are the
two-periodic sequences of positive real numbers. For ex-
tensions with periodic sequences of some difference equa-
tions and systems, see [2, 28, 29].

Our main purpose in this paper is to determine the long-
term behavior of positive solutions of system (3). We also
use a new method to solve the system without needing some
other nonlinear difference equations such as (1).*roughout
this paper, we assume that a2n � a0, a2n+1 � a1; b2n � b0,
b2n+1 � b1; c2n � c0, c2n+1 � c1; and d2n � d0, d2n+1 � d1 with
a0 ≠ a1, b0 ≠ b1, c0 ≠ c1, and d0 ≠d1. We also adopt the
conventions:



m− l

k�m

sk � 0, 
m− l

k�m

sk � 1, l ∈ N, (4)

where (sk) is any sequence and m ∈ N0 � N∪ 0{ }.

Definition 1. A solution (xn, yn)n≥ 0 of the system

xn+1 � f xn, yn( , yn+1 � g xn, yn( , n ∈ N0, (5)

is eventually periodic with period p, if there is n1 > 0 such
that (xn+p, yn+p) � (xn, yn) for n≥ n1. If n1 � 0, then the
solution is periodic with period p.

*e following result is extracted from [30].

Remark 1. A product 
∞
k�0 (1 + αk) with positive terms αk is

convergent if and only if 
∞
k�0 αk converges.

2. Main Results

In this section, we formulate and prove our main results.

Theorem 1. Assume that x0, y0 > 0 and (an)n≥ 0, (bn)n≥ 0,
(cn)n≥ 0, and (dn)n≥ 0 are the two-periodic sequences of
positive real numbers. )en, system (3) can be solved in closed
form.

Proof. First, it is easy to show by induction that xn, yn > 0,
for all n ∈ N0. Multiplying both equations in (3) by the
following positive product:



n

k�0
xkyk, (6)

we obtain



n+1

k�0
xk 

n

k�0
yk � an 

n− 1

k�0
xk 

n

k�0
yk + bn 

n

k�0
xk 

n− 1

k�0
yk, (7)



n

k�0
xk 

n+1

k�0
yk � cn 

n− 1

k�0
xk 

n

k�0
yk + dn 

n

k�0
xk 

n− 1

k�0
yk, (8)

for all n ∈ N0. Note that the equalities (7) and (8) constitute a
linear system with respect to the following products:

un � 
n

k�0
xk 

n− 1

k�0
yk ,

vn � 
n− 1

k�0
xk 

n

k�0
yk.

(9)

*erefore, we can write this system in the vector form:

un+1

vn+1
  �

bn an

dn cn

 
un

vn

 , (10)

where u0 � x0 and v0 � y0, which is simpler, for all n ∈ N0.
Let

An �
bn an

dn cn

 . (11)

*en, since the sequences (an)n≥ 0, (bn)n≥ 0, (cn)n≥ 0, and
(dn)n≥ 0 are two-periodic, the matrix An becomes

An �

A0 �
b0 a0

d0 c0
 , if n is even,

A1 �
b1 a1

d1 c1
 , if n is odd.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

Now, we decompose (10) with respect to even-subscript
and odd-subscript terms as follows:

u2n+1

v2n+1
  �

b0 a0

d0 c0
 

u2n

v2n

 , (13)

u2n+2

v2n+2
  �

b1 a1

d1 c1
 

u2n+1

v2n+1
 , (14)

for all n ∈ N0. From which (13) and (14) follows that

u2n+2

v2n+2
  �

b1 a1

d1 c1
 

b0 a0

d0 c0
 

u2n

v2n

 , (15)

or

u2n+2

v2n+2
  �

a1d0 + b0b1 a0b1 + a1c0

b0d1 + c1d0 a0d1 + c0c1
 

u2n

v2n

 . (16)

Let A1A0 � A. *en, we consider two cases of the matrix
A as the following:

Case 1: rank(A) � 1. In this case, the first row in the
matrix A is linearly dependent on the second one.
Without loss of generality, we may assume that

b0d1 + c1d0, a0d1 + c0c1(  � K a1d0 + b0b1, a0b1 + a1c0( ,

(17)

where K is a positive constant such that

K �
b0d1 + c1d0

a1d0 + b0b1
�

a0d1 + c0c1

a0b1 + a1c0
. (18)

Using (17) in system (16), we have
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u2n+2 � a1d0 + b0b1( u2n + a0b1 + a1c0( v2n,

v2n+2 � K a1d0 + b0b1( u2n + a0b1 + a1c0( v2n( ,
(19)

which implies the relation

v2n+2 � Ku2n+2, (20)

for all n ∈ N0. By the last three relations, we have

u2n+2 � a1d0 + b0b1 + K a0b1 + a1c0( ( u2n, (21)

from which it follows that

u2n � a1d0 + b0b1 + K a0b1 + a1c0( ( 
n− 1

u2, (22)

v2n � K a1d0 + b0b1 + K a0b1 + a1c0( ( 
n− 1

u2, (23)

for all n ∈ N. Using (22) and (23) in (13), we obtain

u2n+1 � b0 + Ka0(  a1d0 + b0b1 + K a0b1 + a1c0( ( 
n− 1

u2,

v2n+1 � d0 + Kc0(  a1d0 + b0b1 + K a0b1 + a1c0( ( 
n− 1

u2,

(24)

for all n ∈ N. On the other hand, the changes of var-
iables in (9) yield

xn+1 �
un+1vn− 1

unvn

xn− 1, (25)

yn+1 �
vn+1un− 1

vnun

yn− 1, (26)

for all n ∈ N. Hence, from (25) and (26), we obtain

x2n � x0 

n

k�1

u2kv2k− 2

u2k− 1v2k− 1
, (27)

x2n+1 � x1 

n

k�1

u2k+1v2k− 1

u2kv2k

, (28)

y2n � y0 

n

k�0

v2ku2k− 2

v2k− 1u2k− 1
, (29)

y2n+1 � y1 

n

k�1

v2k+1u2k− 1

v2ku2k

. (30)

By employing (13) in (27)–(30), we have the following
closed formulas:

x2n � x0 

n

k�1

u2kv2k− 2

b0u2k− 2 + a0v2k− 2(  d0u2k− 2 + c0v2k− 2( 
,

(31)

x2n+1 � x1 

n

k�1

b0u2k + a0v2k(  d0u2k− 2 + c0v2k− 2( 

u2kv2k

,

(32)

y2n � y0 

n

k�1

v2ku2k− 2

d0u2k− 2 + c0v2k− 2(  b0u2k− 2 + a0v2k− 2( 
,

(33)

y2n+1 � y1 

n

k�1

d0u2k + c0v2k(  b0u2k− 2 + a0v2k− 2( 

v2ku2k

, (34)

which is valid for all n ∈ N0, respectively. Consequently, in
the case rank(A) � 1, by using the formulas (22) and (23)
in (31)–(34), we have the general solution of (3) as follows:

x2n � x0 

n

k�1

K a1d0 + b0b1 + K a0b1 + a1c0( ( 

b0 + Ka0(  d0 + Kc0( 
, (35)

x2n+1 � x1 

n

k�1

b0 + Ka0(  d0 + Kc0( 

K a1d0 + b0b1 + K a0b1 + a1c0( ( 
, (36)

y2n � y0 

n

k�1

K a1d0 + b0b1 + K a0b1 + a1c0( ( 

d0 + Kc0(  b0 + Ka0( 
, (37)

y2n+1 � y1 

n

k�1

d0 + Kc0(  b0 + Ka0( 

K a1d0 + b0b1 + K a0b1 + a1c0( ( 
, (38)

where

K �
b0d1 + c1d0

a1d0 + b0b1
�

a0d1 + c0c1

a0b1 + a1c0
, (39)

for all n ∈ N0.
Case 2: rank(A) � 2. In this case, both rows in the
matrix A are linearly independent of each other. *is
case also implies that A has two different eigenvalues
denoted by λ1 and λ2. Since these eigenvalues will
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correspond to two linear independent eigenvectors, we
may write the matrix A as follows:

A � PΛP− 1
, (40)

where

P �

a0b1 + a1c0

λ1 − a1d0 + b0b1( 

a0b1 + a1c0

λ2 − a1d0 + b0b1( 

1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

P
− 1

�

b0d1 + c1d0

λ1 − λ2

λ1 − a1d0 + b0b1( 

λ1 − λ2

−
b0d1 + c1d0

λ1 − λ2
−
λ2 − a1d0 + b0b1( 

λ1 − λ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Λ �

λ1 0

0 λ2

⎛⎜⎝ ⎞⎟⎠.

(41)

*erefore, we may write system (16) as the following:

Z2n+2 � PΛP− 1
Z2n, (42)

where

Z2n �
u2n

v2n

 , (43)

for all n ∈ N0. From (42), we have

P
− 1

Z2n+2 � ΛP− 1
Z2n, (44)

from which it follows that

P
− 1

Z2n � Λn
P

− 1
Z0, (45)

for all n ∈ N0. Multiplying both sides of (45) by the matrix P,
we have

Z2n � PΛn
P

− 1
Z0, (46)

or after some computations

u2n

v2n

  �
C1λ

n
1 − C2λ

n
2

C3λ
n
1 − C4λ

n
2

 , (47)

where

C1 �
a0b1 + a1c0
λ1 − λ2

b0d1 + c1d0

λ1 − a1d0 + b0b1( 
u0 + v0 , (48)

C2 �
a0b1 + a1c0

λ1 − λ2

b0d1 + c1d0

λ2 − a1d0 + b0b1( 
u0 + v0 , (49)

C3 �
b0d1 + c1d0

λ1 − λ2
u0 +

λ1 − a1d0 + b0b1( 

λ1 − λ2
v0, (50)

C4 �
b0d1 + c1d0

λ1 − λ2
u0 +

λ2 − a1d0 + b0b1( 

λ1 − λ2
v0, (51)

for all n ∈ N0. From the last vectorial equality, we have

u2n � C1λ
n
1 − C2λ

n
2, (52)

v2n � C3λ
n
1 − C4λ

n
2, (53)

for all n ∈ N0. From (13), (52), and (53), we have the
formulas

u2n+1 � b0C1 + a0C3( λn
1 − b0C2 + a0C4( λn

2, (54)

v2n+1 � d0C1 + c0C3( λn
1 − d0C2 + c0C4( λn

2, (55)

for all n ∈ N0. Also, we can write the formulas (31)–(34) as
the following:

x2n � x0 

n

k�1

u2k/v2k− 2( 

b0 u2k− 2/v2k− 2(  + a0(  d0 u2k− 2/v2k− 2(  + c0( 
,

(56)

x2n+1 � x1 

n

k�1

b0 u2k/v2k(  + a0(  d0 u2k− 2/v2k− 2(  + c0( 

u2k/v2k− 2( 
,

(57)

y2n � y0 

n

k�1

v2k/u2k− 2( 

d0 + c0 v2k− 2/u2k− 2( (  b0 + a0 v2k− 2/u2k− 2( ( 
,

(58)

y2n+1 � y1 

n

k�1

d0 + c0 v2k/u2k( (  b0 + a0 v2k− 2/u2k− 2( ( 

v2k/u2k− 2( 
,

(59)

for all n ∈ N0. Finally, by employing (52)–(55) in (56)–(59),
we have the general solution of (3) as the following:
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x2n � x0

n

k�1

C1λ
k
1 − C2λ

k
2 / C3λ

k− 1
1 − C4λ

k− 1
2  

b0 C1λ
k− 1
1 − C2λ

k− 1
2 / C3λ

k− 1
1 − C4λ

k− 1
2   + a0  d0 C1λ

k− 1
1 − C2λ

k− 1
2 / C3λ

k− 1
1 − C4λ

k− 1
2   + c0 

,

x2n+1 � x1

n

k�1

b0 C1λ
k
1 − C2λ

k
2 / C3λ

k
1 − C4λ

k
2   + a0  d0 C1λ

k− 1
1 − C2λ

k− 1
2 / C3λ

k− 1
1 − C4λ

k− 1
2   + c0 

C1λ
k
1 − C2λ

k
2 / C3λ

k− 1
1 − C4λ

k− 1
2  

,

y2n � y0

n

k�1

C3λ
k
1 − C4λ

k
2 / C1λ

k− 1
1 − C2λ

k− 1
2  

d0 + c0 C3λ
k− 1
1 − C4λ

k− 1
2 / C1λ

k− 1
1 − C2λ

k− 1
2    b0 + a0 C3λ

k− 1
1 − C4λ

k− 1
2 / C1λ

k− 1
1 − C2λ

k− 1
2   

,

y2n+1 � y1

n

k�1

d0 + c0 C3λ
k
1 − C4λ

k
2 / C1λ

k
1 − C2λ

k
2    b0 + a0 C3λ

k− 1
1 − C4λ

k− 1
2 / C1λ

k− 1
1 − C2λ

k− 1
2   

C3λ
k
1 − C4λ

k
2 / C1λ

k− 1
1 − C2λ

k− 1
2  

,

(60)

for all n ∈ N0. □

*e following theorem determines and characterizes the
long-term behavior of positive solutions of (3) according to
the parameters in the case rank(A) � 1.

Theorem 2. Assume that x0, y0 > 0 and (an)n≥ 0, (bn)n≥ 0,
(cn)n≥ 0, and (dn)n≥ 0 are the two-periodic sequences of
positive real numbers. If

rank
a1d0 + b0b1 a0b1 + a1c0

b0d1 + c1d0 a0d1 + c0c1
  � 1, (61)

then, for the solutions of system (3), the following is true:

(i) If (K(a1d0 + b0b1 + K(a0b1 + a1c0)))/ ((b0 + Ka0)

(d0 + Kc0))< 1, then x2n⟶ 0, x2n+1⟶∞,
y2n⟶ 0, and y2n+1⟶∞ as n⟶∞

(ii) If (K(a1d0 + b0b1 + K(a0b1 + a1c0)))/ ((b0 + Ka0)

(d0 + Kc0))> 1, then x2n⟶∞, x2n+1⟶ 0,
y2n⟶∞, and y2n+1⟶ 0 as n⟶∞

(iii) If (K(a1d0 + b0b1 + K(a0b1 + a1c0)))/ ((b0 + Ka0)

(d0 + Kc0)) � 1, then every solution of (3) is two-
periodic, where K is given by (39)

Proof. *e proof follows directly from formulas (35)–(38).
*at is to say, it is clearly seen from these formulas that if

K a1d0 + b0b1 + K a0b1 + a1c0( ( 

b0 + Ka0(  d0 + Kc0( 
< 1, (62)

then x2n⟶ 0, x2n+1⟶∞, y2n⟶ 0, and y2n+1⟶∞
as n⟶∞. If

K a1d0 + b0b1 + K a0b1 + a1c0( ( 

b0 + Ka0(  d0 + Kc0( 
> 1, (63)

then x2n⟶∞, x2n+1⟶ 0, y2n⟶∞, and y2n+1⟶ 0
as n⟶∞. If

K a1d0 + b0b1 + K a0b1 + a1c0( ( 

b0 + Ka0(  d0 + Kc0( 
� 1, (64)

then every solution of (3) is two-periodic such that x2n � x0,
x2n+1 � x1, y2n � y0, and y2n+1 � y1. □

*e following theorem determines and characterizes the
long-term behavior of positive solutions of (3) according to
the parameters in the case rank(A) � 2.

Theorem 3. Assume that x0, y0 > 0 and (an)n≥ 0, (bn)n≥ 0,
(cn)n≥ 0, and (dn)n≥ 0 are the two-periodic sequences of
positive real numbers. If

rank
a1d0 + b0b1 a0b1 + a1c0

b0d1 + c1d0 a0d1 + c0c1
  � 2, (65)

then, for the solutions of system (3), the following is true:

(i) If (C1λ1/C3) − (b0(C1/C3) + a0)(d0(C1/C3) + c0)<
0, then x2n⟶ 0, x2n+1⟶∞, y2n⟶ 0, and
y2n+1⟶∞ as n⟶∞

(ii) If (C1λ1/C3) − (b0(C1/C3) + a0)(d0(C1/C3) + c0)>
0, then x2n⟶∞, x2n+1⟶ 0, y2n⟶∞, and
y2n+1⟶ 0 as n⟶∞

(iii) If (C1λ1/C3) − (b0(C1/C3) + a0)(d0(C1/C3) + c0) �

0, then every solution of (3) converges to a two-pe-
riodic positive solution of the system, where C1 and
C3 are given by (48) and (50)

Proof. (i)-(ii). Let

pk �
u2k

v2k− 2
�

C1λ
k
1 − C2λ

k
2

C3λ
k− 1
1 − C4λ

k− 1
2

,

qk �
u2k

v2k

�
C1λ

k
1 − C2λ

k
2

C3λ
k
1 − C4λ

k
2

,

rk �
v2k

u2k− 2
�

C3λ
k
1 − C4λ

k
2

C1λ
k− 1
1 − C2λ

k− 1
2

,

sk �
v2k

u2k

�
C3λ

k
1 − C4λ

k
2

C1λ
k
1 − C2λ

k
2

.

(66)
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*en, from (56)–(59), we have

x2n � x0 

n

k�1
1 +

pk − b0qk− 1 + a0(  d0qk− 1 + c0( 

b0qk− 1 + a0(  d0qk− 1 + c0( 
 , (67)

x2n+1 �
x1


n
k�1 1 + pk − b0qk + a0(  d0qk− 1 + c0( ( / b0qk + a0(  d0qk− 1 + c0( ( ( 

, (68)

y2n � y0 

n

k�1
1 +

rk − d0 + c0sk− 1(  b0 + a0sk− 1( 

d0 + c0sk− 1(  b0 + a0sk− 1( 
 , (69)

y2n+1 �
y1


n
k�1 1 + rk − d0 + c0sk(  b0 + a0sk− 1( ( / d0 + c0sk(  b0 + a0sk− 1( ( ( ( 

. (70)

We assume without loss of generality that |λ1|> |λ2|.
*en, we have the limits

lim
k⟶∞

pk �
C1λ1
C3

,

lim
k⟶∞

qk �
C1

C3
,

lim
k⟶∞

rk �
C3λ1
C1

,

lim
k⟶∞

sk �
C3

C1
,

(71)

and so

L1 � lim
k⟶∞

pk − b0qk− 1 + a0(  d0qk− 1 + c0( 

b0qk− 1 + a0(  d0qk− 1 + c0( 

�
C1λ1/C3(  − b0 C1/C3(  + a0(  d0 C1/C3(  + c0( 

b0 C1/C3(  + a0(  d0 C1/C3(  + c0( 
,

L2 � lim
k⟶∞

rk − d0 + c0sk− 1(  b0 + a0sk− 1( 

d0 + c0sk− 1(  b0 + a0sk− 1( 

�
C3λ1/C1(  − b0 + a0 C3/C1( (  d0 + c0 C3/C1( ( 

b0 + a0 C3/C1( (  d0 + c0 C3/C1( ( 
,

(72)

where

C1

C3
�

a0b1 + a1c0

λ1 − a1d0 + b0b1( 
. (73)

Note that L1 � L2. Hereby, convergence characters of
the infinite series



∞

k�0

pk − b0qk− 1 + a0(  d0qk− 1 + c0( 

b0qk− 1 + a0(  d0qk− 1 + c0( 
, (74)



∞

k�0

rk − d0 + c0sk− 1(  b0 + a0sk− 1( 

d0 + c0sk− 1(  b0 + a0sk− 1( 
, (75)

are the same. We can say from a well-known
fundamental result about infinite series that (74)
and (75) are divergent, if (C1λ1/C3) − (b0(C1/C3)

+a0)(d0(C1/C3) + c0)≠ 0. So, the proofs of items
(i)-(ii) follow from (67)–(70) and Remark 1.

(iii) From (74), for sufficiently large n0, we have



∞

k�0

pk − b0qk− 1 + a0(  d0qk− 1 + c0( 

b0qk− 1 + a0(  d0qk− 1 + c0( 
� S1 n0(  + K1 n0( ,

(76)

where

S1 n0(  � 

n0

k�0

pk − b0qk− 1 + a0(  d0qk− 1 + c0( 

b0qk− 1 + a0(  d0qk− 1 + c0( 
,

K1 n0(  � 

∞

k�n0

C1λ1/C3(  − b0 C1/C3(  + a0(  d0 C1/C3(  + c0( 

b0 C1/C3(  + a0(  d0 C1/C3(  + c0( 
.

(77)

Note that if (C1λ1/C3) − (b0(C1/C3) + a0)(d0(C1/C3) +

c0) � 0, then K1(n0)⟶ 0 as n⟶∞. *at is to say, (74) is
convergent. Since L1 � L2, (75) is convergent too. In this
case, the proof of item (iii) follows from (67)–(70) and
Remark 1. □
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