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/e performance of the parameter-free conical radial basis functions accompanied with the Chebyshev node generation is
investigated for the solution of boundary value problems. In contrast to the traditional conical radial basis functionmethod, where
the collocation points are placed uniformly or quasi-uniformly in the physical domain of the boundary value problems in
question, we consider three different Chebyshev-type schemes to generate the collocation points. /is simple scheme improves
accuracy of the method with no additional computational cost. Several numerical experiments are given to show the validity of the
newly proposed method.

1. Introduction

/e radial basis function- (RBF-) based meshless methods
perform well for interpolating multidimensional scattered
data during the past several decades [1, 2]. /ese methods
have been successfully used in a variety of applications owing
to its spectral accuracy and simplicity [3–5].

Particularly, the Multiquadrics (MQ), which is also
known as the Kansa method [6], is a widely used RBF. For
traditional investigations, the source and collocation
points are taken to be the same. Recently, Chen et al. [7, 8]
proposed a novel approach to improve the performance of
the Kansa method, where the source and collocation
points are separated with the source points extended to a
larger domain. /is idea is analogous to the use of ficti-
tious source points used in the method of fundamental
solutions [9].

It should be noted that the shape parameter in the MQ
plays an essential role for the numerical solution in terms
of the accuracy and stability [10, 11]. /us, the selection
of the shape parameter in MQ is a big issue and such a
problem also occurs for some other radial basis functions
such as the Gaussian radial basis function [12, 13]. In this

paper, our investigation focuses on the conical radial
basis function which is a parameter-free function [14].
Motivated by the previous literature, we propose a new
approach under Chebyshev-type schemes to improve the
performance of the conical radial basis functions. /is is
fulfilled by coupling node generation under the Cheby-
shev-type schemes and the conical radial basis functions.
In the newly proposed approach, no additional compu-
tational cost and fictitious points are needed while the
solution accuracy is improved with easy implement. /e
proposed approach is also promising in dealing with
fractional problems [15–18].

/e structure of this paper is organized as below. In
Section 2, we introduce the basic theory of the conical
radial basis functions method. In Section 3, we propose
three new approaches by placing the collocation points
under the Chebyshev-type schemes on the physical do-
main. Followed by Section 4, the numerical imple-
mentation is given. Several numerical results, compared
to the traditional conical radial basis function method,
are presented in Section 5. Finally, some concluding
remarks as well as ideas for future work are provided in
Section 6.
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Table 1: Example 1 Relative average errors for the traditional CRBF, CGR-RBF, CG-RBF, and CGL-RBF.

M
CRBF CGR-RBF CG-RBF CGL-RBF
441 437 437 437

m � 5 2.05 × 10−4 3.71 × 10−6 2.42 × 10−6 3.56 × 10−6

m � 7 1.24 × 10−5 1.28 × 10−7 1.20 × 10−7 1.09 × 10−7

m � 9 9.23 × 10−7 2.45 × 10−8 1.07 × 10−8 8.95 × 10−9

m � 11 1.84 × 10−7 2.00 × 10−8 5.79 × 10−8 1.21 × 10−8
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Figure 1: Configuration of the source points (a) and the corresponding absolute errors (b) for the traditional CRBF.
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Figure 2: Configuration of the source points (a) and the corresponding absolute errors (b) for the CGR-RBF.
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2. The Conical Radial Basis Functions
(CRBF) Method

For brevity, we consider the boundary value problems
(BVPs) for elliptic partial differential equation (PDE) of
second order:

a(P)
z
2
u

zx
2 + b(P)

z
2
u

zy
2 + c(P)

zu

zx
+ d(P)

zu

zy

+ e(P)u � f(P), P � (x, y) ∈ Ω,

(1)

u(P) � u(P), P � (x, y) ∈ ΓD, (2)

zu(P)

zn
� q(P), P � (x, y) ∈ ΓN, (3)

where a(P), b(P), c(P), d(P), and e(P) are coefficients of
PDE, Ω ⊂ R2 is a two-dimensional physical domain, u(P) is
the known boundary data on the Dirichlet boundary ΓD, and
q(P) is the known boundary data on the Neumann
boundary ΓN, with ΓD ∪ ΓN � zΩ and ΓD ∩ ΓN � ϕ.

/e basic theory of the CRBF method lies in the nu-
merical solution of the BVP (1–3) being given by the fol-
lowing general formulation:

u(P) � 
M

j�1
αjφ P − Pj

�����

�����2
 , (4)

where M is the total number of source points Pj 
M

j�1 on the

whole physical domainΩ � Ω∪ zΩ, αj 
M

j�1 are the required
coefficients, φ(‖P − Pj‖2) � rm

j is the CRBF，m is a positive
odd integer in the CRBF, and
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Figure 3: Configuration of the source points (a) and the corresponding absolute errors (b) for the CG-RBF.
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Figure 4: Configuration of the source points (a) and the corresponding absolute errors (b) for the CGL-RBF.
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rj � ‖P − Pj‖ �
������������������
(x − xj)

2 + (y − yj)
2


is the Euclidean

norm distance between points P � (x, y) and Pj � (xj, yj).
We denote Pj 

MI

j�1 the collocation points inside the
domain Ω, Pj 

MD

j�1 the collocation points on the Dirichlet
boundary ΓD, and Pj 

MN

j�1 the collocation points on the
Neumann boundary ΓN with the total collocation number
M � MI + MD + MN.

/e source points and the collocation points, usually
uniformly located in the physical domain, are taken to be the
same in the traditional RBF approach. Recently, Chen et al.
[6, 7] proposed a simple approach for the Kansa method,
where the source points can be located outside it. /e ghost
(fictitious) circle in 2D and a sphere (or an ellipsoid) in 3D
are considered. In this paper, we consider the source points
generation in a new way.

3. The Chebyshev-Type Schemes

/e main idea is to use the Chebyshev-type schemes, which
is generated in the interval (−1, 1), instead of the traditional
uniformly distributed source points. It should be noted that
the Chebyshev collocation method is usually used to find the
approximate solutions of differential equations using a
truncated Chebyshev series [19, 20]. /e novelty of the idea
in this paper lies in that the points generated by the Che-
byshev-type schemes are combined with the CRBF, while the
computational cost remains the same as the traditional way

and there is no need to consider the fictitious points. Nu-
merical results in the numerical section will show the
performance of the new way. To the best of our knowledge,
this is the first time that such a technique is proposed in RBF
collocation methods. /e definite generations on each di-
rection of the physical domains for three Chebyshev-type
nodes are shown below.

Scheme 1 (Chebyshev–Gauss: CG)

Pj � cos
(2j + 1)π
2n + 2

, 0≤ j≤ n. (5)

Note that, for arbitrary interval [a, b], an affine trans-
formation can be used:

Pj �
1
2

(a + b) +
1
2

(b − a)cos
(2j + 1)π
2n + 2

, 1≤ j≤ n. (6)

/is transformation can be easily extended to the fol-
lowing two schemes.

Scheme 2 (Chebyshev–Gauss–Radau: CGR)

P0 � 1,

Pj � cos
2πj

2n + 1
, 1≤ j≤ n.

(7)
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Figure 5: Configuration of the average absolute errors (AAE) for the traditional CRBF and the other three new schemes with fixed m � 5.

Table 2: Example 2: relative average errors for the traditional CRBF, CGR-RBF, CG-RBF, and CGL-RBF.

M
CRBF CGR-RBF CG-RBF CGL-RBF
344 361 348 340

m � 3 1.59 × 10− 5 8.67 × 10− 6 8.89 × 10− 6 8.49 × 10− 6

m � 5 1.30 × 10− 6 3.15 × 10− 8 1.18 × 10− 7 1.14 × 10− 7

m � 7 2.45 × 10− 7 1.62 × 10− 6 2.12 × 10− 8 2.31 × 10− 8

m � 9 9.23 × 10− 8 1.77 × 10− 6 4.56 × 10− 9 5.55 × 10− 9

m � 11 6.17 × 10− 8 4.09 × 10− 7 9.36 × 10− 9 2.52 × 10− 9
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Scheme 3 (Chebyshev–Gauss–Lobatto: CGL)

Pj � cos
πj

n
, 1≤ j≤ n − 1. (8)

/e main differences among these three newly proposed
schemes lie in the position of the collocation points. /e
figures of the three schemes will be shown in the following
numerical section to verify the performance of the proposed
schemes.

4. Numerical Implementation

In the numerical implementation of the RBF, equation (4) is
forced to satisfy equations (1)–(3) at all collocation points
which is the same as source points Pj 

M

j�1, and we have



M

i�1
αiLφ Pi, Pj  � f Pi( ,

Pj � xj, yj  ∈ Ω, j � 1, . . . , MI,

(9)



M

i�1
αiφ Pi, Pj  � u Pi( , Pj � xj, yj  ∈ ΓD,

j � MI + 1, . . . , MI + MD,

(10)



M

i�1
αi

zϕ Pi, Pj 

zn
� q Pi( , Pj � xj, yj  ∈ ΓN,

j � MI + MD + 1, . . . , M,

(11)

where

Lφ � a(P)
z
2

zx
2 + b(P)

z
2

zy
2 + c(P)

z

zx
+ d(P)

z

zy
+ e(P) φ.

(12)

Equations (9)–(11) yield the M × M system:

Qα � b, (13)

where

Qij � a Pj 
z
2

zx
2 + b Pj 

z
2

zy
2 + c Pj 

z

zx
+ d Pj 

z

zy


+ e Pj φ Pi, Pj , j � 1, . . . , MI,

Qij � φ Pi, Pj , j � MI + 1, . . . , MI + MD,

Qij �
zφ Pi, Pj 

zn
, j � MI + MD + 1, . . . , M,

b � f1, . . . , fM, uM+1, . . . , uND
, qND+1, . . . , qN 

T
,

(14)

α � (α1, α2, . . . , αN)T and (·)T is the transpose of vector.
/is procedure is the same for the traditional source

points and the source points generated by the Chebyshev-
type schemes (5)–(8).

5. Numerical Results

To measure the accuracy, we compute the relative average
errors (RAE) of the exact and approximate solutions for all
cases.

Example 1. We take the exact solution of (1)–(3) as

u(x, y) � x − x
2

  y − y
2

 , (15)

and the domain Ω � [−1, 1] × [−1, 1] with the Dirichlet
u(x, y) � u(x, y) andNeumann data q(x, y) � zu/zn on the
boundary， and the coefficients of (1)–(3) are

a(x, y) � 2 − x
2

− y
2
,

b(x, y) � e
x− y

,

c(x, y) � −2x,

d(x, y) � −e
x− y

,

e(x, y) � 0,

f(x, y) � Lu(x, y).

(16)

Here, the total collocation point number of the tradi-
tional CRBF is M � 441, since the points generated by the
Chebyshev-type schemes are not uniformly chosen, the
corresponding total collocation point numbers of the CGR,
CG, and CGL are the same, i.e., M � 437./e computational
point number is the same, i.e., Nt � 40401.

In this example, there is singularity at origin for m � 3,
so we use m � 5, m � 7, m � 9, and m � 11 in the CRBF
φ(·) � rm. /e lists of relative average errors are shown in
Table 1. It is clear that the numerical solution accuracy
increases with the increasing number m. For larger
m(m≥ 13), the solution accuracy almost remains the same.
/is is eliminated here and thereafter. Besides, we can see
that the relative average errors of the CGR-RBF, CG-RBF,
and CGL-RBF are superior than the tradition CRBF case
with two decimals for m � 5 and m � 7. For m � 9, the
relative average errors of the CGR-RBF and CG-RBF are
more accurate than the CRBF case with one decimal and the
CGL-RBF are more accurate than the CRBF case with two
decimals.

More specifically, the configuration of the source points
and the corresponding absolute errors for the traditional
CRBF and the other three new schemes for m � 5 are shown
in Figures 1–4. It is shown that the main differences among
the traditional points and the points generated by three
newly proposed schemes lie in the position. /e points
generated by three newly proposed schemes cluster at the
corner points and scatter at center points, while the tradi-
tional points are uniformly distributed in the whole physical
domain.

We find that the absolute errors shown in Figure 1 are
relatively large at corner points. However, for the three
newly proposed schemes shown in Figures 2–4, the absolute
errors at the corner points are small. /is phenomenon
reveals that the three newly proposed schemes can improve
the solution accuracy at corner points.
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To investigate the stability of the method, the configu-
ration of the average absolute errors (AAE) for the tradi-
tional CRBF and the other three new schemes with fixed
m � 5 are shown in Figure 5, from which we can find that all
methods are stable. For small collocation point numbers
(M< 200), all methods have the same solution accuracy, but
for large collocation point numbers, the three newly pro-
posed schemes perform better than the traditional CRBF.

Example 2. We take the exact solution of (1)–(3) as

u(x, y) � −
1
2

x + y +
1
4

x
2

− y
2

 , (17)

and the connected domain Ω � Ω2 −Ω1 with outer
boundary Ω2 � [−2, 2] × [−2, 2] and inner boundary
Ω1 � [−1, 1] × [−1, 1], and only the Dirichlet boundary
u(x, y) � u(x, y) is considered， and the coefficients of
(1)–(3) are

a(x, y) � b(x, y) � 1,

c(x, y) � d(x, y) � e(x, y) � 0,

f(x, y) � Lu(x, y).

(18)

In this example, the total collocation point numbers
are M � 344 for the traditional CT, M � 361 for the
CGR, M � 348 for the CG, and M � 340for the CGL. /e
computational point number is Nt � 1028 for this ex-
ample. /e lists of relative average errors are shown in
Table 2. For all numbers of m, numerical results show
that the relative average errors of the CG-RBF and CGL-
RBF are more accurate than the tradition CRBF case
with one decimal. For the CGR-RBF, the solution ac-
curacy is not stable. /is scheme should be carefully
chosen in future applications. We suggest using the CG-
RBF and the CGL-RBF schemes in relative
investigations.

6. Conclusions

In this paper, we investigate the parameter-free conical
radial basis function. A novel collocation technique is
proposed which improves the performance of the tradi-
tional conical radial basis function method by utilizing
Chebyshev-type schemes. Our results show that the most
attractive features of the proposed method are its sim-
plicity and the corresponding numerical solution accu-
racy. /e method can be extended directly to three-
dimensional problems and will be applied to other
challenging problems in the future.
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